

0

Contents

Contents 1

Disclaimer 3

About CertiK 4

Executive Summary 5

Testing Summary 6

Review Notes 7
Introduction 7
Documentation 9
Summary 9
Recommendations 9

Findings 10

Exhibit 1 10

Exhibit 2 11

Exhibit 3 12

Exhibit 4 13

Exhibit 5 14

Exhibit 6 15

Exhibit 7 16

Exhibit 8 17

Exhibit 9 18

Exhibit 10 19

Exhibit 11 20

Exhibit 12 21

Exhibit 13 22

Exhibit 14 23

Exhibit 15 24

1

Exhibit 16 25

Exhibit 17 26

Exhibit 18 27

Exhibit 19 28

Exhibit 20 29

Exhibit 21 30

Exhibit 22 31

Exhibit 23 32

Exhibit 24 33

Exhibit 25 34

Exhibit 26 35

Exhibit 27 36

Exhibit 28 37

Exhibit 29 38

Exhibit 30 39

Exhibit 31 40

Exhibit 32 41

2

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of
services, confidentiality, disclaimer and limitation of liability) set forth in the Verification
Services Agreement between CertiK and ​Bakery Swap ​(the “Company”), or the scope of
services/verification, and terms and conditions provided to the Company in connection with the
verification (collectively, the “Agreement”). This report provided in connection with the Services
set forth in the Agreement shall be used by the Company only to the extent permitted under the
terms and conditions set forth in the Agreement. This report may not be transmitted, disclosed,
referred to or relied upon by any person for any purposes without CertiK’s prior written consent.

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that contracts
CertiK to perform a security review.

CertIk Reports do not provide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor do they provide any indication of the technologies proprietors,
business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice, nor
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by cryptographic
tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

3

About CertiK
CertiK is a technology-led blockchain security company founded by Computer Science
professors from Yale University and Columbia University built to prove the security and
correctness of smart contracts and blockchain protocols.

CertiK, in partnership with grants from IBM and the Ethereum Foundation, CertiK’s mission of
every audit is to apply different approaches and detection methods, ranging from manual, static,
and dynamic analysis, to ensure that projects are checked against known attacks and potential
vulnerabilities. CertiK leverages a team of seasoned engineers and security auditors to apply
testing methodologies and assessments to each project, in turn creating a more secure and
robust software system.

CertiK has served more than 100 clients with high quality auditing and consulting services,
ranging from stablecoins such as Binance’s BGBP and Paxos Gold to decentralized oracles
such as Band Protocol and Tellor. CertiK customizes its engineering tool kits, while applying
cutting-edge research on smart contracts, for each client on its project to offer a high quality
deliverable. For more information: ​https://certik.io​.

4

https://certik.io/

Executive Summary

This report has been prepared for ​Bakery Swap​ to discover issues and vulnerabilities in the

delta of their source code in comparison to the Uniswap and SushiSwap implementations. A

comprehensive examination has been performed, utilizing Dynamic Analysis, Static Analysis,

and Manual Review techniques.

This audit should not be treated as an audit of the parent implementations of Uniswap and

SushiSwap​ as its sole purpose is to ​verify the security of the source code differences​ rather

than the original source code that was carried over from those two projects. ​We neither endorse

nor guarantee the security of the Uniswap and SushiSwap mechanisms in any way.

The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.

● Assessing the codebase to ensure compliance with current best practices and industry

standards.

● Ensuring contract logic meets the specifications and intentions of the client.

● Cross referencing contract structure and implementation against similar smart

contracts produced by industry leaders.

● Thorough line-by-line manual review of the entire codebase by industry experts.

5

Testing Summary

Smart Contract Audit

This report has been prepared as a product of the Smart Contract Audit request by Bakery Swap.

This audit was conducted to discover issues and vulnerabilities in the source code of Bakery Swap’s Smart Contracts.

