
Aavegotchi
Smart Contracts

Security Assessment

March 1st, 2021

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. These reports are not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal
compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any
particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice
of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their
code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each
company and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help
reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing
technologies, and in no way claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK
by a Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation and
overall best practices of a particular piece of source code.
Representation that a Client of CertiK has completed a round of auditing with the intention to increase the
quality of the company/product's IT infrastructure and or source code.

Project Name Aavegotchi Smart Contracts

Description Smart contracts portion of the Aavegotchi repository

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. 7376afa4ef247bd7f78fe4f6c3643d3fac9008f2
2. 6536d434b7c87c1cf0325917f811bf042e74ef50

Delivery Date March. 1, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 3

Timeline Dec. 21, 2020 - March. 1, 2021

Total Issues 41

 Total Critical 0

 Total Major 1

 Total Medium 2

 Total Minor 7

 Total Informational 31

 Overview

Project Summary

Audit Summary

Vulnerability Summary

 Executive Summary

This report represents the results of CertiK's engagement with Aavegotchi on their implementation of the Aavegotchi
smart contracts.

Static analysis and manual inspection was performed on the smart contracts in scope. Most of the findings are of
informational nature with a few medium and minor findings. Majority of the issues were remediated except a couple
of informational findings, which were not considered.

ID Contract Location

AFT AavegotchiFacet.sol contracts/Aavegotchi/facets/AavegotchiFacet.sol

ADD AavegotchiDiamond.sol contracts/Aavegotchi/AavegotchiDiamond.sol

CFT CollateralFacet.sol contracts/Aavegotchi/facets/CollateralFacet.sol

CEW CollateralEscrow.sol contracts/Aavegotchi/CollateralEscrow.sol

DAO DAOFacet.sol contracts/Aavegotchi/facets/DAOFacet.sol

ILK ILink.sol contracts/Aavegotchi/interfaces/ILink.sol

IER IERC721.sol contracts/Aavegotchi/interfaces/IERC721.sol

IEC IERC1155.sol contracts/Aavegotchi/interfaces/IERC1155.sol

IFT ItemsFacet.sol contracts/Aavegotchi/facets/ItemsFacet.sol

IAD IAavegotchiDiamond.sol contracts/Aavegotchi/interfaces/IAavegotchiDiamond.sol

IET IERC1155TokenReceiver.sol contracts/Aavegotchi/interfaces/IERC1155TokenReceiver.sol

LVF LibVrf.sol contracts/Aavegotchi/libraries/LibVrf.sol

LER LibERC20.sol contracts/shared/libraries/LibERC20.sol

LDD LibDiamond.sol contracts/shared/libraries/LibDiamond.sol

LEC LibERC1155.sol contracts/Aavegotchi/libraries/LibERC1155.sol

LAS LibAppStorage.sol contracts/Aavegotchi/libraries/LibAppStorage.sol

SFT ShopFacet.sol contracts/Aavegotchi/facets/ShopFacet.sol

VRF VRFFacet.sol contracts/Aavegotchi/facets/VRFFacet.sol

 Files In Scope

AavegotchiDiamond

OwnershipFacet DiamondCutFacet DiamondLoupeFacet IERC165 IDiamondLoupe ItemsFacet

IERC721

DAOFacet

SvgFacet

IAavegotchiDiamond

AavegotchiFacet CollateralFacet

LibSvg CollateralEscrow

ShopFacet

LibAppStorage IERC1155 LibERC1155

LibERC20

IERC20

VRFFacet

LibVrf ILink LibDiamond

IDiamondCut

 File Dependency Graph

76%

2%

17%

5%

Informational
Major
Minor
Medium

ID Title Type Severity Resolved

LAS-01 Inefficient storage read Gas Optimization Informational

LAS-02 Inefficient storage layout Gas Optimization Informational

LAS-03 Redundant Statements Dead Code Informational

LAS-04 Unsafe subtraction Arithmetic Minor

AFT-01 Documentation discrepancy Inconsistency Informational

AFT-02 Inefficient Greater-Than Comparison w/ Zero Gas Optimization Informational

