CertiK Audit Report for bZx

Contents

Contents
Disclaimer

About CertiK
Executive Summary
Testing Summary

Review Notes
Introduction
Documentation
Summary
Conclusion

Findings
Exhibit 1
Exhibit 2
Exhibit 3
Exhibit 4
Exhibit 5
Exhibit 6
Exhibit 7
Exhibit 8
Exhibit 9
Exhibit 10
Exhibit 11
Exhibit 12
Exhibit 13
Exhibit 14
Exhibit 15

—

O 0 N o o

10
11

12
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Exhibit 16
Exhibit 17
Exhibit 18
Exhibit 19
Exhibit 20
Exhibit 21
Exhibit 22
Exhibit 23
Exhibit 24
Exhibit 25
Exhibit 26
Exhibit 27
Exhibit 28
Exhibit 29
Exhibit 30
Exhibit 31
Exhibit 32
Exhibit 33
Exhibit 34
Exhibit 35
Exhibit 36
Exhibit 37
Exhibit 38
Exhibit 39
Exhibit 40
Exhibit 41
Exhibit 42

27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Exhibit 43
Exhibit 44
Exhibit 45
Exhibit 46
Exhibit 47
Exhibit 48
Exhibit 49
Exhibit 50
Exhibit 51
Exhibit 52
Exhibit 53
Exhibit 54
Exhibit 55
Exhibit 56
Exhibit 57
Exhibit 58
Exhibit 59
Exhibit 60
Exhibit 61
Exhibit 62
Exhibit 63
Exhibit 64
Exhibit 65
Exhibit 66
Exhibit 67
Exhibit 68
Exhibit 69

54

55
56
57
58
59
60
61
62
63
64
65
66
67
67
69
69
70
71
72
73
74
75
76
77
78
79

Exhibit 70
Exhibit 71
Exhibit 72
Exhibit 73
Exhibit 74
Exhibit 75
Exhibit 76
Exhibit 77
Exhibit 78
Exhibit 79
Exhibit 80
Exhibit 81
Exhibit 82
Exhibit 83
Exhibit 84
Exhibit 85
Exhibit 86
Exhibit 87
Exhibit 88
Exhibit 89
Exhibit 90
Exhibit 91
Exhibit 92
Exhibit 93
Exhibit 94
Exhibit 95
Exhibit 96

80

81
82
84
84
85
87
88
89
90
91
92
93
95
96
98
98
99
100
101
102
103
104
105
106
107
109

Exhibit 97

Exhibit 98

Exhibit 99

Exhibit 100
Exhibit 101
Exhibit 102
Exhibit 103
Exhibit 104
Exhibit 105
Exhibit 106

110

111
112
113
115
116
118
119
120
121

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of
services, confidentiality, disclaimer and limitation of liability) set forth in the Verification
Services Agreement between CertiKk and bZx (the “Company”), or the scope of
services/verification, and terms and conditions provided to the Company in connection with the
verification (collectively, the “Agreement”). This report provided in connection with the Services
set forth in the Agreement shall be used by the Company only to the extent permitted under the
terms and conditions set forth in the Agreement. This report may not be transmitted, disclosed,
referred to or relied upon by any person for any purposes without CertiK's prior written consent.

About CertiK

CertiK is a technology-led blockchain security company founded by Computer Science
professors from Yale University and Columbia University built to prove the security and
correctness of smart contracts and blockchain protocols.

CertiK, in partnership with grants from IBM and the Ethereum Foundation, CertiK’s mission of
every audit is to apply different approaches and detection methods, ranging from manual, static,
and dynamic analysis, to ensure that projects are checked against known attacks and potential
vulnerabilities. CertiK leverages a team of seasoned engineers and security auditors to apply
testing methodologies and assessments to each project, in turn creating a more secure and
robust software system.

CertiK has served more than 100 clients with high quality auditing and consulting services,
ranging from stablecoins such as Binance’s BGBP and Paxos Gold to decentralized oracles
such as Band Protocol and Tellor. CertiK customizes its engineering tool kits, while applying
cutting-edge research on smart contracts, for each client on its project to offer a high quality
deliverable. For more information: https://certik.io.

https://certik.io/

Executive Summary

This report has been prepared for bZx to discover issues and vulnerabilities in the source code
of their Smart Contracts as well as any contract dependencies that were not part of an officially
recognized library. A comprehensive examination has been performed, utilizing Dynamic

Analysis, Static Analysis, and Manual Review techniques.
The auditing process pays special attention to the following considerations:

e Testing the smart contracts against both common and uncommon attack vectors.

e Assessing the codebase to ensure compliance with current best practices and industry
standards.

e Ensuring contract logic meets the specifications and intentions of the client.

e Cross referencing contract structure and implementation against similar smart
contracts produced by industry leaders.

e Thorough line-by-line manual review of the entire codebase by industry experts.

Testing Summary

SECURITY LEVEL

\\“I“I;
A iy
I

Smart Contract Audit

This report has been prepared as a product of the Smart
Contract Audit request by bZx.

This audit was conducted to discover issues and

vulnerabilities in the source code of bZx’'s Smart Contracts.

TYPE Smart Contract

https://github.com/bZxNetwork/cont

SOURCE CODE
ractsV2
PLATFORM EVM
LANGUAGE Solidity
REQUEST DATE Jun 07, 2020
DELIVERY DATE Sept 04, 2020
A comprehensive examination has
METHODS been performed using Dynamic

Analysis, Static Analysis, and Manual

Review.

https://github.com/bZxNetwork/contractsV2
https://github.com/bZxNetwork/contractsV2

Review Notes

Introduction

CertiK team was contracted by the bZx team to audit the design and implementation of their

Smart Contracts and its compliance with the EIPs it is meant to implement.

The audited source code link is:

e https://github.com/bZxNetwork/contractsV2/tree/471dce9bbbf4f8204c0fb5a13a8f9c3

8babd502e

The goal of this audit was to review the Solidity implementation for its business model, study
potential security vulnerabilities, its general design and architecture, and uncover bugs that

could compromise the software in production.

The findings of the initial audit have been conveyed to the team behind the contract
implementations and the source code is expected to be re-evaluated before another round of

auditing has been carried out.

https://github.com/bZxNetwork/contractsV2/tree/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e
https://github.com/bZxNetwork/contractsV2/tree/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e

Documentation

The sources of truth regarding the operation of the contracts in scope were minimal although
the token fulfilled a simple use case we were able to fully assimilate. To help aid our
understanding of each contract’s functionality we referred to in-line comments and naming

conventions.

These were considered the specification, and when discrepancies arose with the actual code

behaviour, we consulted with the bZx team or reported an issue.

Summary

The codebase of the project is a DeFi implementation, meaning that the audit had to focus on
the inter-relationships of the various contracts as well as the proper functionality of each

contract atomically.

As the contracts are meant to be constantly utilized and a raising trend can be seen in the
Ethereum market with regards to transaction fees, we combined the security audit with a due
diligence inspection on the codebase to ensure that it is as optimized as it can be in relation to

the gas costs it incurs.

Although certain optimization steps that we pinpointed in the source code mostly referred to
coding standards and inefficiencies, the eight minor flaws that were identified should be

remediated as soon as possible to ensure the security of the contracts.
The codebase of the project strictly adheres to the standards and interfaces imposed by the

OpenZeppelin open-source libraries and as such its typical ERC-20 functions can be deemed to

be secure. However the custom functionality built on top of it possessed flaws we identified.

10

Conclusion

Overall, the codebase of the contracts has been refactored assimilating the findings of this

report and achieving a high standard of code quality and security.