TYPE Smart Contract

SOURCE CODE
https://github.com/BakeryProject/bakery-swap-periphery

https://github.com/BakeryProject/bakery-swap-core

https://github.com/BakeryProject/bakery-swap-lib

PLATFORM EVM

LANGUAGE Solidity

REQUEST DATE Sept 11, 2020

DELIVERY DATE Sept 17, 2020

METHODS A comprehensive examination has been performed using Dynamic Analysis, Static Analysis, and

Manual Review.

6

https://github.com/BakeryProject/bakery-swap-periphery
https://github.com/BakeryProject/bakery-swap-core
https://github.com/BakeryProject/bakery-swap-lib

Review Notes

Introduction

CertiK team was contracted by the Bakery Swap team to audit the design and implementation of

the newly introduced functionalities they have coded in the smart contracts of Uniswap and

SushiSwap.

The audited source code links are:

● https://github.com/BakeryProject/bakery-swap-periphery/tree/57302536083c08ec5cde

90ea2b3e2cf3d4d6149c

● https://github.com/BakeryProject/bakery-swap-core/tree/904f7dc210ed45f30b602068e

fc94b277d01fa0e

● https://github.com/BakeryProject/bakery-swap-lib/tree/113a2c18165a63074c8ec1ef26

0f41ba61c1e855

The goal of this audit was to review the Solidity implementation for its business model, study

potential security vulnerabilities, its general design and architecture, and uncover bugs that

could compromise the software in production.

The findings of the initial audit have been conveyed to the team behind the contract

implementations and the source code is expected to be re-evaluated before another round of

auditing has been carried out.

The security analysis was constrained to the delta of the source codes rather than the overall

implementation of Uniswap and SushiSwap and this report in no shape or form guarantees or

7

https://github.com/BakeryProject/bakery-swap-periphery/tree/57302536083c08ec5cde90ea2b3e2cf3d4d6149c
https://github.com/BakeryProject/bakery-swap-periphery/tree/57302536083c08ec5cde90ea2b3e2cf3d4d6149c
https://github.com/BakeryProject/bakery-swap-core/tree/904f7dc210ed45f30b602068efc94b277d01fa0e
https://github.com/BakeryProject/bakery-swap-core/tree/904f7dc210ed45f30b602068efc94b277d01fa0e
https://github.com/BakeryProject/bakery-swap-lib/tree/113a2c18165a63074c8ec1ef260f41ba61c1e855
https://github.com/BakeryProject/bakery-swap-lib/tree/113a2c18165a63074c8ec1ef260f41ba61c1e855

endorses the safety and security of the Uniswap and SushiSwap protocol code. The audit’s

goal was to ensure the source code deltas introduced by BakerySwap are safe.

8

Documentation

The sources of truth regarding the operation of the contracts in scope were derived from their

parent implementations by Uniswap and SushiSwap. To help aid our understanding of each

contract’s functionality we referred to in-line comments and naming conventions.

Summary

The codebase of the project is a DeFi fork of the Uniswap and SushiSwap implementations with

altered reward calculation mechanisms.

Certain optimization steps​ that we pinpointed in the source code mostly referred to coding

standards and inefficiencies, however no flaws were identified in the delta of the source code.

The delta of the source code of BakerySwap and SushiSwap / Uniswap was minimal and

concerned the reward mechanisms rather than any core operation of the protocol and as such,

the core operations were left out of scope such as the swapping of tokens etc.

The BakerySwap team decided to launch their product prior to the completion of the audit and

as such, it was deemed impractical to update the codebase according to our optimizational

findings as the project was already live by the time the audit concluded.

Recommendations

Overall, the codebase of the contracts should be refactored to assimilate the findings of this

report ​to achieve a high standard of code quality and security​.

9

Findings

Exhibit 1

TITLE TYPE SEVERITY LOCATION

Variable Mutability Specifier

Language

Specific

Issue

Informational
BakeryMaster.sol:

L37-L38, L41-L56, L59-L60

[INFORMATIONAL] Description:

The linked variable declarations are only assigned to once during the constructor of the

contract.

