

Ampleforth's Token Geyser v2

Security Assessment

February 12th, 2021

For :
Ampleforth's Token Geyser v2

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that contracts
CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor do they provide any indication of the technologies proprietors,
business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice, nor
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code
provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure,
implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the
intention to increase the quality of the company/product's IT infrastructure and or source
code.

Project Name Ampleforth's Token Geyser v2

Description A time-based emission "geyser" of token rewards
proportionate to the amount staked on the platform

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. c970676aaecb08e942fe1088a4b1ddcb26655fe6
2. 24a84284f937c9b6c3fc1c32aa7b34d67a6586bb

Delivery Date February 12th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline February 3rd, 2021 - February 12th, 2021

Total Issues 23

Total Critical 0

Total Major 1

Total Medium 2

Total Minor 6

Total Informational 14

 Overview

Project Summary

Audit Summary

Vulnerability Summary

 Executive Summary

We were contracted by the Ampleforth team to perform a security review of their Geyser v2
implementation. The v2 implementation of the Token Geyser differs greatly from its predecassor,
adopting a token-agnostic nature and enabling any type of token to be utilized as a staking token
and reward token. Additionally, the way the stake and unstake mechanisms work do not require
token transfers to the contract itself and instead rely on a validated contract vault deployed
utilizing the minimal proxy pattern.

As a result of these new features, the Token Geyser was re-written and thus does not rely on any
code from its predecessor. Over the course of the audit, we validated that all state transitions
occur within sensible bounds and that the new mechanisms introduced for balance keeping
operate sanely. To this end, we identified a major flaw in the way the balance sheet of the vault is
retained that allows a single vault to be utilized across two seperate geyser contracts with the
same balance provided that same underlying token utilized by the geysers is the same.

We pinpointed issues relating to certain novel concepts introduced in v2 that should be
remediated as soon as possible by the Ampleforth team. Along with the security-related exhibits,
we pointed out certain informational-level exhibits that we believe can greatly optimize the
system in terms of gas cost and generated bytecode.

We were able to identify more optimizations relating to over-utilization of certain security
principles, such as SafeMath , but chose not to include them in the report and instead relay them
to the Ampleforth team directly as they can remain in the codebase for readability purposes.

 Files In Scope

ID Contract Location

EIP EIP712.sol contracts/Access/EIP712.sol

ERC ERC1271.sol contracts/Access/ERC1271.sol

GEY Geyser.sol contracts/Geyser.sol

GRY GeyserRegistry.sol contracts/Factory/GeyserRegistry.sol

IFY IFactory.sol contracts/Factory/IFactory.sol

IER IERC20Permit.sol contracts/Libraries/IERC20Permit.sol

IRY InstanceRegistry.sol contracts/Factory/InstanceRegistry.sol

OER OwnableERC721.sol contracts/Access/OwnableERC721.sol

POW Powered.sol contracts/PowerSwitch/Powered.sol

PSH PowerSwitch.sol contracts/PowerSwitch/PowerSwitch.sol

PSF PowerSwitchFactory.sol contracts/Factory/PowerSwitchFactory.sol

RV1 RouterV1.sol contracts/RouterV1.sol

RPL RewardPool.sol contracts/RewardPool.sol

RPF RewardPoolFactory.sol contracts/Factory/RewardPoolFactory.sol

SPA Spawner.sol contracts/Factory/Spawner.sol

UVT UniversalVault.sol contracts/UniversalVault.sol

VFY VaultFactory.sol contracts/Factory/VaultFactory.sol

 File Dependency Graph (BETA)