11

Findings
Exhibit 1
TITLE TYPE SEVERITY LOCATION
GasTokenUser.sol:
Redundant Utilization of "SafeMath™ | Optimization Informational

L17-L61

[INFORMATIONAL] Description:

The Chi token integration implementation defined in their announcement page purposefully

does not utilize the "SafeMath’ methods as the calculations are guaranteed to be safe and they

need to cost as little gas as possible.

Recommendations:

We advise the team to simply use basic mathematical operations instead of using "SafeMath’

invocations.

Alleviations:

The team opted to change the codebase according to our references.

12

Exhibit 2

TITLE TYPE SEVERITY LOCATION

Redundant ‘require’ Check Optimization Informational AdvancedToken.sol: L56

[INFORMATIONAL] Description:
The “sub’ invocation of L60 already checks the conditional of the linked line and also exposes a
separate method that accepts a second “string™ argument that can be passed to it. which we

advise.
Recommendations:

We advise the removal of the ‘require’ statement and the use of the exposed second “string’

argument of the “sub’ invocation as the error message.

Alleviations:

The team opted to change the codebase according to our references.

13

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/connectors/loantoken/AdvancedToken.sol#L60

Exhibit 3

TITLE TYPE SEVERITY LOCATION

Inconsistent Comment Coding Style Informational AdvancedToken.sol: L57

[INFORMATIONAL] Description:
The linked comments state that there is no need to require “value <= totalSupply” yet that is

exactly what occurs on L67 due to the “sub’ invocation.

Recommendations:

We advise the removal of the ambiguous comment.

Alleviations:

The team opted to change the codebase according to our references.

14

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/connectors/loantoken/AdvancedToken.sol#L67

Exhibit 4
TITLE TYPE SEVERITY LOCATION
Language
AdvancedToken.sol:
Approval Race Condition Specific Minor
L14-L23
Issue

[MINOR] Description:

The ERC-20 "approve™ function has a well-known race condition whereby an adjustment of an

existing approval can be exploited to utilize the full amount of the previously set approval as

well as the newly set approval by monitoring the transaction mempool.

Recommendations:

A workaround to this issue is usually ‘require’-ing that the "allowed" value between two

addresses is first set to zero before being adjusted to another value.

Alleviations:

The team opted to implement two functions, “increaseApproval” and "decreaseApproval’,

complying to the EIP20.

15

Exhibit 5

TITLE TYPE SEVERITY LOCATION

AdvancedToken.sol:

Unusual Logical Branch Coding Style Informational
L61-L64

[INFORMATIONAL] Description:
The aforementioned branch indicates that a user should not burn an amount that would reduce

his balance to less than "10°. The rationale behind this branch is unaccounted for.

Recommendations:

We advise its inclusion as a comment.

Alleviations:

The team opted to add a comment describing the procedure.

16

Exhibit 6
TITLE TYPE SEVERITY LOCATION
AdvancedTokenStorage.s
Potentially Misleading Comments Coding Style Informational
ol: L14,L21,L28,L36

[INFORMATIONAL] Description:

The comment lines included above refer to the topic of each “event’ that subcedes them,
however this hash will change should any of the variable types or the "event’ name itself are
changed. These types of values are better calculated by external code post-compilation rather

tha included as comments since they may not be up to date.

Recommendations:

We advise the removal of ambiguous comments.

Alleviations:

The team opted to remove unnecessary comments.

17

Exhibit 7

TITLE TYPE SEVERITY LOCATION

Storage Layout Optimization Optimization Informational LoanTokenBase.sol: L32

[INFORMATIONAL] Description:
The order of declaration within a contract matters in Solidity as state variables are tightly
packed into 256-bit slots to the greatest extent possible. In the linked contract, it is possible to

move the ‘lastSettleTime_" declaration of L32 before ‘loanTokenAddress’.

An “address’ in Solidity is 160-bits, the preceding "decimals’ variable occupies 8-bits and that
leaves a total of 88-bits to be occupied by another variable. The current implementation utilizes
a 'uint256° for storing the “lastSettleTime_’, however unix timestamps, which “block.timestamp’
is, do not need such a level of precision as even contemporary systems store timestamps in

64-bit at most representations.

Recommendations:

We advise the team to move the “lastSettleTime_" declaration before ‘loanTokenAddress™ and

to change the data type of ‘lastSettleTime_".

Alleviations:

The team opted to change the codebase according to our references.

18

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/connectors/loantoken/LoanTokenBase.sol#L32

Exhibit 8

TITLE TYPE SEVERITY LOCATION

Visibility Specifiers Missing Coding Style Informational L1s

LoanTokenLogicDai.sol:

[INFORMATIONAL] Description:

The linked variables do not have a visibility specifier set.

Recommendations:

We advise that an explicit visibility specifier is defined to aid in the legibility of the codebase.

Alleviations:

The team opted to change the codebase according to our references.

19

Exhibit 9
TITLE TYPE SEVERITY LOCATION
LoanTokenLogicDai.sol:
L223, 224, 1234, L.284,
Magic Numbers Coding Style Informational
L290, L321, L484, L485,
L488

[INFORMATIONAL] Description:

The linked magic numbers should be set as ‘constant™ and “internal’ contract variables with a
self-explanatory variable name as well as accompanying comments when necessary. This type
of declaration is functionally equivalent to the current implementation as "constant’ variables

that are “internal’ or “private” are simply replaced in the codebase with their literal value.

Additionally, some of these magic numbers are also highlighted in "LoanTokenLogicStandard

and could reside there as the "LoanTokenLogicDai" contract inherits from it.

Recommendations:

We advise the team adds proper documentation specifying the purpose of the linked numbers.

Alleviations:

The team opted to add descriptive ‘constant” variable names and in-line comments.

20

Exhibit 10
TITLE TYPE SEVERITY LOCATION
LoanTokenLogicDai.sol:
Function Inconsistency Coding Style Informational
L162,L175,L192,L204

[INFORMATIONAL] Description:
The aforementioned functions both contain a "bytes memory" as the last argument, yet the
former does not name it and instead passes the value literal ™" to the final "_borrowOrTrade’

invocation and the latter explicitly names it and passes it directly.

Recommendations:

We advise that one of the two paradigms is utilized in both functions.

Alleviations:

No alleviations.

21

Exhibit 11
TITLE TYPE SEVERITY LOCATION
Potentially Dangerous Burn LoanTokenLogicDai.sol:
Volatile Code | Minor
Implementation L311-L313

[MINOR] Description:

The _burnToken’ function contains a conditional check that burns the full balance of an
address in case the balance specified exceeds the user's balance. This is dangerous the value
can be greater than the balance of a user for a multitude of reasons including mistypes (i.e. an
extra zero appended), transaction race conditions (i.e. pre-approved tokens being consumed by

another party while the user attempts to transact with the contract) etc.
Recommendations:
The conditional check should instead use the maximum representation of a "uint256" in an

equality conditional as the "flag" that indicates a user's full balance should be burned.

Alleviations:

The team opted to add a ‘require’ statement, following our references.

22

Exhibit 12

TITLE

TYPE

SEVERITY

LOCATION

Unsafe “SafeMath” Invocation

Coding Style

Informational

LoanTokenLogicDai.sol:

L473

[INFORMATIONAL] Description:

The implementation of "_nextBorrowlInterestRate2’ in the parent ‘LoanTokenLogicStandard’

contract indicates that the result of "_utilizationRate™ can be greater than 100 ether as it is

handled gracefully whilst the invocation on the linked line would halt execution if the utilization

rate is greater than "100 ether’.

Recommendations:

Whether a similar graceful handling should be imposed in the "_supplyInterestRate" of

‘LoanTokenLogicDai" should be evaluated to ensure consistency across the codebase.