Recommendations:

The linked variable declarations can safely be declared as `immutable` to greatly reduce the gas

cost of operating the overall contract.

10

Exhibit 2

TITLE TYPE SEVERITY LOCATION

Variable to `constant` Optimization Informational
BakeryMaster.sol:

L57-L58

[INFORMATIONAL] Description:

The linked variable is only assigned to once during its instantiation at the contract level.

Recommendations:

The linked variable can safely be declared as a constant and have its naming convention

adjusted as such, greatly optimizing the gas cost involved in utilizing it in the process.

11

Exhibit 3

TITLE TYPE SEVERITY LOCATION

Redundant `bool` Variable Optimization Informational BakeryMaster.sol: L35

[INFORMATIONAL] Description:

The newly added boolean variable is meant to represent whether an entry to the new

poolInfoMap mapping exists to prevent duplicate calls to the add function. While this functions

as intended, it is possible to utilize the already-existent non-zero variable `lastRewardBlock` for

this particular purpose.

Recommendations:

As the `lastRewardBlock` assignment will always be non-zero if a pool is added due to ​L123​, it is

possible to require that the variable is zero before assigning to it thus making the existing

variable redundant.

This would affect all `pool.exists` lookups which should be replaced with `pool.lastRewardBlock

!= 0`.

12

https://github.com/BakeryProject/bakery-swap-periphery/blob/57302536083c08ec5cde90ea2b3e2cf3d4d6149c/contracts/BakeryMaster.sol#L123

Exhibit 4

TITLE TYPE SEVERITY LOCATION

Inefficient Per-Member Assignment Optimization Informational
BakeryMaster.sol:

L121-L128

[INFORMATIONAL] Description:

Each instruction on the EVM costs gas to execute and in this case, each member of the struct is

independently written to instead of conducting a single mass-write by instantiating a `PoolInfo`

declaration in `memory` and subsequently assigning it to `poolInfoMap[_pair]`.

Recommendations:

We advise the linked code segment to instead only lookup, depending on Exhibit-3, the correct

member of the struct necessary from `storage` and conduct the rest of the operations in

`memory` before writing the final result to `storage`.

13

Exhibit 5

TITLE TYPE SEVERITY LOCATION

Inefficient Greater-Than

Comparison w/ Zero
Optimization Informational

BakeryMaster.sol: L169,

L175, L194, L322, L326,

L345, L348

[INFORMATIONAL] Description:

The linked statements conduct a greater-than (>) comparison between an unsigned integer and

the value literal 0.

Recommendations:

As unsigned integers are restricted to the non-negative range, it is possible to convert these

greater-than comparisons to inequality comparisons which are more gas efficient.

14

Exhibit 6

TITLE TYPE SEVERITY LOCATION

Inefficient Conditional Optimization Informational
BakeryMaster.sol: L171,

L177, L209

[INFORMATIONAL] Description:

The conditionals check whether the uint256 variables are less than the literal 1. This is only the

case when the value is 0.

Recommendations:

Those `if` conditionals can be converted to equalities with the value literal 0.

15

Exhibit 7

TITLE TYPE SEVERITY LOCATION

Inefficient Case Optimization Informational BakeryMaster.sol: L194

[INFORMATIONAL] Description:

The linked case ensures that `fromBulkNumber` is greater-than (>) the literal 0 before

multiplying it with a value in the ternary operator after being subtracted by 1. Since the value is

subtracted by 1, in the case that `fromBlockNumber` is 1 the multiplication would again yield 0.

Recommendations:

It is more optimal to change the conditional to a greater-than (>) comparison with the literal 1.