 Findings

ID Title Type Severity Resolved

EIP-01 Mutability Specifiers
Missing

Gas Optimization Informational

IRY-01 Redundant Code Dead Code Informational

VFY-01 Mutability Specifiers
Missing

Gas Optimization Informational

VFY-02 Input Sanitization Logical Issue Minor

POW-01 Modifier require To
Function Call

Gas Optimization Informational

PSH-01 Input Sanitization Logical Issue Minor

UVT-01 Invalid Balance Sheet
Evaluation

Logical Issue Major

UVT-02 Dynamic Evaluation
of Loop Length

Gas Optimization Informational

UVT-03 Potential
Misbehaviour of the
System

Logical Issue Minor

UVT-04 Dynamically
Computed Static
Value

Gas Optimization Informational

UVT-05 Signature Validation
Race Condition

Logical Issue Medium

UVT-06 Insufficient
Prevention of
Allowance

Logical Issue Minor

RV1-01 Function Visibility
Optimization

Gas Optimization Informational

GEY-01 Variable Shadowing Data Flow Informational

GEY-02 Bytecode
Optimization

Gas Optimization Informational

GEY-03 Conditional
Optimization

Gas Optimization Informational

GEY-04 Inversion of if
Clause

Gas Optimization Informational

ID Title Type Severity Resolved

GEY-05 Denial-of-Service
Attack

Logical Issue Minor

GEY-06 Potential of Zero
Transfer

Logical Issue Minor

GEY-07 Potentially
Misutilized
Implementation

Gas Optimization Informational

GEY-08 Unnecessarily
Convoluted Logic

Gas Optimization Informational

GEY-09 Function Visibility
Optimization

Gas Optimization Informational

GEY-10 Function Comment
Inconsistency

Inconsistency Medium

Type Severity Location

Gas Optimization Informational EIP712.sol L26-L31

 EIP-01: Mutability Specifiers Missing

Description:

The linked variables are assigned to only once, either during their contract-level declaration or
during the constructor 's execution.

Recommendation:

For the former, we advise that the constant keyword is introduced in the variable declaration to
greatly optimize the gas cost involved in utilizing the variable. For the latter, we advise that the
immutable mutability specifier is set at the variable's contract-level declaration to greatly
optimize the gas cost of utilizing the variables. Please note that the immutable keyword only
works in Solidity versions v0.6.5 and up.

Alleviation:

The team introduced the immutable mutability specifiers to the linked declarations thus
optimizing the codebase.

Type Severity Location

Dead Code Informational InstanceRegistry.sol L51-L54

 IRY-01: Redundant Code

Description:

The implemented function _unregister is meant to remove an instance from the _instanceSet
and emit a corresponding event, however, it remains unutilized throughout the project.

Recommendation:

We advise that the function is either properly utilized via the derivative contracts such as
GeyserRegistry , or that the function and associated event declaration are removed completely
from the codebase to reduce bytecode.

Alleviation:

The linked function was completely omitted from the codebase.

Type Severity Location

Gas Optimization Informational VaultFactory.sol L13

 VFY-01: Mutability Specifiers Missing

Description:

The linked variables are assigned to only once, either during their contract-level declaration or
during the constructor 's execution.

Recommendation:

For the former, we advise that the constant keyword is introduced in the variable declaration to
greatly optimize the gas cost involved in utilizing the variable. For the latter, we advise that the
immutable mutability specifier is set at the variable's contract-level declaration to greatly
optimize the gas cost of utilizing the variables. Please note that the immutable keyword only
works in Solidity versions v0.6.5 and up.

Alleviation:

The linked variable was properly set to be immutable optimizing the gas cost involved in utilizing
it.

Type Severity Location

Logical Issue Minor VaultFactory.sol L15

 VFY-02: Input Sanitization

Description:

The constructor of the VaultFactory contract accepts a single address argument that
remains immutable beyond its assignment and is used as the underlying implementation of
spawned instances. However, no check is imposed in the constructor to ensure that it is not
accidentally set to the 0x0 address.

Recommendation:

We advise that a require check is imposed here to ensure the address is non-zero.

Alleviation:

Input sanitization for the template of the constructor was properly introduced.

Type Severity Location

Gas Optimization Informational Powered.sol L28-L46

 POW-01: Modifier require To Function Call

Description:

In Solidity, modifier s work by essentially wrapping the function they are utilized in with the
corresponding code of the modifier , either appending or prepending statements. As require
calls with an error message significantly increase the bytecode size and gas cost, it is more
optimal to instead have the modifier implementations perform a function call, leading to the
require checks not being duplicated and instead being existent on a single location.

Recommendation:

We advise that the require calls are swapped with internal calls performing the same checks to
reduce the bytecode size of the contract as well as gas cost.

Alleviation:

The modifier implementations were properly refactored to utilize internal function calls thus
greatly optimizing the resulting bytecode size of all contracts that inherit them.