Alleviations:

A similar graceful handling mechanism was introduced in LoanTokenLogicDai ensuring that the

transaction will not fail if the "utilizationRate" is greater than “100 ether'.

23

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/connectors/loantoken/LoanTokenLogicStandard.sol#L1066-L1071

Exhibit 13
TITLE TYPE SEVERITY LOCATION
Coding Style
LoanTokenLogicDai.sol:
Inconsistent Assembly Conditional & Informational 543
Optimization

[INFORMATIONAL] Description:

The assembly conditional in the linked line does not conform to the “rpow’ implementation of

DSMath where this code segment was converted to assembly from.
Recommendations:
The same "and’ clause imposed on L549 should exist here as well, as the DSMath

implementation uses ‘rmul’ which in-turn uses a safe ‘mul’ operation.

Alleviations:

The team opted to change the codebase.

24

https://github.com/dapphub/ds-math/blob/master/src/math.sol#L77-L87
https://github.com/dapphub/ds-math/blob/master/src/math.sol#L77-L87
https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/connectors/loantoken/LoanTokenLogicDai.sol#L549

Exhibit 14

TITLE TYPE SEVERITY LOCATION

LoanTokenLogicStandard.
Redundant Named Return Variables | Optimization Informational sol: L44, 1436, L450, L623,
L1148

[INFORMATIONAL] Description:

The linked code segments contain named return variables for functions that do not utilize them.

Recommendations:

We advise the team to either remove or properly utilize the name variables.

Alleviations:

The team opted to change the codebase according to our references.

25

Exhibit 15
TITLE TYPE SEVERITY LOCATION
LoanTokenLogicStandard.
Function to "modifier’ Optimization Informational sol: L1162-L1173,
L738-L748

[INFORMATIONAL] Description:

The first linked code segment can be converted to a ‘'modifier’ instead as it is executed at the
start of a function's execution and imposes a ‘require’ check on the function being called.
Additionally, it could accept a “functionSignature™ argument instead of directly utilizing

‘msg.sig’.

The second linked code segment can also be converted to a ‘'modifier’ as a modifier is able to
alter the contract state and the "_settlelnterest()" function always precedes any state-affecting

statements.
Recommendations:
We advise the team to implement the two "modifiers™ as described and properly introduce them

to the codebase.

Alleviations:

The team opted to change the codebase according to our references.

26

Exhibit 16
TITLE TYPE SEVERITY LOCATION
LoanTokenLogicStandard.
Redundant Assignments Optimization Informational sol: L165-L172,
L226-L236

[INFORMATIONAL] Description:
On each linked segment, the value assignment to “sentAmounts[1]" is overridden in the line the

previously-assigned value is utilized.

Recommendations:

We advise that the value is utilized directly instead.

Alleviations:

The team opted to change the codebase according to our references.

27

Exhibit 17

TITLE

TYPE

SEVERITY

LOCATION

Magic Numbers

Coding Style

Informational

LoanTokenLogicStandard.
sol: L180, L259, L275,
L288, L416, L422, L560,
L561,L574,L637,L657,
L688,L723,1788,L793,
L794,1851, 1984, 1997,
L999,L1014, L1015,
L1114,L1115,L1129,
L1136,L1139,L1185,
L1186,L1189, L1190,
L1203

[INFORMATIONAL] Description:

The linked magic numbers should be set as ‘constant™ and “internal’ contract variables with a

self-explanatory variable name as well as accompanying comments when necessary. This type

of declaration is functionally equivalent to the current implementation as "constant’ variables

that are “internal’ or “private” are simply replaced in the codebase with their literal value.

Recommendations:

We advise the team adds proper documentation specifying the purpose of the linked numbers.

Alleviations:

The team opted to add descriptive ‘constant’ variable names and in-line comments on the

non-obvious magic numbers.

28

Exhibit 18
TITLE TYPE SEVERITY LOCATION
LoanTokenLogicStandard.
Function Inconsistency Volatile Code | Informational sol: L136,L184, L197,

L245

[INFORMATIONAL] Description:

The aforementioned functions both contain a "bytes memory™ as the last argument, yet the

former does not name it and instead passes the value literal ™" to the final "_borrowOrTrade’

invocation and the latter explicitly names it and passes it directly.

Recommendations:

We advise that one of the two paradigms is utilized in both functions.

Alleviations:

No alleviations.

29

Exhibit 19
TITLE TYPE SEVERITY LOCATION
LoanTokenLogicStandard.
Arbitrary Transfer Control Optimization Informational
sol: L274-L276

[INFORMATIONAL] Description:
Although intended as a consequence of the way the contract works, any loan pool is able to

arbitrarily transfer user funds.
Recommendations:
The necessity of enabling unrestricted movement of funds in contrast to imposing a hard-limit

should be evaluated.

Alleviations:

The team opted to change the codebase according to our references.

30

Exhibit 20

TITLE TYPE SEVERITY LOCATION

LoanTokenLogicStandard.

Redundant ‘require” and "SafeMath’
Optimization Informational sol: L289, L290, L296,

L301-L302

Utilizations

[INFORMATIONAL] Description:
The paired code segments (via an ampersand ‘&) showcase ‘require’ statements that compare
two values that are subsequently utilized in a "SafeMath’ operation where the exact same

conditional is evaluated in.
Recommendations:
These conditionals can safely be replaced by a single "SafeMath’ invocation that also passes in

an error message in case the inner ‘require’ statements of the invocation fail.

Alleviations:

The team opted to remove unnecessary ‘require’ statements.

31

Exhibit 21
TITLE TYPE SEVERITY LOCATION
LoanTokenLogicStandard.
sol: L342-1.344,
Literal to “constant’ Optimization Informational
L380-L383,L1166-L1167,
L1220-L1225

[INFORMATIONAL] Description:

The linked literals can be safely set to "constant’ contract-level variables as their assignment
and subsequent utilization is replaced with their literal value within the codebase by the
compiler, meaning that using a "constant’ variable and a value literal are functionally equivalent

with the former being far more readable.

Recommendations:

We advise the team to change the linked variables to "constant’.

Alleviations:

The team opted to change the codebase according to our references.

32

Exhibit 22
TITLE TYPE SEVERITY LOCATION
. LoanTokenLogicStandard.
if° Block Optimization Optimization Informational
sol: L347-L357

[INFORMATIONAL] Description:

The current "if* block can be optimized by breaking the first conditional into two "if" clauses. The
outermost 'if else if' clause would be set to an "if else” clause with the conditional being
‘_newBalance != 0" and an inner 'if block would be set that evaluates "_oldBalance != 0. This
would cause the “else’ clause to not need an additional conditional check as it is already

checked under all circumstances.

Recommendations:

We advise the team to change the code blocks to match the procedure described.

Alleviations:

The team opted to change the codebase according to our references.

33

Exhibit 23
TITLE TYPE SEVERITY LOCATION
LoanTokenLogicStandard.
Named Return Variable Optimization Informational
sol: L393-L431

[INFORMATIONAL] Description:
The variable “profitSoFar’ could be an explicitly named return variable to optimize the legibility

of the codebase.

Recommendations:

We advise the team to change the variable “profitSoFar’ to a named return variable.

Alleviations:

The team opted to change the codebase according to our references.

34

Exhibit 24
TITLE TYPE SEVERITY LOCATION
. o . LoanTokenLogicStandard.
uint256" to 'int256° Representation Optimization Informational
sol: L393-L431

[INFORMATIONAL] Description:

The current implementation does not account for negative profit and instead zeroes out the
profit in case it goes in the negative range. As profit appears to be a view-only indicator, its
representation in the negative range should be evaluated as an "int256" representation may be

more fitting.

This would also in-turn render the "if statements of this block redundant.

