

Counterfactual Audit Report

Monday, September 9, 2019

https://provide.services/

Summary

Connext​ engaged Provide to audit a subset of the smart contracts provided by the ​Counterfactual framework​ in

advance of the mainnet release of ​Indra​ 2.0. This document provides a brief overview of the Counterfactual

framework, the scope of the audit, issues discovered during the audit and recommendations for resolving such

issues prior to deploying the contracts to the Ethereum mainnet.

Auditor

Kyle Thomas

Authenticity

The scope of the audit is limited to a subset of the Solidity contracts which can be found in ​this GitHub repository

under ​packages/cf-adjudicator-contracts​ and ​packages/cf-funding-protocol-contracts​ at

commit hash ​cb6f9f6f7d46ff6bbce653f8a6a2815fd3254b43​.

Disclaimer

This document reflects the understanding of various issues and vulnerabilities as they are known to Provide

Technologies Inc. in the context of the limited scope and specific version as outlined herein. This document

makes no representations or warranties to any third party about the utility or safety of the project or its code, the

fitness of the contracts for a specific purpose, the viability of the project or the suitability of any business model.

This audit does not represent investment advice and should not be interpreted as such.

Scope

The final audit target reviewed contracts generated from the repository by ​this preprocessor script​, which outputs

two Solidity files containing the flattened in-scope ​cf-adjudicator-contracts​ and

cf-funding-protocol-contracts​, as outlined ​here​ and ​here​, respectively, and their dependencies. The

audit did not review any contracts individually; rather, it reviewed the contracts as they were rendered in the

flattened Solidity files using the process described above.

The audit did not formally assess any scripts, tests, or other non-Solidity files within the project. The audit did not

assess the usage or implementation of the Counterfactual framework from the perspective of the Indra project.

The assessment furnished in this report is the product of an audit focused on reducing vulnerabilities to improve

the overall security of the project; a lesser emphasis was placed on optimizing gas consumption. Suggestions

made in this report regarding optimizing gas consumption should not be construed to be exhaustive since the

primary focus of the audit was to eliminate exploitable vulnerabilities which could result in the loss of user funds

and the erosion of trust in projects which depend on the Counterfactual framework.

2

https://provide.services/
https://connext.network/
https://github.com/counterfactual/monorepo
https://github.com/connextproject/indra
https://github.com/counterfactual/monorepo
https://github.com/counterfactual/monorepo/commit/cb6f9f6f7d46ff6bbce653f8a6a2815fd3254b43
https://gist.github.com/kthomas/0b2d40cb444572605e5037d8138e2f82#file-counterfactual-flattener-sh

A subset of two Solidity packages were considered in-scope for the audit: ​cf-adjudicator-contracts

and ​cf-funding-protocol-contracts​. The functionality of each package is described briefly in this

section, and again in much greater detail ​here​.

cf-adjudicator-contracts​ provide an interface to ensure an application can reach finality. See ​this

flattened Solidity file. The ​cf-adjudicator-contracts​ package provides a subset of the audited contract

surface area, as it is a dependency of ​cf-funding-protocol-contracts​.

In-Scope Adjudicator Contracts

- ChallengeRegistry.sol

- LibAppCaller.sol

- LibStateChannelApp.sol

- MChallengeRegistryCore.sol

- MixinCancelChallenge.sol

- MixinChallengeRegistryCore.sol

- MixinRespondToChallenge.sol

- MixinSetOutcome.sol

- MixinSetState.sol

- MixinSetStateWithAction.sol

cf-funding-protocol-​contracts​ consists of a (i) multisig wherein state deposits are held and (ii)

interpreters which are responsible for checking the outcome for a particular application instance by way of the

adjudicator registry. The funding protocol has a much smaller surface area than the adjudicator contracts but is

much more error-prone due to the reliance on ​delegatecall​. See ​this​ flattened Solidity file. The

cf-funding-protocol-contracts ​package provides a superset of the audited contract surface area, as it

has a dependency on ​cf-adjudicator-contracts​.

In-Scope Funding Protocol Contracts

- ConditionalTransactionDelegateTarget.sol

- MinimumViableMultisig.sol

- SingleAssetTwoPartyCoinTransferFromVirtualAppInterpreter.sol

- SingleAssetTwoPartyCoinTransferInterpreter.sol

System Overview

A Counterfactual application is a smart contract which implements the ​CounterfactualApp​ interface and is

represented in the adjudication layer of the Counterfactual framework by an ​AppIdentity​ which governs a

plurality of instances of the ​CounterfactualApp​ within a channel. Each ​CounterfactualApp​ instance is

uniquely identified by a ​channelNonce​ ​and allows for serial state transitions, affected by channel

3

https://provide.services/
https://gist.githubusercontent.com/kthomas/0b2d40cb444572605e5037d8138e2f82/raw/5939461300ee16c0ccaad55bb0f706477830596d/flat-cf-adjudicator.sol
https://gist.githubusercontent.com/kthomas/0b2d40cb444572605e5037d8138e2f82/raw/5939461300ee16c0ccaad55bb0f706477830596d/flat-cf-funding-protocol.sol

participants​. Counterfactual plans to support concurrent state transitions in a future version of the

framework.