16

Exhibit 8

TITLE TYPE SEVERITY LOCATION

Inconsistent Transaction Ordering Optimization Informational
BakeryMaster.sol: L212,

L217-L219

[INFORMATIONAL] Description:

The linked mathematical statements are conducted in a different order than each other, with the

former being a subtraction - multiplication - division and the latter being a subtraction - division

(w/ subtraction rounding) - multiplication. In Solidity, the order of mathematical execution is

important as there is no concept of a decimal number and divisions are rounded down.

Recommendations:

We advise that the proper function of the mathematical formula defined here is evaluated.

17

Exhibit 9

TITLE TYPE SEVERITY LOCATION

Function Plot Optimization Informational
BakeryMaster.sol:

L232-L268

[INFORMATIONAL] Description:

We have taken note of an extensive test suite located in the repository, however we advise that

fuzz-based testing is introduced to ensure that the values retrieved from the reward calculation

follow the plot you have set within the calculations.

Recommendations:

It may be optimal to plot the reward line as well by testing _from and _to values linearly.

18

Exhibit 10

TITLE TYPE SEVERITY LOCATION

Manual Zeroing Optimization Informational
BakeryMaster.sol:

L361-L362

[INFORMATIONAL] Description:

The manual zeroing operations could instead be replaced by a delete operation on

`poolUserInfoMap[_pair][msg.sender]` which is more readable and gas efficient.

Recommendations:

See Description.

19

Exhibit 11

TITLE TYPE SEVERITY LOCATION

Utilization of `storage` Variable

Instead of `memory`
Optimization Informational

BakerySwapFactory.sol:

L18

[INFORMATIONAL] Description:

The linked newly introduced assignment should utilize the already existent `_feeToSetter`

variable in `memory` rather than retrieving the newly stored `feeToSetter` variable from

`storage`, optimizing the gas cost involved in deploying the contract.

Recommendations:

See Description.

20

Exhibit 12

TITLE TYPE SEVERITY LOCATION

Fork Leftovers Optimization Informational PairNamer.sol: L9, L31

[INFORMATIONAL] Description:

The linked segments contain the unicode icon 🦄 as a leftover from Uniswap.

Recommendations:

We advise that another unicode icon is utilized for the BakerySwap project, such as 🍩 or 🥐.

21

Exhibit 13

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational BakeryToken.sol

[INFORMATIONAL] Description:

No findings were found at this stage of the audit as the delta between SushiSwap and this

implementation is inexistent apart from a function rename from `mint` to `mintTo` to avoid the

collision. We should note that this results in a token that exposes both a `mint` and `mintTo`

function to the owner of the contract, however these functions are identical and only invokable

by the Owner of the contract. Regardless, ​we advise that the function is renamed to `mint ​̀ to

ensure that no unintended consequences occur with the token.

22

Exhibit 14

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational BakerySwapRouter.sol

[INFORMATIONAL] Description:

No findings were found at this stage of the audit as the delta between “UniswapV2” and this

implementation is inexistent apart from an omitted superfluous variable to `IBakerySwapPair`

swap function calls and a renaming of all `ETH` type function and variable names to `BNB` type

i.e. `WBNB` instead of `WETH`.

23

Exhibit 15

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational BakerySwapBEP20.sol

[INFORMATIONAL] Description:

No findings were found at this stage of the audit as the delta between “UniswapV2” and this

implementation is inexistent apart from brand renaming in error messages as well as the

`symbol` and `name` variables.

24

Exhibit 16

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational BakerySwapFactory.sol

[INFORMATIONAL] Description:

The delta between “UniswapV2” and this implementation is inexistent apart from brand

renaming in error messages as well as the inclusion of a default value for the `feeTo` variable

being set to the same value as `feeToSetter`.

25

Exhibit 17

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational BakerySwapPair.sol

[INFORMATIONAL] Description:

No findings were found at this stage of the audit as the delta between “UniswapV2” and this

implementation is inexistent apart from brand renaming in the codebase as well as an

adjustment of the swap function to not accept a data argument as it was optional and deemed

unnecessary.