Recommendations:

We advise the team to change the code block as described.

Alleviations:

The team opted to change the codebase according to our references.

35

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/connectors/loantoken/LoanTokenLogicStandard.sol#L413-L428

Exhibit 25
TITLE TYPE SEVERITY LOCATION
) . LoanTokenLogicStandard.
Redundant "SafeMath’ Invocation Optimization Informational
sol: L455-L465

[INFORMATIONAL] Description:
The "if statement that precedes the “sub’ invocation renders the computation safe under all

circumstances and as such can be safely omitted.

Recommendations:

We advise the team to remove redundant code.

Alleviations:

The team opted to change the codebase according to our references.

36

Exhibit 26
TITLE TYPE SEVERITY LOCATION
LoanTokenLogicStandard.
Unsafe Ether Transfer Volatile Code Minor
sol: L691-L695

[MINOR] Description:

The "_mintToken" function incorrectly evaluates the amount of ether sent to the contract and
thus can lead to a user arbitrarily siphoning ether off the contract. The linked "if else’ branch
checks whether ‘'msg.value’ is zero and if not, it assumes that ‘msg.value’ is equal to

“depositAmount” whilst this is not guaranteed.
Recommendations:
A ‘require’ check should be introduced in the “else’ clause that ensures these values are equal,

otherwise it is possible to utilize an arbitrary amount of ether stored on the contract.

Alleviations:

The team opted to change the codebase according to our references.

37

Exhibit 27
TITLE TYPE SEVERITY LOCATION
Non-Payable Function w/ LoanTokenLogicStandard.
. . Volatile Code | Minor
msg.value sol: L39-L50

[MINOR] Description:
The function "_mintToken' is an ‘internal’ function that is solely utilized in the ‘'mint’ function of
the contract. As ‘mint’ is not declared as “payable’, ‘'msg.value™ within "_mintToken" will always

be equal to zero yet its implementation indicates otherwise.

Recommendations:

We advise that the proper function attribute is set for the ‘mint’ function.

Alleviations:

No alleviations.

38

Exhibit 28
TITLE TYPE SEVERITY LOCATION
Potentially Dangerous Burn LoanTokenLogicStandard.
. Volatile Code | Minor
Implementation sol: L706-L736

[MINOR] Description:

The _burnToken’ function contains a conditional check that burns the full balance of an
address in case the balance specified exceeds the user's balance. This is dangerous the value
can be greater than the balance of a user for a multitude of reasons including mistypes (i.e. an
extra zero appended), transaction race conditions (i.e. pre-approved tokens being consumed by

another party while the user attempts to transact with the contract) etc.
Recommendations:
The conditional check should instead use the maximum representation of a "uint256" in an

equality conditional as the "flag" that indicates a user's full balance should be burned.

Alleviations:

The team opted to change the codebase according to our references.

39

Exhibit 29

TITLE

TYPE

SEVERITY

LOCATION

lllegible Conditional

Optimization

Informational

LoanTokenLogicStandard.
sol: L764-L769

[INFORMATIONAL] Description:

The conditional check imposed should evaluate whether the “sourceToDestRate’ is not equal to

zero rather than the “sourceToDestPrecision as it makes more sense legibility-wise.

Recommendations:

We advise the team to change the conditional check as described.

Alleviations:

The team opted to change the codebase according to our references.

40

Exhibit 30
TITLE TYPE SEVERITY LOCATION
LoanTokenLogicStandard.
Comment Inconsistency Coding Style Informational
sol: L786-L796

[INFORMATIONAL] Description:
The formula described by the comment is not what is implemented by the statements that

subcede it:

The formula of the comments is defined as: borrowAmount * 1018 / (10*18 - interestRate *

7884000 * 10718 / 31536000 / 10720)

The formula of the implementation is defined as: borrowAmount * 10218 / (1018 - (interestRate *

initialLoanDuration * 1018 / (31536000 * 10720)))

Recommendations:

We advise that those two segments are kept in sync.

Alleviations:

The team opted to change the codebase according to our references.

41

Exhibit 31
TITLE TYPE SEVERITY LOCATION
LoanTokenLogicStandard.
Unreachable Statements Optimization Informational
sol: L821-L.823

[INFORMATIONAL] Description:
The “internal’ function "_borrowOrTrade’ is solely invoked in two instances, both of which have a
non-zero value set in the second position of the “sentAddresses™ array. This means that the

linked code segment should be omitted as it will never execute.

This appears to be leftover code before this assignment was introduced.

Recommendations:

We advise the team to remove redundant code.

Alleviations:

No alleviations.

42

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/connectors/loantoken/LoanTokenLogicStandard.sol#L222

Exhibit 32
TITLE TYPE SEVERITY LOCATION
LoanTokenLogicStandard.
Redundant Ternary Operator Optimization Informational sol: L845-1.847,
L856-L.858

[INFORMATIONAL] Description:
The ternary operator in essence utilizes the result of its conditional evaluation and as such, the

conditional evaluation can be utilized directly.

Additionally, as it is utilized twice its evaluation could be stored to an in-memory "bool" variable.
Recommendations:

We advise the team to store the value of the expression "withdrawAmount != 0" into a "bool’

variable and use this variable instead of the ternary operators.

Alleviations:

The team opted to change the codebase according to our references.

43

Exhibit 33
TITLE TYPE SEVERITY LOCATION
LoanTokenLogicStandard.
Inexistent Error Codes Coding Style Informational
sol: L903-L905

[INFORMATIONAL] Description:

Error messages/codes are essential for debugging.
Recommendations:
As error codes are utilized throughout the codebase, we advise that error codes are also added

to the linked code segments instead of empty strings.

Alleviations:

The team opted to change the codebase according to our references.

44

Exhibit 34
TITLE TYPE SEVERITY LOCATION
Optimization
LoanTokenLogicStandard.
Inefficient "if Block & Volatile Informational
sol: L1061-L1064
Code

[INFORMATIONAL] Description:

The linked "if’ block should instead be moved inside the “else’ clause of the subceding if else’

code block as the evaluation of "utilRate > 90 ether’ to “true’ is impossible if "utilRate < 80 ether’

is “true’.

Recommendations:

We advise the team to change the code block as described.

Alleviations:

The team opted to change the codebase according to our references.

45

Exhibit 35
TITLE TYPE SEVERITY LOCATION
Optimization
LoanTokenLogicStandard.
Total “owner™ Control & Volatile Informational
sol: L1211-L1248
Code

[INFORMATIONAL] Description:
The linked function implementation allows the “owner’ of the contract to act on behalf of it

arbitrarily, i.e. transfer its full token balance.
Recommendations:
We advise the team to carefully evaluate if necessity of such a centralized function is

necessary.

Alleviations:

No alleviations.

46

Exhibit 36
TITLE TYPE SEVERITY LOCATION
)) _ _) LoanTokenLogicStandard.
Unconventional Naming Convention | Coding Style Informational L1004
sol:

[INFORMATIONAL] Description:
The linked function is a “public’ getter function yet it is prefixed with an underscore ("_")
indicating that it is an “internal’ function. Its optimum visibility specifier should be assessed and

defined.

Recommendations:
We advise the team to follow the standard Solidity naming conventions or revise the visibility

specifier.

Alleviations:

The team opted to change the visibility specifier of the "_supplylnterestRate” function to

‘internal’.

47

Exhibit 37

TITLE

TYPE

SEVERITY

LOCATION

Inexistent Error Codes

Coding Style

Informational

LoanTokenLogicWeth.sol:

L84

[INFORMATIONAL] Description:

Error messages/codes are essential for debugging.

Recommendations:

As error codes are utilized throughout the codebase, we advise that error codes are also added

to the linked code segments instead of empty strings.

