
DEDAUB.COM

Perp V2
Smart Contract Security Assessment

21.12.2021

DEDAUB.COM

ABSTRACT
Dedaub was commissioned to perform an audit on the V2 version of the Perp protocol.
The Perp protocol is a fully decentralized implementation of perpetual futures, also
known as perps. Perps have been popularized by the FTX centralized exchange and o�er
a very high funding rate, which results in highly speculative bets on the prices of
underlying cryptocurrencies against a quote token (typically USD). This audit report
covers commit hash a8553acd8ebb42350b9b1c6dd9b73d255b339f57. Two auditors worked over
the codebase over three weeks.

No Critical, High or Medium Severity vulnerabilities were found, which denotes an overall
healthy project and codebase. The codebase is very well wri�en and of professional
standard. The Perp team provided a lot of helpful documentation material which was
vital for the audit, given the high complexity of the project. The audit did not include
Uniswap V3 Math libraries and their application, or standard OpenZeppelin code.

Perp V2, which enables decentralized perpetual futures, o�ers users the ability to gain
highly leveraged price exposure to synthetic versions of crypto-assets, most notably
VETH. The underlying protocol implements a highly complex accounting model, and
allows users to trade or stake virtual tokens, via multiple layers of indirection (namely:
ClearingHouse.sol and Exchange.sol), through a standard Uniswap V3 AMM pool
initialized with VTokens (synthetic assets).

Perp V2 allows users to hold various positions on one address for multiple virtual base
tokens. It should be noted that despite some of these base tokens being correlated with
each other, opposite positions in these di�erent tokens would still increase the funding
requirements.

01

DEDAUB.COM

Centralization Aspects
As is common in many new protocols, the owner of the smart contracts yields
considerable power over the protocol, including changing the contracts holding the
user’s funds, se�ing fee ratios, adding addresses to whitelists which could mean
adjusting balances of users or minting virtual tokens, etc.

Security Opinion
The audit’s main target is security threats, i.e., what the community understanding
would likely call "hacking", rather than regular use of the protocol. Functional
correctness (i.e., issues in "regular use") was a secondary consideration, however
intensive e�orts were made to check the correct application of the mathematical
formulae in the reviewed code. Functional correctness relative to low-level calculations
(including units, scaling, quantities returned from external protocols) is generally most
e�ectively done through thorough testing rather than human auditing. Although a
number of simulations have been carried out, the crypto-economic e�ectiveness in a
real-world scenario is as yet unknown. Therefore, the �nancial viability of this protocol in
real market conditions cannot be fully established.
A key limitation of this audit, and generally, any exercise intended to establish the
security of Perp V2 is that Perp is, admi�edly, one of the most complex protocols in DeFi.
The accounting logic, and any user action in general involves the reuse of several pieces
of complex logic that interact with each other in intricate ways. In addition, Perp V2 has
intimate coupling with the internal logic of Uniswap V3 and needs to recalculate and
reverse, for instance, (i) fee calculations performed by this AMM in order to account for
fees in only the quote token (USD) or (ii) simulate the swapping of assets and calculate
slippage.

In terms of architecture, Dedaub notes that there are several design decisions that
ensure the economic security of the protocol:

1) The vTokens and vAMM cannot be meaningfully used outside of Perp
2) Clear & separate treatments between realized and unrealized PnL

02

DEDAUB.COM

3) Limits on the amount of slippage that occurs when opening or closing positions.

At the same time, Dedaub notes that there are architectural decisions, and limitations of
decentralization, which could potentially threaten the crypto-economic security of Perp
V2:

1) Complex Liquidations - given the current implementation, it is hard to predict
which positions can be liquidated, since users can be both makers and takers.

2) Complex accounting is hard to verify. Some of the complexity is for making sure
that past a�acks in Perp V1 cannot be replicated. As a result the team had to also
reimplement some parts of Uniswap V3 logic. In addition, some of the checks and
limitations introduced may have a negative e�ect - e.g., limiting slippage only
when closing positions means that large positions cannot be e�iciently
liquidated.

03

DEDAUB.COM

VULNERABILITIES & FUNCTIONAL ISSUES
This section details issues that a�ect the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or di�iculty in exploitation:

Category Description

CRITICAL Can be pro�tably exploited by any knowledgeable third party a�acker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

HIGH Third party a�ackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM Examples:
-User or system funds can be lost when third party systems misbehave.
-DoS, under speci�c conditions.
-Part of the functionality becomes unusable due to programming error.

LOW Examples:
-Breaking important system invariants, but without apparent
consequences.
-Buggy functionality for trusted users where a workaround exists.
-Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed”, by the client, or “resolved”, per the auditors.

04

DEDAUB.COM

CRITICAL SEVERITY:

[No critical severity issues]

HIGH SEVERITY:

[No high severity issues]

MEDIUM SEVERITY:

[No medium severity issues]

LOW SEVERITY:

ID Description STATUS

L1
Asymmetric advantage for position openers vs.
closers/liquidators

OPEN

Closing large positions cannot be done in a single block, due to the partial close
limitation. However, opening a large position can be done in a single block. This could
potentially result in some players opening large positions to gain an advantage.

Market participants can potentially exploit this limitation, since they can predict that
large changes in the mark price will need to happen in order to close or liquidate large
positions.

L2 ClearingHouse::liquidate can be simpli�ed OPEN

In ClearingHouse::liquidate it is required that the trader to be liquidated has no open
orders. However, the condition upon which the liquidation is decided, accounts for the

05

DEDAUB.COM

trader’s positions as a maker. This condition could thus be simpli�ed both for clarity
and gas e�iciency.

