
 

 

 

 

 

0 



 

Contents 

Contents 1 

Disclaimer 2 

About CertiK 2 

Executive Summary 3 

Source Code Deltas 4 

Testing Summary 6 
SECURITY LEVEL 6 
SOURCE CODE 6 
PLATFORM 6 
VULNERABILITY OVERVIEW 6 
LANGUAGE 6 
REQUEST DATE 6 
REVISION DATE 6 
METHODS 6 

Dynamic & Static Analysis Review Notes 7 

Manual Review Notes 7 
Introduction 7 
Methodology 8 
Documentation 8 
Summary 8 
Recommendations 9 

Findings 10 

Exhibit 1 10 

Exhibit 2 11 

Exhibit 3 12 

Exhibit 4 14 

Exhibit 5 15 

Exhibit 6 16 

Exhibit 7 17 

1 



 

Exhibit 8 18 

Exhibit 9 19 

Exhibit 10 20 

 

 

 

 

   

2 



 

Disclaimer 

This report is subject to the terms and conditions (including without limitation, description of 

services, confidentiality, disclaimer and limitation of liability) set forth in the Verification 

Services Agreement between CertiK and Ampleforth (the “Company”), or the scope of 

services/verification, and terms and conditions provided to the Company in connection with the 

verification (collectively, the “Agreement”). This report provided in connection with the Services 

set forth in the Agreement shall be used by the Company only to the extent permitted under the 

terms and conditions set forth in the Agreement. This report may not be transmitted, disclosed, 

referred to or relied upon by any person for any purposes without CertiK’s prior written consent. 

 

About CertiK 

CertiK is a technology-led blockchain security company founded by Computer Science 

professors from Yale University and Columbia University built to prove the security and 

correctness of smart contracts and blockchain protocols.  

 

CertiK, in partnership with grants from IBM and the Ethereum Foundation, has developed a 

proprietary Formal Verification technology to apply rigorous and complete mathematical 

reasoning against code. This process ensures algorithms, protocols, and business 

functionalities are secured and working as intended across all platforms. 

 

CertiK differs from traditional testing approaches by employing Formal Verification to 

mathematically prove blockchain ecosystem and smart contracts are hacker-resistant and 

bug-free. CertiK uses this industry-leading technology together with standardized test suites, 

3 



 

static analysis, and expert manual review to create a full-stack solution for our partners across 

the blockchain world to secure 6.2B in assets. For more information: https://certik.org. 

 

Executive Summary 

This report has been prepared for Ampleforth to assess any issues and vulnerabilities that have 

arisen in the updates of the source code of their uFragments smart contracts. The initial version 

was on tag v1.0.0 with commit hash 5bec128f9005c0f40c0ce70a4b7069d8c05a8895. 

 

A comprehensive examination has been performed, utilizing Dynamic Analysis, Static Analysis, 

and Manual Review techniques. 

 

The auditing process pays special attention to the following considerations: 

 

● Testing the smart contracts against both common and uncommon attack vectors. 

● Assessing the codebase to ensure compliance with current best practices and industry 

standards. 

● Ensuring contract logic meets the specifications and intentions of the client. 

● Cross referencing contract structure and implementation against similar smart 

contracts produced by industry leaders. 

● Thorough line-by-line manual review of the entire codebase by industry experts. 

 

 

 

4 

https://certik.org/
https://github.com/ampleforth/uFragments/tree/v1.0.0


 

Source Code Deltas 

The audit was carried out at the v1.0.2 tag of the uFragments repository of the ampleforth 

project with commit hash fb6eab6ad37b891158dcd280b250baecc5f8fc25. The file that has 

been updated based on the SHA-256 checksums of the v1.0.0 tag is as follows: 

 

● UFragmentsPolicy.sol 

Previous: 81231683bd400eabba5c8a81f98fd71729329833f35b4e6763b37e593ca7f437 

Latest: 7346355b1a35565e07c58dd87bdd2229cbcce503d76a18893213c5aeabd9e463 

 

Additionally, a newly added file was observed and fully audited: 

 

● Orchestrator.sol 

Latest: 55339eb64c49d957ca3824d2468787905f25c18025d8a843738e52827a39a573 

 

To properly assess which lines of code would need to be audited, the deltas needed to be 

factored in as well as whether the deltas merely added code or edited existing functionality that 

affects unaltered code in other places. In total, 155 lines of code were audited non-inclusive of 

newlines with the following deltas into account: 

 

● UFragmentsPolicy.sol 

Delta: 19 newly added lines within the contract’s body (L85-L91, L94-L95, L100, 

L164-L173) 

● Relayer.sol 

Delta: 134 newly added lines as the whole file was nonexistent in the previous audit 

5 

https://github.com/ampleforth/uFragments/tree/v1.0.2


 

Testing Summary 

SECURITY LEVEL 

 

Smart Contract Audit 

This report has been prepared as a product of the 

Smart Contract Audit request by Ampleforth.  