AFT-03 Code readability can be improved Coding Style Informational

AFT-04 Code readability can be improved Coding Style Informational

 Findings

AFT-05 Array type can be changed from dynamic to
fixed length

Gas Optimization Informational

AFT-06 Inefficient code Gas Optimization Informational

AFT-07 Redundant return statement Coding Style Informational

AFT-08 Inefficient local variable Gas Optimization Informational

AFT-09 Documentation discrepancy Inconsistency Informational

AFT-10 Comparison with literal false Gas Optimization Informational

AFT-11 Redundant Variable Initialization Coding Style Informational

AFT-12 uint8 type can be changed to uint256 Gas Optimization Informational

AFT-13 require statements can be substituted with
modifier

Gas Optimization Informational

AFT-14 Documentation discrepancy Logical Issue Major

CFT-01 Duplicate code Coding Style Informational

CFT-02 Possibility of integer underflow Arithmetic Minor

CFT-03 Incorrect word Coding Style Informational

DAO-01 emit keyword is missing before the event call Language Specific Minor

DAO-02 Possibility of integer overflow Arithmetic Minor

SFT-01 Redundant storage read Gas Optimization Informational

SFT-02 Possibility of integer overflow Arithmetic Minor

SFT-03 Possibility of integer overflow Arithmetic Minor

SFT-04 Inefficient Greater-Than Comparison w/ Zero Gas Optimization Informational

VRF-01 Comparison with literal false Gas Optimization Informational

VRF-02 Comparison with literal true Gas Optimization Informational

VRF-03 Returned success value is not checked of
function call

Volatile Code Minor

VRF-04 require statement can be substituted with
modifier

Gas Optimization Informational

IFT-01 Incorrect code Control Flow Medium

IFT-02 uint256 can be used instead of uint16 Gas Optimization Informational

IFT-03 Inefficient function implementation Gas Optimization Informational

IFT-04 Comparison with a literal true Gas Optimization Informational

IFT-05 Duplicate code can be extracted to a function Gas Optimization Informational

IFT-06 Duplicate code can be extracted to a function Gas Optimization Informational

ADD-01 Ether locking in AavegotchiDiamond Volatile Code Medium

LDD-01 Inefficient storage struct layout Gas Optimization Informational

LDD-02 Redundant require statement Gas Optimization Informational

LDD-03 Inefficient Greater-Than Comparison w/ Zero Gas Optimization Informational

Type Severity Location

Gas Optimization Informational LibAppStorage.sol L164-L167

 LAS-01: Inefficient storage read

Description:

The aforementioned lines read storage variable s.ghstContract multiple times. Reading from storage is
significantly expensive than reading from a local variable and to enhance the gas efficiency of code, we suggest that
the storage variable is first stored in a local variable and then used on the aforementioned lines.

Recommendation:

We recommend to store the storage variable of s.ghstContract into a local variable and then use it on the
aforementioned lines.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

address ghstAddress = s.ghstContract;
LibERC20.transferFrom(s.ghstContract, msg.sender,
address(0xFFfFfFffFFfffFFfFFfFFFFFffFFFffffFfFFFfF), burnShare);
LibERC20.transferFrom(ghstContract, msg.sender, s.pixelCraft, companyShare);
LibERC20.transferFrom(ghstContract, msg.sender, s.rarityFarming, rarityFarmShare);
LibERC20.transferFrom(ghstContract, msg.sender, s.dao, daoShare);

Type Severity Location

Gas Optimization Informational LibAppStorage.sol L102-L103

 LAS-02: Inefficient storage layout

Description:

The struct AppStorage 's properties on the aforementioned lines are laid out in an inefficient way where they occupy
the a complete 32-byte slot. These properties can be placed at the end of the struct where they will be packed with
the address type property resulting in saving gas cost associated with an additional storage slot.

Recommendation:

We advise to place the struct properties on the aforementioned lines at the end of the struct so they can be tight
packed with the address type.

Alleviation:

The recommendation was not considered, with the Aavegotchi team stating "Understood. Since moving to Polygon
(which has very low gas fees) we are less concerned with inefficient storage layout and more concerned with
convenience and contract readability. Therefore I did not change this item".

struct AppStorage {
 ...
 address rarityFarming;
 uint32 totalSupply;
 uint16 currentHauntId;
}

Type Severity Location

Dead Code Informational LibAppStorage.sol L170-L175

 LAS-03: Redundant Statements

Description:

The linked statements do not affect the functionality of the codebase and appear to be either leftovers from test
code or older functionality.