Alleviations:

The team opted to change the codebase according to our references.

48

Exhibit 38

TITLE

TYPE

SEVERITY

LOCATION

Literal to “constant

Optimization

Informational

LoanTokenSettings.sol:

L34-L38

[INFORMATIONAL] Description:

The linked literals can be safely set to "constant’ contract-level variables as their assignment

and subsequent utilization is replaced with their literal value within the codebase by the

compiler, meaning that using a “constant’ variable and a value literal are functionally equivalent

with the former being far more readable.

Recommendations:

We advise the team to change the variables to “‘constant’ ones.

Alleviations:

The team opted to change the codebase according to our references.

49

Exhibit 39

TITLE

TYPE

SEVERITY

LOCATION

Redundant Implementations

Optimization

Informational

LoanTokenSettings.sol:

L51-L87

[INFORMATIONAL] Description:

The ‘recoverEther’ and ‘recoverToken implementations are redundant as the "updateSettings

function of "LoanTokenLogicStandard" allows the “owner’ to carry out the exact same

functionality by setting the appropriate parameters.

Recommendations:

We advise the team to remove redundant code.

Alleviations

No alleviations.

50

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/connectors/loantoken/LoanTokenLogicStandard.sol#L1211-L1248
https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/connectors/loantoken/LoanTokenLogicStandard.sol#L1211-L1248

Exhibit 40

TITLE

TYPE

SEVERITY

LOCATION

Utilizations

Redundant ‘require” and "SafeMath’

Optimization

Informational

LoanTokenSettings.sol:
L95,L100

[INFORMATIONAL] Description:

The paired code segments (via an ampersand ‘&) showcase ‘require’ statements that compare

two values that are subsequently utilized in a "SafeMath’ operation where the exact same

conditional is evaluated in.

Recommendations:

We advise the team to remove redundant ‘require’ statements.

Alleviations:

The team opted to remove the redundant code of the ‘require’ statement.

51

Exhibit 41
TITLE TYPE SEVERITY LOCATION
LoanTokenSettingsLower
Literal to “constant’ Optimization Informational Admin.sol: L21-L24,
L128-L129

[INFORMATIONAL] Description:

The linked literals can be safely set to "constant’ contract-level variables as their assignment
and subsequent utilization is replaced with their literal value within the codebase by the
compiler, meaning that using a "constant’ variable and a value literal are functionally equivalent

with the former being far more readable.

Recommendations:

We advise the team to change the variables to “constant’ ones.

Alleviations:

The team opted to change the codebase according to our references.

52

Exhibit 42
TITLE TYPE SEVERITY LOCATION
LoanTokenSettingsLower
Magic Numbers Optimization Informational Admin.sol: L71,L113,
L114

[INFORMATIONAL] Description:

The linked magic numbers should be set as ‘constant™ and “internal’ contract variables with a
self-explanatory variable name as well as accompanying comments when necessary. This type
of declaration is functionally equivalent to the current implementation as "constant’ variables

that are “internal’ or “private” are simply replaced in the codebase with their literal value.

Recommendations:

We advise the team adds proper documentation specifying the purpose of the linked numbers.

Alleviations:

The team opted to add descriptive "constant’ variable names and in-line comments.

53

Exhibit 43
TITLE TYPE SEVERITY LOCATION
LoanTokenSettingsLower
Identical Functions Optimization Informational
Admin.sol: L38-L80

[INFORMATIONAL] Description:
As the linked functions are identical, they could utilize a single “internal’ function that accepts

extra arguments passed in by the said functions.

Recommendations:

We advise the team to remove redundant code and implement the single function, as described.

Alleviations:

The team opted to remove redundant code and implement a single function, as described.

54

Exhibit 44
TITLE TYPE SEVERITY LOCATION
))) LoanTokenSettingsLower
Inexistent Error Codes Coding Style Informational
Admin.sol: L113-L114

[INFORMATIONAL] Description:

Error messages/codes are essential for debugging.
Recommendations:
As error codes are utilized throughout the codebase, we advise that error codes are also added

to the linked code segments instead of empty strings.

Alleviations:

The team opted to change the codebase according to our references.

55

Exhibit 45
TITLE TYPE SEVERITY LOCATION
LoanTokenSettingsLower
Unsanitized Input Volatile Code | Informational
Admin.sol: L103-L120

[INFORMATIONAL] Description:
The "_low’ prefixed variables of each input should respectively be lower than its non-prefixed

input, however this is not sanitized / checked within the function.

Recommendations:

We advise that the corresponding ‘require’ checks are imposed.

Alleviations:

No alleviations.

56

Exhibit 46

TITLE

TYPE

SEVERITY

LOCATION

Magic Numbers

Coding Style

Informational

State.sol: L48, L52, L56,
L63, L65, L73,L75

[INFORMATIONAL] Description:

The linked magic numbers can be optimized by setting the value of *10**18" itself to a literal

representing "100%" and subsequently multiplying this value by fractionals. In Solidity,

expressions like "0.2 * 10**18" are possible and properly evaluate as they are replaced with their

value literal by the Solidity compiler, so "15 * 10**16" is much better legible as '0.15 *

PERCENTAGE_MULTIPLIER" or something similar.

Recommendations:

We advise the team adds proper documentation specifying the purpose of the linked numbers.

Alleviations:

The team opted to add descriptive "constant’ variable names and in-line comments.

57

Exhibit 47

TITLE TYPE SEVERITY LOCATION

LoanStruct.sol: L14,

Inefficient “struct’ Layout Optimization Informational L1718

[INFORMATIONAL] Description:
The first linked variable could be moved to the bottom of the “struct™ declaration to be
tightly-packed with another "address’ variable, reducing the total space required by the “struct’

by one full word (256-bit) slot.

The latter two linked variables can be reduced in precision as they are meant to represent a unix
timestamp and even contemporary systems utilize 64-bit precision for representing them,
meaning 128-bits of precision would be sufficient. This would once again reduce the total space

required by the “struct’ by one full word (256-bit) slot.

Recommendations:

We advise the team to change the code block, as described.

Alleviations:

The team opted to change the codebase according to our references.

58

Exhibit 48
TITLE TYPE SEVERITY LOCATION
) _ _ _) LoanOpeningsEvents.sol:
Potentially Misleading Comments Coding Style Informational
L11,L26,L42

[INFORMATIONAL] Description:

The comment lines included above refer to the topic of each “event’ that subcedes them,
however this hash will change should any of the variable types or the "event’ name itself are
changed. These types of values are better calculated by external code post-compilation rather

tha included as comments since they may not be up to date

Recommendations:

We advise the team to remove unnecessary comments.

Alleviations:

The team opted to remove unnecessary code.

59

Exhibit 49

TITLE TYPE SEVERITY LOCATION

Redundant “indexed" Variable Coding Style Informational PriceFeeds.sol: L23

[INFORMATIONAL] Description:
The variable “isPaused’ is a "bool variable with only two possible values. As such, it is

redundant to declare it as an “indexed” event variable.

Recommendations:

We advise the team to remove the ‘indexed" specifier from the “event” declaration.

Alleviations:

The team opted to change the codebase according to our references.

60

Exhibit 50
TITLE TYPE SEVERITY LOCATION
PriceFeeds.sol: L63,L110,
L167,L209, L218, L223,
Magic Numbers Coding Style Informational
L230, L356, L368, L372,
L377,L378,L390,L413

[INFORMATIONAL] Description:

The linked magic numbers should be set as "constant™ and “internal’ contract-level variables
with a self-explanatory variable name as well as accompanying comments when necessary.
This type of declaration is functionally equivalent to the current implementation as “constant’
variables that are “internal’ or “private” are simply replaced in the codebase with their literal

value.