This audit was conducted to assess issues and 

vulnerabilities in the updated source code of 

Ampleforth’s uFragment Smart Contracts. 

TYPE  Smart Contracts 

SOURCE CODE 
https://github.com/amplefort

h/uFragments/tree/v1.0.2 

PLATFORM  EVM 

VULNERABILITY OVERVIEW 

 

LANGUAGE  Solidity 

START DATE  May 04, 2020 

REVISION DATE  May 06, 2020 

METHODS 

Dynamic Analysis, Static 

Analysis, and Manual Review, 

a comprehensive examination 

has been performed. 

 

 

6 

https://github.com/ampleforth/uFragments/tree/v1.0.2
https://github.com/ampleforth/uFragments/tree/v1.0.2


 

Dynamic & Static Analysis Review Notes 

The CertiK team applied state-of-the-art dynamic and static analysis tools on the source code of 

the smart contracts to pinpoint any vulnerabilities and issues that can be detected using 

analytical techniques applied on the source code deltas directly.  

 

The tools applied for the deltas of the codebase were unable to identify any potential issues or 

vulnerabilities, inferring that the codebase is secure against common attack vectors and 

vulnerabilities. 

 

An additional thing to note is that the team already enforces a strict Solidity linter and 

specifically solhint which is a capable tool and points to the fact that the team that has 

undertaken the development of the smart contracts is capable of maintaining a secure 

codebase and practically applies the best coding practices. 

Manual Review Notes 

Introduction 

The CertiK team was invited by the Ampleforth team to audit the design and implementations of 

the updated code of Ampleforth’s “uFragments” protocol smart contracts. 

 

The goal of this audit was to review the source code deltas of the protocol implementation 

between v1.0.0 and v1.0.2 for its business model, study potential security vulnerabilities, its 

general design and architecture, and uncover bugs that could compromise the software in 

production. 

 

7 



 

Methodology 

The work was conducted and analyzed under different perspectives and with different tools 

such as static analysis tools as well as manual reviews by smart contract experts. In general, 

we make observations on specific areas of the code that present concrete problems, as well as 

general observations that traverse the entire codebase horizontally, which could improve its 

quality as a whole. 

 

Documentation 

We used the following sources of truth about how the Ampleforth protocol should work: 

1. Ampleforth Whitepaper: https://www.ampleforth.org/paper/ 

2. Ampleforth Project Documentation: https://www.ampleforth.org/docs/ 

These were considered as the specification. 

 

Summary 

The manual line-by-line review of the source code revealed no vulnerabilities or issues with the 

codebase itself, confirming our initial interactions with Ampleforth that their team enforces high 

security standards in developing their codebase. The team has demonstrated consistency and 

reliability with regards to their code ethics and practises. 

 

High-quality code was located in the repository with comprehensive unit tests that cover most 

of the would-be-faced use-cases as well as extensive, easily digestible markdown files that 

cover the documentation aspect of the project and contains descriptive build and development 

instructions ensuring that all development carried out on the codebase is fully aligned and of 

the highest quality possible. 

 

8 

https://www.ampleforth.org/paper/
https://www.ampleforth.org/docs/


 

 

Recommendations 

The codebase of the project has demonstrated a high degree of security and as such, no urgent 

recommendations are necessary. Certain findings that are informational and mostly act as 

advanced optimization steps are included below to aid the Ampleforth team in bringing the 

optimization aspect of their protocol another step further. However, all of these points are 

negligible and do not impact the operational capacity and validity of the codebase. 

   

9 



 

Findings 

Exhibit 1 

TITLE  TYPE  SEVERITY  LOCATION 

Unnecessary initialization of 

variable 

Ineffectual 

Code 
Informational 

UFragmentsPolicy.sol 

Line 86 

 

[INFORMATIONAL] Description: 

The aforementioned line contains an assignment of the zero value casted to an “address” type 

to the “orchestrator” variable of the contract. This type of assignment is unnecessary as Solidity, 

akin to many other programming languages, assigns a default value to uninitialized variables 

which in the case of addresses is the zero address.  