Type Severity Location

Logical Issue Minor PowerSwitch.sol L48

 PSH-01: Input Sanitization

Description:

The constructor of the PowerSwitch contract transfers ownership of itself to the address
provided as input to it. However, no check exists that ensures the owner is non-zero in either the
PowerSwitch implementation or parent contracts, such as Geyser , that create instances of it.

Recommendation:

We advise that a check is imposed on the specified address that ensures it is non-zero.

Alleviation:

The owner variable of the constructor is properly validated via require checks in the latest
version of the codebase.

Type Severity Location

Logical Issue Major UniversalVault.sol L237-L247

 UVT-01: Invalid Balance Sheet Evaluation

Description:

The checkBalances function is meant to iterate over all locks existent on the vault and ensure
that the locked balances do not exceed the amount of tokens held by the vault.

The issue with the current implementation is that the loop iteration between L239 and L244
checks the balances of the locks sequentially whilst the same token can exist under two different
lock IDs within the _lockSet set.

For example, if two different Geyser s rely on the same vault, the same token will be "locked"
under two different lock IDs, for the sake of this example let's consider that value to be 100 .

If I were to maliciously call either externalCall or externalCallMulti , I would be able to
withdraw 100 of the 200 units held by the vault as the two locks created above would each be
100 which would successfully pass the check imposed on L243.

Recommendation:

We advise that the balance sheet evaluation mechanism is refactored to account for duplicate
tokens existing within the lock set. Various schemes can be utilized such as the prohibition of a
token being registered by another address, the checkBalances mechanism to accumulate locked
balances and more. The most sensible and gas-optimized solution should be utilized by the
Ampleforth team.

Alleviation:

The Ampleforth team responded by stating that this is expected behaviour, as the Geyser s are
not meant to validate whether the supply of tokens is being staked on other Geyser s as long as
the desired balance is simply locked. As such, this exhibit is rendered null.

Type Severity Location

Gas Optimization Informational UniversalVault.sol L229, L239

 UVT-02: Dynamic Evaluation of Loop Length

Description:

The linked for loops iterate from 0 until a specified length that is the result of a function
invocation on the _lockSet . As the conditional statement is evaluated on each iteration, it is
more optimal to store the length evaluation in-memory prior to the loop to optimize the
conditional evaluation.

Recommendation:

We advise that the advice provided in the exhibit's description is assimilated in the codebase.

Alleviation:

The linked loops were adjusted to properly cache the loop length in memory instead of evaluating
it on each iteration.

Type Severity Location

Logical Issue Minor UniversalVault.sol L278-L293

 UVT-03: Potential Misbehaviour of the System

Description:

The externalCallsMulti function iterates and executes all calls provided to it before
evaluationg that the balance sheet of the vault is correct and finalizing the function's execution.
This allows one to actually withdraw tokens and utilize them prior to returning them in the
sequence of external calls performed by the contract which may be an undesired capability of the
system.

Recommendation:

We advise that this feature is documented if desired or prohibited by evaluating the balance sheet
on each invocation.

Alleviation:

The ability to perform arbitrary calls was completely omitted from the system thus rendering this
exhibit void.

Type Severity Location

Gas Optimization Informational UniversalVault.sol L314, L370

 UVT-04: Dynamically Computed Static Value

Description:

The linked lines compute the keccak256 value of string literals.

Recommendation:

We advise that the full evaluations are instead stored as constant contract-level variables.
Constant variables are hot-swapped during compilation and are as such safe to utilize in proxied
contracts.

Alleviation:

The keccak256 computed values were properly stored in contract-level constant variable
declarations.

Type Severity Location

Logical Issue Medium UniversalVault.sol L305-L400

 UVT-05: Signature Validation Race Condition

Description:

The linked functions lock and unlock perform signature validation based on a globally
incremented nonce on both functions regardless of the party that is providing the signature. This
introduces a race condition whereby a validly signed lock can be invalidated by submitting
another validly signed lock with a higher gas fee. This can render the system unusable in a real-
world use case with high influx of activity as lock / unlock signature nonces will be overlapping
between users.