Recommendations:

We advise the team adds proper documentation specifying the purpose of the linked numbers.

Alleviations:

The team opted to add descriptive ‘constant” variable names and in-line comments.

61

Exhibit 51

TITLE

TYPE

SEVERITY

LOCATION

Inconsistent Ether Checks

Optimization

Informational

PriceFeeds.sol: L130,

L269

[INFORMATIONAL] Description:

The "amountInEth™ function checks whether the “tokenAddress™ represents Ether by comparing

it with the "wethToken™ address, yet the conditional on "getFastGasPrice™ additionally checks the

value against the zero address.

This is also evident in the “constructor’ of the contract.

Recommendations:

Proper "Ether" address handling should be implemented across the board.

Alleviations:

The team opted to change the codebase according to our references.

62

Exhibit 52
TITLE TYPE SEVERITY LOCATION
PriceFeeds.sol:
“if” Block Optimization Optimization Informational
L226-L239

[INFORMATIONAL] Description:

The "if’ block can be optimized whereby the “else’ clause is dropped entirely and the statements
within the "if* clause simply assign the result of
“collateralToLoanAmount.sub(loanAmount).mul(10**20).div(loanAmount)" to “currentMargin’,

as the function contains named return variables.

Recommendations:

We advise the team to change the code block, as described.

Alleviations:

The team opted to change the codebase according to our references.

63

Exhibit 53
TITLE TYPE SEVERITY LOCATION
PriceFeeds.sol:
Identical Code Blocks Optimization Informational
L347-L369

[INFORMATIONAL] Description:
The linked code blocks could instead utilize a single “internal’ function for

ease-of-maintainability as well as code readability.

Recommendations:

We advise the team to remove redundant code and implement the single function, as described.

Alleviations:

The team opted to change the codebase according to our references.

64

Exhibit 54

TITLE TYPE SEVERITY LOCATION

Undocumented Literal Coding Style Informational PriceFeeds.sol: L412

[INFORMATIONAL] Description:
The “priceFeeds’ of “address(1)" is meant to represent ‘gasPrice’, yet this remains

undocumented throughout the codebase.

Recommendations:

A relevant “constant’ for the address should be set along with documentation surrounding it.

Alleviations:

The team opted to add descriptive "constant” variable names and in-line comments.

65

Exhibit 55
TITLE TYPE SEVERITY LOCATION
o o) EnumerableBytes32Set.so
Loop Optimization Optimization Informational
[: L141-L143

[INFORMATIONAL] Description:
Instead of starting the loop at 0" and performing an addition on each iteration w/ “start’, it is
possible to simply start the loop from “start’, change the conditional to less-than "end” and

utilize "i" directly.

Recommendations:

We advise the team to implement the loop as described above.

Alleviations:

The team opted to change the codebase according to our references.

66

Exhibit 56
TITLE TYPE SEVERITY LOCATION
FeesHelper.sol: L27, L39,
Magic Numbers Coding Style Informational
L132,L134

[INFORMATIONAL] Description:

The linked magic numbers should be set as ‘constant™ and “internal’ contract-level variables
with a self-explanatory variable name as well as accompanying comments when necessary.
This type of declaration is functionally equivalent to the current implementation as “constant’
variables that are “internal’ or “private” are simply replaced in the codebase with their literal

value.

Recommendations:

We advise the team adds proper documentation specifying the purpose of the linked numbers.

Alleviations:

The team opted to add descriptive "constant’ variable names and in-line comments.

67

Exhibit 57
TITLE TYPE SEVERITY LOCATION
FeesHelper.sol: L27, L39,
Unredeemed Fees Coding Style Informational
L132,L134

[INFORMATIONAL] Description:
Should the price feed stop functioning correctly, the usage of the low-level “staticcall’ and

consequent “assembly’ block would render fees unredeemable during this period.
Recommendations:
As this appears to be intended, the consequences of this should be carefully evaluated and

explained in the surrounding documentation.

Alleviations:

No alleviations.

68

Exhibit 58

TITLE TYPE SEVERITY LOCATION

Magic Numbers Coding Style Informational InterestUser.sol: L29, L59

[INFORMATIONAL] Description:

The linked magic numbers should be set as ‘constant™ and “internal’ contract-level variables
with a self-explanatory variable name as well as accompanying comments when necessary.
This type of declaration is functionally equivalent to the current implementation as “constant’
variables that are “internal’ or “private” are simply replaced in the codebase with their literal

value.

Recommendations:

We advise the team adds proper documentation specifying the purpose of the linked numbers.

Alleviations:

The team opted to add descriptive ‘constant’ variable names and in-line comments.

69

Exhibit 59

TITLE

TYPE

SEVERITY

LOCATION

Formula Inconsistency

Volatile Code

Minor

LiquidationHelper.sol:
L33-L49, L54-L62

[MINOR] Description:

The linked code segments contain mathematical formula implementations in pseudo-code in

comments as well as in actual Solidity statements. There appear to be discrepancies between

the pseudo-code implementations and the actual implementations.

Recommendations:

We advise that these discrepancies are properly evaluated i.e. “(desiredMargin - 0.05)" is

actually conducted by subtracting “incentivePercent’ instead of a value literal.

Alleviations:

The team opted to change the codebase according to our references.

70

Exhibit 60

TITLE TYPE SEVERITY LOCATION

SwapslmplKyber.sol:

‘revert’ to ‘require’ Optimization Informational
L41-L70

[INFORMATIONAL] Description:

The linked "if" block contains an “else’ statement that simply ‘revert’s.
Recommendations:
We advise that the "if conditional is instead executed as a ‘require’ statement thus removing

the necessity of an "if* block.

Alleviations:

The team opted to change the codebase according to our references.

71

Exhibit 61
TITLE TYPE SEVERITY LOCATION
SwapslimplKyber.sol: L49,
Inefficient Expressions Optimization Informational
L51,L57,L66,L75

[INFORMATIONAL] Description:
The results of 'IERC20(sourceTokenAddress)” and “address(this)" could instead be stored to
in-memory variables to aid in the legibility of the codebase and render duplicate reads from

memory redundant.

Recommendations:

We advise the team to change the code block as described above.

Alleviations:

The team opted to change the codebase according to our references.

72

Exhibit 62

TITLE

TYPE

SEVERITY

LOCATION

Potentially Dangerous Allowance

Volatile Code

Informational

SwapslmplKyber.sol:

L50-L55

[INFORMATIONAL] Description:

An unlimited allowance is generally considered ill-practice when dealing with user funds.

Recommendations:

We advise that this block is instead revamped to set a precise allowance to the Kyber contract.

Alleviations:

The team opted to change the codebase according to our references.

73

Exhibit 63

TITLE TYPE SEVERITY LOCATION

Nested to Single Conditional Optimization Informational
L72-L80

SwapslmplKyber.sol:

[INFORMATIONAL] Description:
The nested "if* blocks can instead be converted to a single "if block with a joint (&&")

conditional.

Recommendations:

We advise the team to change the code block as described above.

Alleviations:

The team opted to change the codebase according to our references.

74

Exhibit 64
TITLE TYPE SEVERITY LOCATION
) o o) SwapslmplKyber.sol:
Function Optimization Optimization Informational
L83-L120

[INFORMATIONAL] Description:

The function “internalExpectedRate’” can be optimized by explicitly naming the return variable to
‘expectedRate’ causing its default value to be "0°. This would, in turn, require a single "if else’
conditional with the first condition remaining as is ('sourceTokenAddress ==
destTokenAddress’) and the “else-if" condition becoming “sourceTokenAmount !=0".
Lastly, the "assembly’ block can be optimized by simply introducing an "if conditional that
makes sure ‘result’ is ‘true’ and subsequently executes the "assembly’ statement

“expectedRate := mload(add(data, 32)) .