Adjudication

The ​ChallengeRegistry​ is a singleton adjudication contract which is compatible only with

CounterfactualApp​ implementations. ​ChallengeRegistry​ ​employs multiple inheritance to mixin

various adjudication concerns; each mixin has access to (i) the ​appChallenges​ ​and ​appOutcomes
storage mappings and (ii) a few internal helper methods in the derived ​ChallengeRegistry​ ​contract;

these storage mappings and helper methods are provided by the ​MChallengeRegistryCore​ mixin. The

appChallenges​ ​and ​appOutcomes​ ​storage mappings are each keyed on the ​bytes32​ ​AppIdentity

hash:

mapping (bytes32 => LibStateChannelApp.AppChallenge) public appChallenges;

mapping (bytes32 => bytes) public appOutcomes;

Any ​AppChallenge​ published on-chain represents a failure by one party of a state channel contract (i.e., a

CounterfactualApp​) to adhere to the protocol.

The ​ChallengeRegistry​ ​contract publicly exposes the following methods which modify state and were

prioritized in-scope of this audit:

- MixinCancelChallenge.cancelChallenge

- MixinRespondToChallenge.respondToChallenge

- MixinSetOutcome.setOutcome

- MixinSetState.setState

- MixinSetStateWithAction.setStateWithAction

This mixin pattern makes for excellent readability of the various ​ChallengeRegistry​ concerns.

Channel Funding Protocol

The ​ConditionalTransactionDelegateTarget​ contract publicly exposes the following methods

which modify state and were prioritized in-scope of this audit:

- ConditionalTransactionDelegateTarget.executeEffectOfFreeBalance

- ConditionalTransactionDelegateTarget.executeEffectOfInterpretedAppOutcome

The ​MinimumViableMultisig​ contract publicly exposes the following methods which modify state and

were prioritized in-scope of this audit:

- MinimumViableMultisig.execTransaction

4

https://provide.services/

Findings

The Counterfactual codebase is very clean; naming conventions are consistent and access modifiers are used

properly. Kudos to the Counterfactual team for writing such clean, well-documented code.

Legend​ ​ ​Critical​ ​High severity​ ​Medium severity​ ​Low severity ​Other

1. Integer overflow can prevent finality.​ A critical vulnerability in the ​MixinSetState.setState

method exists such that an otherwise-authorized user can maliciously force a challenge to be finalized

prematurely by providing a timeout value in her ​SignAppChallengeUpdate​ request to intentionally overflow

the ​finalizesAt​ ​uint256​ stored on the ​AppChallenge​ instance. To exploit, the user simply needs to

calculate the timeout such that:

uint256 max = 2**256 - 1;

uint256 maliciousTimeout = max - block.number; // sore loser

challenge.finalizesAt = block.number + maliciousTimeout + 1; // finalized!

The resulting adjudication state would be unrecoverable; the challenge status would be set to

ChallengeStatus.FINALIZES_AFTER_DEADLINE​ and future calls to ​isStateFinalized​ would return

true​. All future calls to the following methods would uselessly revert:

- MixinCancelChallenge.cancelChallenge

- MixinRespondToChallenge.respondToChallenge

- MixinSetOutcome.setOutcome

- MixinSetState.setState

- MixinSetStateWithAction.setStateWithAction

2. Integer overflow can prevent finality.​ ​The same critical vulnerability as described in above item (1)

also exists in the ​MixinSetStateWithAction.setStateWithAction​ method and its

SignedAppChallengeUpdateWithAppState​ ​request.

3. State channel application outcomes and funds transfers can be interpreted prematurely.​ A critical

bug in ​ConditionalTransactionDelegateTarget.executeEffectOfInterpretedAppOutcome

unconditionally interprets channel application outcomes and initiates funds transfers without regard for application

finality.

4. Transaction replay possible via multisig.​ ​The ​MinimumViableMultisig.execTransaction

method exposes a transaction replay attack vector by failing to check computed transaction hashes against

5

https://provide.services/

isExecuted​, the storage mapping which provides hash-based replay protection. Failing to ensure a hash has

not already been executed allows ​call​ and ​delegatecall​ invocations to be repeatedly forwarded to

ConditionalTransactionDelegateTarget​ on behalf of the multisig.

5. Unchecked user input.​ ​A minor bug in the ​LibStateChannelApp.verifySignature​ method

exists as a result of unchecked user input. It is possible to cause an out-of-bounds error by passing ​signers

and ​signatures​ arrays of different lengths.