Recommendation:

We advise that they are removed to better prepare the code for production environments.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

Type Severity Location

Arithmetic Minor LibAppStorage.sol L221

 LAS-04: Unsafe subtraction

Description:

The aforementioned line performs unsafe subtraction which can result in underflow of the resultant value.

Recommendation:

We recommend to either use SafeMath library from OpenZeppelin or introduce a check asserting that the minuend
is larger than or equal to the subtrahend.

For SafeMath library, the following link can be reffered.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 by removing the
relevant code part.

require(
 _experience >= _lowRange,
 "_experience is smaller than _lowRange"
);

https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/math/SafeMath.sol

Type Severity Location

Inconsistency Informational AavegotchiFacet.sol L156-L163

 AFT-01: Documentation discrepancy

Description:

The comments on the aforementioned lines suggest that the function balanceOf should throw if it is called with the
argument of zero address yet the function does not implement logic to throw on such event.

Recommendation:

We advise to either implement the logic in balanceOf function which throws upon _owner being passed as
address(0) or remove the comments expecting this behaviour from the function to increase the legibility of the

codebase.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

Type Severity Location

Gas Optimization Informational AavegotchiFacet.sol L196

 AFT-02: Inefficient Greater-Than Comparison w/ Zero

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the non-negative integer
range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

The finding was incorrectly identified as the value being compared with zero can be a negative number. This exhibit
is rendered ineffective.

Type Severity Location

Coding Style Informational AavegotchiFacet.sol L196-L199

 AFT-03: Code readability can be improved

Description:

The if statements on the aforementioned lines can be combined in a single if statement to increase readability
of the codebase.

Recommendation:

We recommend to combine the if statements on the aforementioned lines to increase the readability of the
codebase.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

if (boost > 0 && boost > boostDecay) {...}

Type Severity Location

Coding Style Informational AavegotchiFacet.sol L200-L204

 AFT-04: Code readability can be improved

Description:

The aforementioned lines has else block and an if block inside it. These blocks can be combined to increase
the readability of the codebase.

Recommendation:

We advise to combine the else and if block to increase the readability of the codebase.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

if () {}
else if ((boost * -1) > boostDecay) {
 number += boost + boostDecay;
}

Type Severity Location

Gas Optimization Informational AavegotchiFacet.sol L171, L216

 AFT-05: Array type can be changed from dynamic to fixed length

Description:

The aforementioned lines declare dynamic arrays as part of struct properties. The initialization of these arrays in the
code always result in a fixed length equal to LibAppStorage.NUMERIC_TRAITS_NUM and hence the type of these
arrays can be changed from dynamic to fixed-length array with length being LibAppStorage.NUMERIC_TRAITS_NUM .

Recommendation:

We advise to change the type of arrays on the aforementioned lines from dynamic to fixed-length array where length
is equal to LibAppStorage.NUMERIC_TRAITS_NUM .

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

int256[LibAppStorage.NUMERIC_TRAITS_NUM] numericTraits;

Type Severity Location

Gas Optimization Informational AavegotchiFacet.sol L227-L231

 AFT-06: Inefficient code

Description:

The code on the aforementioned lines can be optimized by replacing the if-else statements with only an if
block which sets stakeAmount when collateral is a non-zero address.

Recommendation:

We advise to replace the if-else statements with an if block which sets stakeAmount when collateral is a
non-zero address. Setting of stakeAmount to 0 is not needed as it is the default value of uint256 type.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

if (aavegotchiInfo_.collateral != address(0)) {
 aavegotchiInfo_.stakedAmount =
IERC20(aavegotchiInfo_.collateral).balanceOf(aavegotchiInfo_.escrow);
}

Type Severity Location

Coding Style Informational AavegotchiFacet.sol L240

 AFT-07: Redundant returnreturn statement

Description:

The return statement on the aforementioned line is redundant as the function getAavegotchi has a named
return parameter aavegotchiInfo_ which is implicitly returned at the end of function execution and hence explicit
return statement can be removed.

Recommendation:

We recommend to remove the explicit return statement at the end of aforementioned function's body.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

Type Severity Location

Gas Optimization Informational AavegotchiFacet.sol L270-L271

 AFT-08: Inefficient local variable

Description:

The local variable on the aforementioned line copies the struct from storage to memory and is only utilized once in
the code. This is an inefficient implementation as simply reading a value from storage will be significantly cheaper
than first copying the whole struct in memory and then reading a value from it.