Recommendations:

We advise the team to change the code block as described above.

Alleviations:

The team opted to change the codebase according to our references.

75

Exhibit 65

TITLE

TYPE

SEVERITY

LOCATION

Conditional Order

Optimization

Informational

SwapslmplKyber.sol:
L157-L159

[INFORMATIONAL] Description:

The linked conditional check can be moved before the multiplication and division that precedes

it, as the multiplication is done with the value of "bufferMultiplier’ which is guaranteed to yield a

value different than one when divided by "10**20" and multiplied by any value different than "0".

Recommendations:

We advise the team to change the code block as described above.

Alleviations:

The team opted to change the codebase according to our references.

76

Exhibit 66

TITLE

TYPE

SEVERITY

LOCATION

Function Visibilities

Coding Style

Informational

SwapslmplKyber.sol:
L24-1.33,1.83-L89

[INFORMATIONAL] Description:

The functions “internalSwap™ and “internalExpectedRate’ are declared as “public’ despite what

their naming convention implies.

Recommendations:

We advise that either their visibility or naming convention is amended properly.

Alleviations:

The team opted to change the names of the functions from “internalSwap™ and

‘internalExpectedRate’ to "dexSwap™ and "dexExpectedRate respectively.

77

Exhibit 67

TITLE TYPE SEVERITY LOCATION

Conditional Optimization Optimization Informational SwapsUser.sol: L90-L93

[INFORMATIONAL] Description:
The linked "if and consequent ‘require’ statements can be optimized into an “else’ branch that
contains the ‘require’ statement as should the "if conditional evaluate to “true’ the ‘require’

statement will pass under all circumstances.

Recommendations:

We advise the team to change the code block, as described.

Alleviations:

The team opted to change the codebase according to our references.

78

Exhibit 68
TITLE TYPE SEVERITY LOCATION
. o o o) SwapsUser.sol:
revert’ to ‘require Optimization Informational
L127-L157

[INFORMATIONAL] Description:

The linked "if" block contains an “else’ statement that simply ‘revert’s.
Recommendations:
We advise that the "if conditional is instead executed as a ‘require’ statement thus removing

the necessity of an "if* block.

Alleviations:

The team opted to change the codebase according to our references.

79

Exhibit 69
TITLE TYPE SEVERITY LOCATION
SwapsUser.sol:
Commented Out Code Coding Style Informational
L134-L156

[INFORMATIONAL] Description:
The usefulness of the commented out code should be evaluated and, should the code block be

considered no longer necessary.
Recommendations:
We advise the team to remove the comments to avoid any type of confusion from the readers of

the codebase.

Alleviations:

The team opted to remove unnecessary comments.

80

Exhibit 70

TITLE TYPE SEVERITY LOCATION

Strict Conditional Optimization Informational SwapsUser.sol: L161

[INFORMATIONAL] Description:
The linked conditional is accompanied by a comment that states ™all of vals[0]
(minSourceTokenAmount) must be spent™ whilst the “require’ conditional conducts a strict

equality.

Recommendations:

We advise this comparison to instead become a greater-than-or-equal (">=") comparison.
Alleviations:

No changes were made to the codebase, but the team opted to add descriptive inline-comments

as to why this procedure remained unchanged.

81

Exhibit 71

TITLE TYPE SEVERITY LOCATION

Potentially Incorrect Error Message Volatile Code | Informational SwapsUser.sol: L93

[INFORMATIONAL] Description:
The error message states that ""sourceAmount larger than max" whilst the values that are

checked are the minimum and maximum “SourceTokenAmount's.

Recommendations:

We advise the team to add more descriptive error messages.

Alleviations:

The team opted to change the error message of the ‘require’ statement.

82

Exhibit 72

TITLE TYPE SEVERITY LOCATION

SwapsUser.sol: L100,
Duplicate Conditionals Optimization Informational L104,L120,L158, L162,
L171

[INFORMATIONAL] Description:
The linked conditional statements are evaluated multiple times when they can be evaluated

once and accessed from memory variables.

Recommendations:

We advise the team to change the code, as described.

Alleviations:

No alleviations.

83

Exhibit 73
TITLE TYPE SEVERITY LOCATION
SwapsUser.sol:
Redundant "SafeMath’ Utilizations Optimization Informational
L163-L164,L179-L180

[INFORMATIONAL] Description:
The linked mathematical statements can be safely conducted using their "raw" counterparts as
they basically offset the already-safely-conducted mathematical operations in the preceding Jif’

block.

Recommendations:

We advise the team to remove redundant code.

Alleviations:

The team opted to change the codebase according to our references.

84

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/swaps/SwapsUser.sol#L100-L124
https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/swaps/SwapsUser.sol#L100-L124

Exhibit 74

TITLE TYPE SEVERITY LOCATION
Optimization
. . . & Language) SwapsUser.sol:
assembly to Solidity Informational
Specific L208-L211
Issue

[INFORMATIONAL] Description:
The linked "assembly’ block reads the values from the returned "bytes memory™ and assigns

them to the return variables.

Recommendations:

We advise the team to use the function "decode’ of the globally available “abi which can be

utilized instead which is more verbose and overall safer.

Alleviations:

The team opted to change the codebase according to our references.

85

https://solidity.readthedocs.io/en/v0.5.17/units-and-global-variables.html?highlight=abi#abi-encoding-and-decoding-functions

Exhibit 75

TITLE TYPE SEVERITY LOCATION

General Codebase Comment Optimization Informational LoanClosings.sol

[INFORMATIONAL] Description:

The codebase of the LoanClosings.sol contract is inefficient in its utilization of “storage™ and
‘memory’ pointers. When a “storage’ pointer is passed as a ‘'memory’ pointer, the full struct is
copied to ‘'memory’ redundantly. The codebase goes to great lengths to optimize certain
statements, i.e. not perform additions with the variable "0 at all, yet conducts high-gas
inefficiencies such as utilizing the “storage’ pointers of loan structs as ‘memory’ in the

"_checkAuthorized™ and "_doCollateralSwap" functions.

Additionally, duplicate conditionals are re-evaluated numerous times throughout certain

functions such as "_closeWithSwap’, where this conditional could be changed to a

greater-than-or-equal (">=") conditional that is subsequently stored in memory and utilized in

L489 and L490 as well.

Storage read duplications also occur in the codebase, whereby a variable is read from the
“storage’ pointer multiple times in the codebase whilst it could have been read once and stored
to an in-memory variable such as the IDs of loans. All the aforementioned points significantly

affect the overall gas cost of the functions.

86

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanClosings.sol#L484-L486

Recommendations:

We advise the team to revise and restructure the codebase for "LoanClosings.sol".

Alleviations:

The team opted to change the codebase according to our references.

87

Exhibit 76
TITLE TYPE SEVERITY LOCATION
Language
Specific LoanClosings.sol:
Fallback Paradigm Informational
Issue & L29-.33
Optimization

[INFORMATIONAL] Description:
The current fallback function implementation ‘revert's to prevent any type of Ethereum transfer
to the contract. This paradigm was deployed pre-v0.4.0 because a contract would be able to

receive and essentially lock Ethereum as part of regular transfers.

After v0.4.0, a contract automatically throws if no fallback function is provided and as such the

linked code can simply be omitted if the desire is to prevent Ether transfers to the contract.

The warning of the linked Solidity docs should be kept in mind whereby a contract is still able to

receive Ether either from a “selfdestruct’ operation or a block reward.

Recommendations:

We advise the team to remove redundant code.