26

Exhibit 18

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational PairNamer.sol

[INFORMATIONAL] Description:

The delta between “UniswapV2” and this implementation is inexistent apart from brand

renaming.

27

Exhibit 19

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational SafeBEP20Namer.sol

[INFORMATIONAL] Description:

No findings were found at this stage of the audit as the delta between “UniswapV2” and this

implementation is inexistent apart from brand renaming.

28

Exhibit 20

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational TransferHelper.sol

[INFORMATIONAL] Description:

No findings were found at this stage of the audit as the delta between “UniswapV2” and this

implementation is inexistent apart from brand renaming.

29

Exhibit 21

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational FixedPoint.sol

[INFORMATIONAL] Description:

No findings were found at this stage of the audit as the delta between “UniswapV2” and this

implementation is inexistent apart from linting style.

30

Exhibit 22

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational EnumerableSet.sol

[INFORMATIONAL] Description:

This contract is out of scope as it is a direct copy of the homonymous​ ​OpenZeppelin

EnumerableSet.sol library​.

31

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/EnumerableSet.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/EnumerableSet.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/EnumerableSet.sol

Exhibit 23

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational Create2.sol

[INFORMATIONAL] Description:

This contract is out of scope as it is a direct copy of the homonymous​ ​OpenZeppelin

Create2.sol library​.

32

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Create2.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Create2.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Create2.sol

Exhibit 24

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational AddressStringUtil.sol

[INFORMATIONAL] Description:

No findings were found at this stage of the audit as the delta between “UniswapV2” and this

implementation is inexistent apart from linting style.

33

Exhibit 25

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational Address.sol

[INFORMATIONAL] Description:

This contract is out of scope as it is a direct copy of the homonymous​ ​OpenZeppelin

Address.sol library​. A delta was observed in the way an address is checked whether it contains

a contract whereby extcodehash is utilized instead of `extcodesize`. The documentation around

it is valid and as such we assume that this is a yet-to-be-released version of OpenZeppelin’s

library.

34

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Address.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Address.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/Address.sol

Exhibit 26

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational BEP20.sol

[INFORMATIONAL] Description:

No findings were found at this stage of the audit as the contract is an ERC20 copy of the

homonymous​ ​OpenZeppelin ERC20.sol implementation​ with omitted functionality.

35

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol

Exhibit 27

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational IBEP20.sol

[INFORMATIONAL] Description:

No findings were identified at this stage of the audit, the contract represents all functions that

exist within BEP20.sol in `interface` format.

36

Exhibit 28

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational SafeBEP20.sol

[INFORMATIONAL] Description:

This contract is out of scope as it is a direct copy of the homonymous​ ​OpenZeppelin

SafeERC20.sol library​ with Binance BEP20 compliant naming.

37

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol

Exhibit 29

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational SafeMath.sol

[INFORMATIONAL] Description:

No findings were identified at this stage of the audit, this contract is a combination of the

SafeMath.sol and Math.sol libraries of “UniswapV2” with an inexistent delta.

38

Exhibit 30

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational Ownable.sol

[INFORMATIONAL] Description:

This contract is out of scope as it is a direct copy of the homonymous​ ​OpenZeppelin

Ownable.sol library​ with an internalized `_transferOwnership` function.

39

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol

Exhibit 31

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational Manageable.sol

[INFORMATIONAL] Description:

No findings were identified at this stage of the audit, the contract is an Ownable.sol

implementation with renamed variables and events.

40

Exhibit 32

TITLE TYPE SEVERITY LOCATION

Contract Description Contract Info Informational Context.sol

[INFORMATIONAL] Description:

This contract is out of scope as it is a direct copy of the homonymous​ ​OpenZeppelin

Context.sol library​ with the abstract contract modifier omitted and a constructor defined.

41

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/GSN/Context.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/GSN/Context.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/GSN/Context.sol