Recommendation:

We advise that a seperate mapping is introduced that keeps track of the nonce of each account
which is subsequently relayed by the Geyser or accessed via tx.origin , depending on the types
of addresses the Geyser should properly support.

Alleviation:

The Ampleforth team decided to retain the current implementation as is and stated that the race
condition edge case will instead be handled by the UI layer. We should note that any third party
integration of the contracts will also inherit this issue and as such, we adivse that comments
regarding it are included in the function declaration for the sake of brevity.

Type Severity Location

Logical Issue Minor UniversalVault.sol L450-L465

 UVT-06: Insufficient Prevention of Allowance

Description:

The _externalCall implementation is meant to perform a function call that conducts an
arbitrary action except from approving another address of an allowance, presumably to ensure
that funds aren't exited from the vault after the checkBalances evaluation successfully passes.
This check, however, is insufficient as a lot of contracts, including the Ampleforth token itself
(AMPL), derive from OpenZeppelin and support the increaseAllowance and
decreaseAllowance functions, thus circumventing the check.

Recommendation:

We advise that these two widely implemented functions are also added to the list of prohibited
function calls. We should note, however, that each token implementation differs and the approval
mechanism may be circumvented via other means. As such, the introduction of new tokens
supported by the Geyser as staking tokens should be properly vetted to not allow such an
incident to occur.

Alleviation:

The ability to perform arbitrary calls was completely omitted from the system thus rendering this
exhibit void.

Type Severity Location

Gas Optimization Informational RouterV1.sol L26-L33, L56-
L63, L105-L110, L120-L130

 RV1-01: Function Visibility Optimization

Description:

The linked function is declared as public , contains array function arguments and is not invoked
in any of the contract's contained within the project's scope.

Recommendation:

We advise that the functions' visibility specifiers are set to external and the array-based
arguments change their data location from memory to calldata , optimizing the gas cost of the
function.

Alleviation:

All functions were properly optimized by specifying their visibility as external and optimizing the
argument data locations were applicable to calldata .

Type Severity Location

Data Flow Informational Geyser.sol L260

 GEY-01: Variable Shadowing

Description:

The linked variable shadows an existing declaration in a parent contract, OwnableUpgradeable , of
the owner function that retrieves the owner of the contract.

Recommendation:

We advise that the initialize variable is renamed to ensure no such shadowing occurs, even
though it does not pose an issue in the current implementation.

Alleviation:

The variable was properly renamed to ownerAddress preventing the naming collission.

Type Severity Location

Gas Optimization Informational Geyser.sol L375-L398, L411-
L442, L444-L479

 GEY-02: Bytecode Optimization

Description:

The linked functions differ in the code they execute by a single variable which is passed as a literal
in one implementation and as a variable in the other.

Recommendation:

We advise that the literal-using implementation invokes the variable-using implementation to
reduce the bytecode of the contract significantly.

Alleviation:

The functions were simplified where possible by introducing inward calls with any additional
arguments necessary.

Type Severity Location

Gas Optimization Informational Geyser.sol L391-L397

 GEY-03: Conditional Optimization

Description:

The newStakeUnits calculated depend on whether time has passed between the timestamp and
the lastUpdate of the _geyser , meaning that if those two are equal no change will occur.

Recommendation:

We advise that such an if conditional is introduced that returns the _geyser.totalStakeUnits
immediately.

Alleviation:

The timestamp based conditional was introduced to optimize the gas cost of the function in case
no change has occured.

Type Severity Location

Gas Optimization Informational Geyser.sol L556-L562, L663-
L669

 GEY-04: Inversion of if Clause

Description:

The linked if clauses perform a conditional check whereby within the value literal 0 is assigned
to the variable declared before the if block. As uint variables are initialized at 0 by default in
Solidity, it is possible to invert the if clause and drop the else leg entirely.

Recommendation:

We advise that the optimization described in the exhibit's description is applied to the codebase.

Alleviation:

The if clauses were properly inverted optimizing their gas cost.

Type Severity Location

Logical Issue Minor Geyser.sol L997-L1015

 GEY-05: Denial-of-Service Attack

Description:

Although this particular attack vector requires escalated privileges, it is possible to freeze any
unstakeAndClaim invocations by introducing numerous bonus tokens to the _bonusTokenSet
thus causing the loop iteration of L998-L1014 to run out-of-gas.