6. Predisposition to non-optimal gas consumption.​ The codebase relies on ​ABIEncoderV2​ ​to make it

easy for developers to declare a ​struct​ to represent channel state and then conveniently encode and decode

those state objects to and from ​bytes​. This is great for readability and developer experience. The caveat of

ABIEncoderV2​ ​is its usage can result in non-optimal gas consumption.

Recommendations

Our recommendation is that all identified issues SHOULD be fixed prior to using the contracts in any production

application. Issues identified as Critical or High severity should be considered “MUST fix.”

Update: all recommendations outlined below have been addressed.

Critical
1. Fix a vulnerability in the ​MixinSetState.setState​ method which allows a malicious party to

intentionally overflow the ​finalizesAt​ ​uint256​ stored on an ​AppChallenge​ instance which the user is

a participant. This is a critical vulnerability as it can result in the loss of funds and break the channel

protocol. ​Update: this issue was fixed in ​d37c62d​.

2. Fix a vulnerability in the ​MixinSetStateWithAction.setStateWithAction​ method which

allows a malicious party to intentionally overflow the ​finalizesAt​ ​uint256​ stored on an ​AppChallenge

instance which the user is a participant. This is a critical vulnerability as it can result in the loss of funds and

break the channel protocol. This vulnerability is identical to the critical vulnerability discovered in the

MixinSetState.setState​ method as described in above item (1). ​Update: this issue was fixed in

d37c62d​.

3. Fix a bug allowing premature interpretation and funds transfers for non-finalized applications via

ConditionalTransactionDelegateTarget.executeEffectOfInterpretedAppOutcome​. The

ChallengeRegistry​ ​should be consulted to ensure the application is finalized before its outcome is

interpreted. ​Update: this issue was fixed in ​4465ffe​.

6

https://provide.services/
https://github.com/counterfactual/monorepo/commit/d37c62d7db8bd969e56f92b2b615db2b748f813c
https://github.com/counterfactual/monorepo/commit/d37c62d7db8bd969e56f92b2b615db2b748f813c
https://github.com/counterfactual/monorepo/pull/2301/commits/4465ffea9da719e349437154a43274890b2ddfde

High severity

1. Fix a vulnerability in the ​MinimumViableMultisig.execTransaction​ method which exposes

a replay attack vector by failing to check ​isExecuted​, by simply checking computed transaction hashes

against the ​isExecuted​ storage mapping. ​Update: this issue was fixed in ​f4770c9​.

Low severity
1. Fix a potential out-of-bounds error caused by failing to check ​signers​ and ​signatures​ arrays to

be of equal length in the ​LibStateChannelApp.verifySignature​ method. ​Update: this issue was

fixed in ​bfd8b55​.

Other
1. The primary focus of this audit was to reduce vulnerabilities, not gas consumption. Due to the use

of ​ABIEncoderV2​, our recommendation is to perform a sanity check on each ​struct​ ​declaration to

ensure values are properly packed to fit in the smallest number of 32-byte slots as possible.

Futureproofing

The following recommendations are out-of-scope of the audit itself​ but are included below as “friendly

advice” in the spirit of improving the future maintainability of the Counterfactual project:

1. The ​ConditionalTransactionDelegateTarget​ needs better comments; comments are

either missing or documented function parameters no longer match the actual function signatures.

2. The test suite could be more readable. Consider taking the time to refactor such that the test suite

mirrors the cleanliness and modularity of the Solidity packages. For example, it would make the codebase

even more readable if each mixin as provided by the adjudicator package had a corresponding spec file.

Currently, ​challenge-registry.spec.ts​ seems like an attempt to cover everything and this approach

will become increasingly hard to read and maintain as more coverage is added. This isn’t the end of the

world by any means but refactoring the test suite could result in solid gains in both coverage and readability

and force a few shared context helpers to be written which will make the test harness a lot more scalable.

3. This utility script​ was used to generate a flattened Solidity artifact including all contracts which were

in-scope for this audit and will be helpful when kicking off targeted audits in the future.

7

https://provide.services/
https://github.com/counterfactual/monorepo/pull/2290/commits/f4770c93f288b8b4c9faae2996f2947fe551e6b4
https://github.com/counterfactual/monorepo/commit/bfd8b5593c125ebfb356b8cd98583efe9e037649
https://gist.github.com/kthomas/0b2d40cb444572605e5037d8138e2f82#file-counterfactual-flattener-sh

Conclusion

The Counterfactual project is awesome! It provides a great foundation for building state channel protocols and

applications.

Provide Connext and we look forward to the imminent mainnet release of Indra 2.0 following minor updates

to the Counterfactual framework.

Links

Connext​ ​Counterfactual​ ​Provide

8

https://provide.services/
https://connext.network/
https://counterfactual.com/
https://provide.services/