 

Recommendations: 

We propose the removal of the assignment. The compiler may already optimize this step 

removing the assignment altogether so reduced gas costs on deployment may not be observed. 

   

10 



 

Exhibit 2 

TITLE  TYPE  SEVERITY  LOCATION 

Transaction Struct Optimization 
Code 

Optimization 
Informational 

Orchestrator.sol 

Line 15 - 19 

 

[INFORMATIONAL] Description: 

The “Transaction” struct included on the Orchestrator contract can be optimized to occupy one 

less slot, significantly reducing the gas cost of all types of transactions relating to it such as 

read and write operations.  

 

Recommendations: 

Solidity possesses what is known as a tight-packing mechanism. This means that, whenever 

possible, two variables that together occupy less than 32-bytes will be packed into a single 

32-byte slot and be read and written to via batch operations halving the cost of operations 

applied on them. This depends on the ordering of the variable declarations and the compiler 

does not automatically “sort” variable declarations optimally.  

 

We propose that the “Transaction” struct be restructured to have the declaration of an “address” 

type followed or preceded by the declaration of the “bool” type. In Solidity, an “address” 

occupies 160-bits whereas a “bool” occupies 8-bits and as such, both of these variables can fit 

into one 32-byte slot.  

   

11 



 

Exhibit 3 

TITLE  TYPE  SEVERITY  LOCATION 

Potentially Misleading Event 

Variable 

Ineffectual 

Code 
Informational 

Orchestrator.sol 

Line 21 

 

[INFORMATIONAL] Description: 

The “TransactionFailed” event contains a “uint” variable that represents the index of the 

transaction that failed. However, this variable may be misleading under certain circumstances 

as transaction ordering in Ethereum is up to the miners of the blocks. As an example, should a 

single block contain the following transaction ordering, the “index” variable will be misleading 

and lead to an out-of-bound access on both the previous and current block of the blockchain: 

1. Inclusion of new transaction in transaction queue. This will increase the transaction 

queue length and add the final transaction to the end. 

2. Execution of “rebase” and failed execution of the newly included transaction, leading to 

the “TransactionFailed” event being emitted with the “index” variable being the last 

element of the array. 

3. The deletion of the last transaction in the transaction queue. This will decrease the 

transaction queue length and remove the final transaction that was previously executed 

but failed. 

The above sequence will lead to an “index” being emitted that is otherwise inaccessible. The 

above scenario, although unlikely, can occur should the owner of the contract accidentally 

include a transaction and attempt to remove it with users invoking “rebase” in the process. 

 

   

12 



 

Recommendations: 

We propose the removal of the “index” variable from the event as it does not provide any surplus 

contextual information that would be helpful in debugging the failed transaction. The timestamp 

of the Event should be used instead as a provider of the transaction’s context of execution. 

   

13 



 

Exhibit 4 

TITLE  TYPE  SEVERITY  LOCATION 

Potential Out-of-Gas Exception 
Contract 

Freeze 
Informational 

Orchestrator.sol 

Line 51 - 60 

 

[INFORMATIONAL] Description: 

The loop included in the aforementioned lines iterates through an array of dynamic size that 

could potentially lead to the function being impossible to execute if many transactions are 

included or if the gas cost of the transactions collectively exceeds the block’s gas limit. 

 

Recommendations: 

As the “transactions” array is fully malleable by the owner of the contract, we simply note this 

potential out-of-gas exception to be monitored by the Ampleforth team and appropriate 

remediations be applied on the “transactions” array should it occur. It is of negligible 

importance as it is an after-effect of what the Orchestrator contract is meant to achieve and is 

unavoidable unless complex batch-execution mechanisms are introduced that would defeat the 

purpose. 

   

14 



 

Exhibit 5 

TITLE  TYPE  SEVERITY  LOCATION 

Unnecessary “delete” Call 
Ineffectual 

Code 
Informational 

Orchestrator.sol 

Line 93 

 

[INFORMATIONAL] Description: 

Whenever the “length” of an array is reduced, Solidity internally calls the “delete” operator on the 

last element of the array and as such, it is unnecessary to explicitly call it. 