Recommendation:

We recommend to remove the local variable collateralInfo and directly read the value from storage on L271 .

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

uint256 modifiers = s.collateralTypeInfo[collateralType].modifiers;

Type Severity Location

Inconsistency Informational AavegotchiFacet.sol L363-L370

 AFT-09: Documentation discrepancy

Description:

The comments on the aforementioned lines suggest that the function ownerOf should throw if the returned address
of owner is zero yet the function does not implement logic to throw on such event.

Recommendation:

We advise to either implement the logic to throw when the returned owner's address is zero or remove the
comments expecting this behaviour from the function to increase the legibility of the codebase.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

Type Severity Location

Gas Optimization Informational AavegotchiFacet.sol L455

 AFT-10: Comparison with literal falsefalse

Description:

The aforementioned line performs comparison with a boolean literal false which can be replaced with the
negation of the expression to increase the legibility of the codebase.

Recommendation:

We advise to use the negation of expression inside the require statement instead of comparison with boolean.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

require(!s.aavegotchiNamesUsed[_name], "AavegotchiFacet: Aavegotchi name used
already");

Type Severity Location

Coding Style Informational AavegotchiFacet.sol L478

 AFT-11: Redundant Variable Initialization

Description:

All variable types within Solidity are initialized to their default "empty" value, which is usually their zeroed out
representation. Particularly:

uint / int : All uint and int variable types are initialized at 0
address : All address types are initialized to address(0)
byte : All byte types are initialized to their byte(0) representation
bool : All bool types are initialized to false
ContractType : All contract types (i.e. for a given contract ERC20 {} its contract type is ERC20) are

initialized to their zeroed out address (i.e. for a given contract ERC20 {} its default value is
ERC20(address(0)))
struct : All struct types are initialized with all their members zeroed out according to this table

Recommendation:

We advise that the linked initialization statements are removed from the codebase to increase legibility.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

Type Severity Location

Gas Optimization Informational AavegotchiFacet.sol L479

 AFT-12: uint8uint8 type can be changed to uint256uint256

Description:

The aforementioned line declares local variable of type uint8 which is inefficient as local variables are not packed
unlike storage variables. As EVM works with 32-byte values, the uint8 type will be first unpacked to 32-byte and
then be operated upon and hence it will be gas efficient to just use uint256 instead of uint8 on the
aforementioned.

Recommendation:

We advise to the change type from uint8 to uint256 on the aforementioned line as it is gas efficient.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

for (uint256 index = 0; index < _values.length; index++) {...}

Type Severity Location

Gas Optimization Informational AavegotchiFacet.sol L291, L501

 AFT-13: requirerequire statements can be substituted with modifiermodifier

Description:

The require statements on the aforementioned lines can be substituted with modifier to increase the legibility of
the codebase.

Recommendation:

We advise to substitute the require statements with modfier on the aforementioned lines to increase the
legibility of the codebase.

The usage of modifier would be as followed.

Alleviation:

The recommendation was not considered.

modifier onlyStatusAavegotchi(uint256 _tokenId) {
 isStatusAavegotchi(_tokenId);
 _;
}

function isStatusAavegotchi(uint256 _tokenId) private {
 require(s.aavegotchis[_tokenId].status == LibAppStorage.STATUS_AAVEGOTCHI,
"AavegotchiFacet: Must be claimed");
}

function func_name(uint256 _tokenId) onlyStatusAavegotchi(_tokenId) {...}

Type Severity Location

Logical Issue Major AavegotchiFacet.sol L581

 AFT-14: Documentation discrepancy

Description:

The comment on L27 of LibAppStorage suggests that the interaction count should be set to 0 when an
Aavegotchi is transferred to a new owner yet the logic inside aforementioned function does not implement such
behaviour.

Recommendation:

We advise to add the logic to set interactionCount of Aavegotchi to 0 in the aforementioned function.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 by removing the
comment.

s.aavegotchis[_tokenId].interactionCount = 0;

Type Severity Location

Coding Style Informational CollateralFacet.sol L20-L23

 CFT-01: Duplicate code

Description:

The struct definition on the aforementioned lines is also declared in contract DAOFacet on L18-L21 . To observe
the reusability of the code, this struct definition can be placed in the file LibAppStorage as it is imported in both of
the contracts.

Recommendation:

We advise to put the struct definition in LibAppStorage to observe the resuability of code.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 by putting struct in the
LibAavegotchi.sol file.