// CH_CLWTISO: cannot liquidate when there is still order
require(!IAccountBalance(_accountBalance).hasOrder(trader), "CH_CLWTISO");

require(getAccountValue(trader) <
IAccountBalance(_accountBalance).getMarginRequirementForLiquidation(trader
),

"CH_EAV"
);

More speci�cally, we suggest adding some new functions (essentially variants of
getAccountValue and getMarginRequirementForLiquidation as getTakerAccountValue,
getTakerMarginRequirementForLiquidation) that will account only for the positions of a
trader as a taker. Alternatively, in order to avoid code duplication, another function
parameter could be added denoting the accounting only for taker or also for maker
positions.

Providing such view functions will make it easier to construct liquidation bots, as the
e�ects of CH::cancelExcessOrders will be decoupled from the liquidation condition. We
consider the simplicity of the liquidations-related rules important, since the economic
viability of this protocol relies on the ability of liquidators to promptly liquidate user’s
positions.

L3 Cancel excess orders and liquidate are separate actions OPEN

By having separate calls for closing excess positions and liquidations, liquidator bots
can be front-run if they chose to invoke these APIs in separate transactions due to gas
limitations. It would be reasonable to cancelExcessOrders and liquidate at once, since
only liquidations bring pro�t to the liquidator.

06

DEDAUB.COM

OTHER/ ADVISORY ISSUES:
This section details issues that are not thought to directly a�ect the functionality of the
project, but we recommend considering them.

ID Description STATUS

A1 _isOverPriceLimitBySimulatingClosingPosition is not
needed

OPEN

The function above, which re-implements a lot of Uniswap V3’s logic down the call
stack, can be replaced by the actual Uniswap V3 swap in a separate internal
transaction. If the price goes over the limit, the internal transaction could be reverted
via exception handlers, and the alternative logic could be exercised instead. This
would not only reduce gas requirements but also the complexity of the protocol.

A2 Function can be turned into modi�er OPEN

The function ClearingHouseCallee::_requireOnlyClearingHouse can be turned into a
modi�er and applied to the calling function for clarity.

A3 Debt to InsuranceFund never paid back OPEN

In Vault::withdraw some amount might be needed to be borrowed from the
InsuranceFund:

if (vaultBalanceX10_D < amountX10_D) {
uint256 borrowedAmountX10_D = amountX10_D - vaultBalanceX10_D;
IInsuranceFund(_insuranceFund).borrow(borrowedAmountX10_D);
// Dedaub: debt to InsuranceFund is only growing
_totalDebt += borrowedAmountX10_D;

}

However there is currently no way to pay this debt back.

07

DEDAUB.COM

Also, InsuranceFund contract seems to accrue fees from traders that open positions
but there is currently no way to retrieve them:
function _openPosition(InternalOpenPositionParams memory params) internal
returns (IExchange.SwapResponse memory) {

IExchange.SwapResponse memory response =
IExchange(_exchange).swap(

IExchange.SwapParams({
// …
})

);

IAccountBalance(_accountBalance).modifyOwedRealizedPnl(_insuranceFund,
response.insuranceFundFee.toInt256())
//…
}

A4 Gas savings while settleFunding OPEN

In Exchange::settleFunding, fundingGrowthGlobal and price TWAPs are always
calculated as follows:

(fundingGrowthGlobal, markTwap, indexTwap) =
_getFundingGrowthGlobalAndTwaps(baseToken);

However, for calls within the same block the results will be the same.
Since this function is called at every interaction with the system, it is highly likely to be
called more than once in a single block. In order to save gas an if statement could be
added:

if (timestamp != _lastSettledTimestamp[baseToken]){
// call _getFundingGrowthGlobalAndTwaps
// call _updateFundingGrowth
// update stored vars

08

DEDAUB.COM

}
else {

// call _updateFundingGrowth using stored values of fundingGrowth
}

A5 Gas usage may increase quadratically to positions OPEN

Whenever a user’s position is modi�ed, maintained or liquidated, all of the user’s token
positions need to be queried. For instance, AccountBalance::getTotalDebtValue
which gets called on any position action.

Therefore, if we assume that a user with more positions and exposures to more tokens
needs to maintain their positions, and the number of actions correlates the number of
positions, the gas usage really scales quadratically for such a user.

A6 No functionality to remove pools INFO

We recommend the addition of a function MarketRegistry::removePool, to
complement the others.

A7 Current design doesn’t allow for multiple pools of the same
base token

INFO

There are several cases where the base token is considered as a unique id for the
underlying pool. For example:

address pool = IMarketRegistry(_marketRegistry).getPool(params.baseToken);
uint256 feeGrowthGlobalX128 = _feeGrowthGlobalX128Map[params.baseToken];
int24 tick = _getTick(baseToken);

This is su�icient as long as the protocol only supports a single quote token for all pools
but will be a problem in case the protocol is to be extended.

09

DEDAUB.COM

A8 Compiler known issues INFO

The contracts were compiled with the Solidity compiler v0.7.6 which, at the time of
writing, have some known bugs. We inspected the bugs listed for this version and
concluded that the subject code is una�ected.

010

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json

DEDAUB.COM

DISCLAIMER
The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a su�icient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, as well as a public
bug bounty program.

ABOUT DEDAUB
Dedaub o�ers technology and auditing services for smart contract security. The
founders, Neville Grech and Yannis Smaragdakis, are top researchers in program
analysis. Dedaub’s smart contract technology is demonstrated in the
contract-library.com service, which decompiles and performs security analyses on the
full Ethereum blockchain.

011