 

Recommendations: 

We propose the removal of the “delete” call on line 93 as it is internally called by the decrement 

operand applied on the “length” of the array on line 94. 

   

15 



 

Exhibit 6 

TITLE  TYPE  SEVERITY  LOCATION 

Unnecessary Declaration of 

Variable in Function Name 

Ineffectual 

Code 
Informational 

Orchestrator.sol 

Line 55, Line 128 

 

[INFORMATIONAL] Description: 

The “externalCall” function contains a “transferValueWei” variable in its signature referring to 

the amount of wei that will be transferred in the external call. This function is labelled as 

“internal” and is only invoked in a single location, line 55, where the “transferValueWei” 

argument is hard-coded as zero. 

 

Recommendations: 

We propose the removal of the “transferValueWei” variable as it will always be zero since the 

function is “internal”. This will also reduce the gas cost of executing the transaction as no 

memory allocation will occur. 

   

16 



 

Exhibit 7 

TITLE  TYPE  SEVERITY  LOCATION 

Unnecessary Memory Transmission 

of Bytes Length 

Ineffectual 

Code 
Informational 

Orchestrator.sol 

Line 55, Line 128, Line 

138 - 139 

 

[INFORMATIONAL] Description: 

The “externalCall” function contains a “dataLength” variable in its signature referring to the 

length of the “bytes” dynamic array that will be transferred in the external call. This is 

unnecessary because, as mentioned in comment line 138, the length of the “bytes” is already 

included in the variable at the first location of the “bytes” pointer. 

 

Recommendations: 

We propose the removal of the “dataLength” variable and the read of the “bytes” length directly 

in assembly by calling “mload” on the “bytes” pointer directly. This will once again reduce the 

gas cost of invoking the “externalCall” function of the contract. 

   

17 



 

Exhibit 8 

TITLE  TYPE  SEVERITY  LOCATION 

Possible Named Declaration of 

Return Variable 

Code 

Optimization 
Informational 

Orchestrator.sol 

Line 130, Line 132, Line 

141, Line 157 

 

[INFORMATIONAL] Description: 

The “externalCall” function returns a variable of type “bool” as stated in its function signature. 

Internally, an in-memory variable is declared called “result” of type “bool” which is assigned the 

result of the low-level “call” invocation and then explicitly returned as the last statement of the 

function body. 

 

Recommendations: 

We propose the naming of the return variable to “result” and the removal of lines 132 and 157 as 

named variables are automatically returned and exist in the scope of the function. This will not 

lead to a reduction of gas cost, however, it will make the code more legible. 

   

18 



 

Exhibit 9 

TITLE  TYPE  SEVERITY  LOCATION 

Unusual Function Naming 

Convention 

Code 

Optimization 
Informational 

Orchestrator.sol 

Line 112 

 

[INFORMATIONAL] Description: 

The function “transactionsLength” is meant to return, as its name implies, the “length” of the 

“transactions” storage array. It is generally considered ill-practise to declare a dot-accessor in 

camel-case format as the function name.  

 

Recommendations: 

Instead, a more readable name could be utilized like “totalTransactions”. This is a very minor 

comment and is meant to aid in the readability and maintainability of the codebase as well as 

the reduction of issues by external users of the contract via its ABI. 

   

19 



 

Exhibit 10 

TITLE  TYPE  SEVERITY  LOCATION 

Potential Optimization of 

Transaction Creation 

Code 

Optimization 
Informational 

Orchestrator.sol 

Line 75 

 

[INFORMATIONAL] Description: 

This Exhibit relies on whether Exhibit 2 is applied on the codebase. If Exhibit 2 is applied, this 

Exhibit can be safely ignored. 

 

In the aforementioned line, whenever a new “Transaction” struct is constructed the hard-coded 

value of “true” is assigned to its “enabled” member. This will presently cause a 32-byte write 

operation to be conducted as the memory needs to be initialized to a non-zero value.  

 

Recommendations: 

In Solidity, if a value remains uninitialized it will cost less gas-cost to retain rather than an 

initialized value. As such, it is possible to optimize this step by renaming the variable from 

“enabled” to “disabled” and setting the default value to “false”. This will cause transactions to 

cost less gas to create but increase the gas cost of creating them. As disabling transactions is 

anticipated to be seldomly used in contrast to creating them, applying the aforementioned 

change would lead to an overall reduction in gas consumption. 

20 