Type Severity Location

Arithmetic Minor CollateralFacet.sol L80

 CFT-02: Possibility of integer underflow

Description:

The aforementioned line performs check that the stake should be greater-than or equal-to minimumStake after it is
decreased. If the expression currentStake - _reduceAmount underflow then the check still passes and the user is
able to withdraw enough stake such that the actual stake would be less than the minimumStake .

Recommendation:

We recommend to either use SafeMath library from Openzeppelin or add a check asserting that the
_reduceAmount is less than or equal to current stake.

Alleviation:

Alleviations were applied by upgradting Solidity version to 0.8.1 which checks the arithmetic operations by
default.

require(
 currentStake >= _reduceAmount,
 "currentStake cannot be less than the reduce amount"
);

Type Severity Location

Coding Style Informational CollateralFacet.sol L97

 CFT-03: Incorrect word

Description:

The comment on the aforementioned line incorrectly refers to experience as essense .

Recommendation:

We advise to rectify the comment and correctly mention the word experience .

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

//If the toId is different from the tokenId, then perform an experience transfer

Type Severity Location

Language Specific Minor DAOFacet.sol L152

 DAO-01: emitemit keyword is missing before the event call

Description:

The event call on the aforementioned line is missing the emit keyword before it.

Recommendation:

We recommend to add the emit keyword before the event call.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

emit GameManagerTransferred(s.gameManager, _gameManager);

Type Severity Location

Arithmetic Minor DAOFacet.sol L96-L97

 DAO-02: Possibility of integer overflow

Description:

The addition performed on L96 , if overflown, can result in passing of the check on L97 if the wrapped value is
less than the maxQuantity .

Recommendation:

We advise to add a check asserting that the resultant totalQuantity of the addition operation is greater than
s.itemTypes[itemId].totalQuantity or SafeMath library from Openzeppelin can be used.

The SafeMath library from Openzeppelin can be reffered to on the following link.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 by upgrading Solidity
version to 0.8.1 which checks arithmetic operations by default.

require(
 totalQuantity >= s.itemTypes[itemId].totalQuantity,
 "totalQuantity has overflown"
);

https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/math/SafeMath.sol

Type Severity Location

Gas Optimization Informational ShopFacet.sol L57, L52

 SFT-01: Redundant storage read

Description:

The storage read of s.currentHauntId on L57 is redundant and inefficient as the same value is read from storage
and stored in local variable on L52 .

Recommendation:

We advise to read the hauntId from the local variable instead of storage on L57 as reading from stack is
significantly cheaper than reading from storage.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

uint16 hanutId = uint16(currentHauntId);

Type Severity Location

Arithmetic Minor ShopFacet.sol L98

 SFT-02: Possibility of integer overflow

Description:

The addition operation on L98 , if results in overflow of integer value then the require check on L99 can possibly
pass if the wrapped value is less than the maxQuantity .

Recommendation:

We advise to add a check asserting that the resultant value is greater than or equal to itemType.totalQuantity or
SafeMath library from Openzeppelin can be used.

The following link refers to SafeMath library.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 by upgrading Solidity
version to 0.8.1 which checks the arithmetic operations by default.

requrie(
 totalQuantity >= itemType.totalQuantity,
 "value has overflown"
);

https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/math/SafeMath.sol

Type Severity Location

Arithmetic Minor ShopFacet.sol L123

 SFT-03: Possibility of integer overflow

Description:

The addition operation on L123 , if results in overflow of integer value then the require check on L124 can
possibly pass if the wrapped value is less than the maxQuantity .

Recommendation:

We advise to add a check asserting that the resultant value is greater than or equal to itemType.totalQuantity or
SafeMath library from Openzeppelin can be used.

The following link refers to SafeMath library.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 by upgrading Solidity
version to 0.8.1 which checks the arithmetic operations by default.

requrie(
 totalQuantity >= itemType.totalQuantity,
 "value has overflown"
);

https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/math/SafeMath.sol

Type Severity Location

Gas Optimization Informational ShopFacet.sol L159

 SFT-04: Inefficient Greater-Than Comparison w/ Zero

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the non-negative integer
range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

The relevant code part was remove rendering this exhibnit ineffectual.