Recommendation:

We advise that a limit is imposed on the number of bonus tokens at the setter function located
between L802-L811 to ensure no malicious party is able to act in this way.

Alleviation:

A require check was introduced in the code segment that introduces new bonus tokens
preventing a prohibitively expensive number of tokens to be introduced to the bonus token
system.

Type Severity Location

Logical Issue Minor Geyser.sol L1010

 GEY-06: Potential of Zero Transfer

Description:

Certain tokens throw when a zero-value transfer is attempted, meaning that the
unstakeAndClaim mechanism may break if all bonus tokens of such a token have been claimed.

Recommendation:

We advise that the linked statement is wrapped in an if clause that ensures the reward to be
paid out is non-zero.

Alleviation:

The Ampleforth's Token Geyser v2 development team has acknowledged this exhibit but decided
to not apply its remediation in the current version of the codebase due to time constraints.

Type Severity Location

Gas Optimization Informational Geyser.sol L1082-L1092

 GEY-07: Potentially Misutilized Implementation

Description:

The _truncateStakesArray implementation is meant to remove a number of StakeData
members from the input array by initializing a new one in-memory, assigning to it in a
sequential fashion and returning the new array copy. However, the function is solely utilized in
L617 to remove the last stake of the array.

Recommendation:

We advise that the calculateRewardFromStakes function is refactored to conduct a truncation at
the end of the while loop within the return statement to greatly optimize the gas cost of the
function. This can be achieved by retaining an in-memory uint256 variable tracking the number
of stakes that should be omitted from the array at the end of the functtion.

Alleviation:

The code was adjusted to track the total number of stakes to drop from the array, however, a new
issue has been introduced whereby the _truncateStakesArray is actually not invoked with the
stakesToDrop argument, never reducing the size of the array. We strongly suggest that this issue
is remediated as soon as possible.

Type Severity Location

Gas Optimization Informational Geyser.sol L957-L978

 GEY-08: Unnecessarily Convoluted Logic

Description:

The linked code segment executes the calculateRewardFromStakes function which truncates
the stakes consumed to produce the reward and returns the truncated array. In the code
segment linked, the truncated array is not utilized directly and only the last remaining element is
used along with the array's length .

Recommendation:

We advise that the calculateRewardFromStakes function is refactored to return the last
StakeData processed and the number of elements that should be removed from the end of the
array via pop , greatly optimizing the gas cost of this code segment.

Alleviation:

The calculateRewardFromStakes function was adjusted to instead return a struct with the
necessary data to conduct the optimizations linked in the recommendation section of this exhibit,
thus greatly optimizing the linked segment.

Type Severity Location

Gas Optimization Informational Geyser.sol L861-L865, L919-
L924

 GEY-09: Function Visibility Optimization

Description:

The linked function is declared as public , contains array function arguments and is not invoked
in any of the contract's contained within the project's scope.

Recommendation:

We advise that the functions' visibility specifiers are set to external and the array-based
arguments change their data location from memory to calldata , optimizing the gas cost of the
function.

Alleviation:

The visibility and data location optimizations were properly applied to the linked functions.

Type Severity Location

Inconsistency Medium Geyser.sol L856, L887-L889

 GEY-10: Function Comment Inconsistency

Description:

The stake function comments denote that the totalStakeUnits should be adjusted when a
stake occurs. However, the implementation of stake adjusts the units only before submitting
the new stake and does not update the totalStakeUnits after, as unstakeAndClaim does.

Recommendation:

We advise that this discrepancy is investigated and properly remediated to ensure the accounting
mechanisms of the Geyser operate correctly.

Alleviation:

The Ampleforth team has responded and stated that "This is expected behavior as modifying
totalStakeUnits in the stake function after the initial update would be a noop given no time
has elapsed.

The comment mentioning increase _geyser.totalStakeUnits is meant to represent the
modification made by the _updateTotalStakeUnits() call exclusively.

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a
transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such
as overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only
functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases
that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the
result of a struct assignment operation affecting an in-memory struct rather than an in-
storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of
private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements on
the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw
format and should otherwise be specified as constant contract variables aiding in their legibility
and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to
compile using the specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