Type Severity Location

Gas Optimization Informational VRFFacet.sol L126

 VRF-01: Comparison with literal falsefalse

Description:

The aforementioned line performs comparison with boolean literal false which can be replaced with the negation
of expression to increase the legibility of the codebase.

Recommendation:

We advise to replace literal comparison with false to the negation of expression on the aforementioned line.

Alleviation:

The relevant code part was removed rendering this exhibit ineffectual.

require(!vrf_ds.vrfPending, "VrfFacet: VRF call is pending");

Type Severity Location

Gas Optimization Informational VRFFacet.sol L153

 VRF-02: Comparison with literal truetrue

Description:

The aforementioned line performs comparison with literal true which can be replaced with the expression itself to
increase the legibility of the code.

Recommendation:

We advise to replace the comparison to literal true with the expression itself.

Alleviation:

The relevant code part was changed rendering this exhibit ineffectual.

require(vrf_ds.vrfPending, "VrfFacet: VRF is not pending");

Type Severity Location

Volatile Code Minor VRFFacet.sol L132

 VRF-03: Returned successsuccess value is not checked of function call

Description:

The aforementioned line performs function call whose returned success value is not checked.

Recommendation:

We advise to check the returned success value of the function call on the aforementioned line.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

require(
 im_link.transferAndCall(im_vrfCoordinator, vrf_ds.fee, abi.encode(vrf_ds.keyHash,
0)),
 "call failed"
)

Type Severity Location

Gas Optimization Informational VRFFacet.sol L163, L171

 VRF-04: requirerequire statement can be substituted with modifiermodifier

Description:

The require statements on the aforementioned lines can be substituted with modifier to increase the legibility of
the codebase.

Recommendation:

We advise to substitute the require statements on the aforementioned lines with modifier .

The usage of modifier would be as followed.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

modifier onlyOwner() {
 isOwner();
 _;
}

function isOwner() private {
 require(msg.sender == LibDiamond.contractOwner(), "VrfFacet: Must be contract
owner");
}

function func_name() onlyOwner {...}

Type Severity Location

Control Flow Medium ItemsFacet.sol L138

 IFT-01: Incorrect code

Description:

The aforementioned has incorrect condition in the for loop which results bals array always containing zero-
values for all of its indices.

Recommendation:

We advise to rectify the condition part in for loop such that it correctly populate the bals array.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

for (uint156 i; i < owners.length; i++) {...}

Type Severity Location

Gas Optimization Informational ItemsFacet.sol L147

 IFT-02: uint256uint256 can be used instead of uint16uint16

Description:

The aforementioned line declares local variable of type uint16 which is inefficient as local variables are not packed
unlike storage variables. As EVM works with 32-byte values, the uint16 type will be first unpacked to 32-byte and
then be operated upon and hence it will be gas efficient to just use uint256 instead of uint16 on the
aforementioned.

Recommendation:

We recommend to change the type from uint16 to uint256 on the aforementioned line as it will be gas efficient.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

for (uint256 i; i < 16; i++) {...}

Type Severity Location

Gas Optimization Informational ItemsFacet.sol L181

 IFT-03: Inefficient function implementation

Description:

The function on the aforementioned line manually copies all the itemTypes to a memory array and then return it.
The function will behave the same if the itemType are directly returned from the storage instead of manually
copying them.

Recommendation:

We advise to directly return the itemTypes from the body of the function as it will be gas efficient.

Alleviation:

The relevant code is removed rendering this exhibit ineffectual.

function getItemTypes() external view returns (ItemType[] memory itemTypes_) {
 return s.itemTypes;
}

Type Severity Location

Gas Optimization Informational ItemsFacet.sol L404

 IFT-04: Comparison with a literal truetrue

Description:

The aforementioned line performs comparison with a literal true which can be replaced with the expression itself
to increase the legibility of the codebase.

Recommendation:

We advise to replace the comparison with boolean literal true with the expression itself on the aforementioned
line.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

require(canBeEquipped, "ItemsFacet: Wearable cannot be equipped in this collateral
type");

Type Severity Location

Gas Optimization Informational ItemsFacet.sol L296-L311, L343-L358

 IFT-05: Duplicate code can be extracted to a function

Description:

The code blocks on the aforementioned lines are a duplicate and can be extracted to a single function to increase
the legibility of the codebase and as well as reduce the bytecode footprint of the contract to save gas cost
associated with contract deployment.

Recommendation:

We advise to extract the duplicate code on the aforementioned lines to a function to observe reusability of the code.
The extracted function can be called in place of the aforementioned code.

function isValidSender(
 address _fromContract,
 uint256 _fromTokenId
) private {
 if (_fromContract == address(this)) {
 address owner = s.aavegotchis[_fromTokenId].owner;
 require(
 msg.sender == owner || s.operators[owner][msg.sender] || msg.sender ==
s.approved[_fromTokenId],
 "Items: Not owner and not approved to transfer"
);
 require(s.aavegotchis[_fromTokenId].unlockTime <= block.timestamp, "Items:
Only callable on unlocked Aavegotchis");
 } else {
 address owner = IERC721(_fromContract).ownerOf(_fromTokenId);
 require(
 owner == msg.sender ||
 IERC721(_fromContract).getApproved(_fromTokenId) == msg.sender ||
 IERC721(_fromContract).isApprovedForAll(owner, msg.sender),
 "Items: Not owner and not approved to transfer"
);
 }
}

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

Type Severity Location

Gas Optimization Informational ItemsFacet.sol L315-L320, L362-L367

 IFT-06: Duplicate code can be extracted to a function

Description:

The code on the aforementioned lines is duplicate and can be extracted to a function to increase the legibility of the
codebase and as well as reduce bytecode footrpint of the contract resulting in reduced gas cost associated with
deployment.

Recommendation:

We recommend to extract the duplicate code into a separate function to observe the reusability of the codebase.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

function checkEquippedWearables(
 address _fromContract,
 uint256 _fromTokenId,
 uint256 _id
) private {
 if (bal == 0 && _fromContract == address(this)) {
 uint256 l_equippedWearables =
s.aavegotchis[_fromTokenId].equippedWearables;
 for (uint256 i; i < 16; i++) {
 require(uint16(l_equippedWearables >> (i * 16)) != _id, "Items: Cannot
transfer wearable that is equipped");
 }
 }
}

Type Severity Location

Volatile Code Medium AavegotchiDiamond.sol L88

 ADD-01: Ether locking in AavegotchiDiamond

Description:

The receive function on the aforementioned line allows the diamond proxy contract to receive plain ether yet
none of the facet contract has any functionality to deal with the received ethers. Any sent ethers would be locked in
the contract unless an implementation contract is introduced for the withdrawal of the ethers.

Recommendation:

We advise to remove the declaration of the receive function so the diamond proxy contract does not allow the
receiving of plain ether.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

Type Severity Location

Gas Optimization Informational LibDiamond.sol L27, L33

 LDD-01: Inefficient storage struct layout

Description:

The properties of the struct on the aforementioned lines can placed next to each other to tight pack them in a single
32-byte storage slot. Currently, both of the properties are occupying 32-byte slots each.

Recommendation:

We advise to place the aforementioned struct proerties next to each other to tight pack them in a single 32-byte
storage slot to save gas cost associated with the additional storage slot.

Alleviation:

The relevant code is removed rendering this exhibit ineffectual.

struct DiamondStrorage {
 ...
 // The number of function selectors in selectorSlots
 uint16 selectorCount;
 // owner of the contract
 address contractOwner;
}

Type Severity Location

Gas Optimization Informational LibDiamond.sol L61

 LDD-02: Redundant requirerequire statement

Description:

The require statement on the aforementioned line can be replace with the call to enforceIsContractOwner to
increase the legibility of the codebase. It will also be gas efficient as it will decrease bytecode footprint of the
contract and any function making use of the modifier.

Recommendation:

We advise to make use of the call to function enforceIsContractOwner instead of the require statement.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

modifier onlyOwner {
 enforceIsContractOwner();
 _;
}

Type Severity Location

Gas Optimization Informational LibDiamond.sol L240

 LDD-03: Inefficient Greater-Than Comparison w/ Zero

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the non-negative integer
range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

Alleviations were applied as of commit hash 6536d434b7c87c1cf0325917f811bf042e74ef50 .

 Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate different,
more optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Arithmetic

Arithmetic exhibits entail findings that relate to mishandling of math formulas, such as overflows, incorrect
operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect notion on
how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions being invoke-
able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in
a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a struct
assignment operation affecting an in-memory struct rather than an in-storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or
delete .

Coding Style

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to make the codebase
more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a
constructor assignment imposing different require statements on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and should
otherwise be specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile using the
specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