Alleviations:

The team opted to change the codebase according to our references.

88

https://solidity.readthedocs.io/en/v0.5.17/contracts.html#fallback-function

Exhibit 77

TITLE TYPE SEVERITY LOCATION

Potential Incompatibility w/ Proxy

Coding Style Informational LoanClosings.sol: L75
Model

[INFORMATIONAL] Description:
The conditional check on the linked line ensures that only externally owned accounts invoke the
particular function, however judging from the codebase the function may be invokable by a

proxy and as such, the ‘msg.sender’ may mismatch the “tx.origin".

Recommendations:

Whether this conditional functions as intended should be evaluated.

Alleviations:

The team opted to remove unnecessary code from the codebase.

89

Exhibit 78
TITLE TYPE SEVERITY LOCATION
LoanClosings.sol: L68,
Commented Out Variable Coding Style Informational
L80,L110,L125

[INFORMATIONAL] Description:
As with the other functions we have identified in the codebase to follow a similar convention, we
advise that the variable is uncommented and passed directly to the function that follows instead

of the literal ™.

Alleviations:

The team opted to remove unnecessary code from the codebase.

90

Exhibit 79

TITLE

TYPE

SEVERITY

LOCATION

“if” Optimization

Optimization

Informational

LoanClosings.sol:
L172-L178

[INFORMATIONAL] Description:

The linked code block can be optimized whereby the “if-else-if-else’ clause is converted to an

‘if-else’ clause with the previously top-level “else-if* clause being nested within as the statement

of L175 and L177 is executed in both circumstances.

Recommendations:

We advise the team to change the code block, as described above.

Alleviations:

The team opted to change the codebase according to our references.

91

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanClosings.sol#L175
https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanClosings.sol#L177

Exhibit 80
TITLE TYPE SEVERITY LOCATION
Language
LoanClosings.sol:
Race Condition Specific Minor
L46-L64
Issue

[MINOR] Description:

The linked function is meant to liquidate a particular loan and transmit any seized funds to the
specified ‘receiver’ address. As no form of access control is imposed at this point nor within the
"_liquidate’ function, any party is able to liquidate loans at will with themselves designated as

seized fund recipients as long as the loan is active.

This introduces a race condition whereby an attacker is able to scan the transaction mempool
of Ethereum, identify a transaction that is meant to liquidate a particular asset with a high
amount of seized funds and transmit an identical transaction themselves with a higher

transaction fee to make sure it is executed first.

Recommendations:

We advise that the ACL logic of this function is re-evaluated.

Alleviations:

The team opted to remove unnecessary code from the codebase.

92

Exhibit 81

TITLE TYPE SEVERITY LOCATION

Usage of Magic Number Coding Style Informational LoanClosings.sol: L258

[INFORMATIONAL] Description:

The “endTimestamp” of a "Loan’ is compared against the current time after being subtracted the
value of "3600°. The rationale behind this subtraction should be explained in a comment that
precedes the line. Additionally, different code paths execute in case the current time is within

the range of the subtracted "3600".

This range should instead become a variable as Ethereum block times vary greatly and in case
of a substantial increase in difficulty, a change in the way blocks are produced or any number of
codebase changes that are expected to be made in the Ethereum blockchain could affect the

window this function is executable in, if at all.

Recommendations:

We advise the team adds proper documentation specifying the purpose of the linked number.

Alleviations:

The team opted to add a descriptive “constant’ variable name.

93

Exhibit 82

TITLE TYPE SEVERITY LOCATION

LoanClosings.sol:
Ungrouped Calculations Coding Style Informational L303-L306, L323-L328,
L943-L949

[INFORMATIONAL] Description:
As "SafeMath’ invocations can be chained, the linked statements can occur in a single

assignment by chaining the various operations.

Recommendations:

We advise the team to change the code block, as described above.

Alleviations:

No alleviations.

94

Exhibit 83
TITLE TYPE SEVERITY LOCATION
LoanClosings.sol: L257,
Time Units & Magic Numbers Coding Style Informational L2917, L300, L310, L315,
L327

[INFORMATIONAL] Description:

Overall, magic numbers should be stored in the form of “constant’ contract variables as the
generated bytecode would be equivalent to its current state and simply aid in the legibility of the
codebase. As the loans rely on multiple time-based concepts, it would be wise to instead use
the [time
units](https://solidity.readthedocs.io/en/v0.5.17/units-and-global-variables.html#time-units)

readily available by Solidity to greatly aid in the legibility of the codebase.

We should note that decimal denominations are also acceptable i.e. "30.45 days™ as the

compiler takes care of converting them to the corresponding integer representations.

On a final note, as this exhibit is slightly uniform across the codebase a singular contract could
be created that simply declares the time units as "constant’ variables and is subsequently
inherited wherever they are necessary. This would pose no bytecode overhead and would

greatly optimize the codebase as for example "UNIX_DAY" is much more readable than '86400".

95

Recommendations:
We will not replay this exhibit in other contracts, however it does apply and a common

inheritance chain should be defined.

Alleviations:

The team opted to change the codebase according to our references.

96

Exhibit 84
TITLE TYPE SEVERITY LOCATION
. . LoanClosings.sol:
Potentially Unwanted “throw Volatile Code | Informational
L322-1323

[INFORMATIONAL] Description:
If a loan's ‘'maxDuration” is smaller than the delta that has passed since
loanLocal.endTimestamp™ and “block.timestamp’ while “block.timestamp’ is less than

‘loanLocal.endTimestamp + 3600 the linked lines will throw due to the "SafeMath’ subtraction

invocation.

Recommendations:

We advise the team to evaluate whether or not this is intended.

Alleviations:

No alleviations.

97

Exhibit 85

TITLE

TYPE

SEVERITY

LOCATION

Duplicate Subtraction

Optimization

Informational

LoanClosings.sol:
L340-L350

[INFORMATIONAL] Description:

In the linked lines the function "_doCollateralSwap’ is called by passing a pointer to the “storage’

of "loanLocal’. The "sourceTokenAmountUsed" is subtracted in both "_doCollateralSwap™ here

as well as on the linked lines in the caller function, meaning that the value will incorrectly be

subtracted twice.

Recommendations:

We advise one of the subtractions is removed.

Alleviations:

The team opted to change the codebase according to our references.

98

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanMaintenance.sol#L597-L598

Exhibit 86
TITLE TYPE SEVERITY LOCATION
LoanClosings.sol:
Gas Rebate Lock Coding Style Minor
L362-L.377

[MINOR] Description:

The linked lines are meant to rebate the high gas cost of the function by transmitting some
tokens to the caller, the transaction itself costing some gas as well. The core issue with this
function is that it would perform correctly under optimal circumstances, however a malfunction
in the price feed of the gas price or an exceptionally high gas price would render this function

non-invocable due to a very high rebate fee.

Recommendations:
We advise that either the rebate system is revamped or that the if conditional also ensures
enough collateral exists to rebate instead of conducting a "SafeMath” subtraction invocation

that may halt execution.

Alleviations:

The team opted to change the codebase according to our references.

99

Exhibit 87
TITLE TYPE SEVERITY LOCATION
) . LoanClosings.sol:
Redundant "SafeMath’ Invocation Optimization Informational
L442-1.443

[INFORMATIONAL] Description:

The statements that precede the code block ensure that the subtraction will never underflow

and thus the "SafeMath’ invocation is redundant.

Recommendations:

We advise the “SafeMath’” invocation is removed.

Alleviations:

The team opted to change the codebase according to our references.

100

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanClosings.sol#L431-L437

Exhibit 88
TITLE TYPE SEVERITY LOCATION
LoanClosings.sol:
Redundant Assignment Optimization Informational
L502-L506, L763

[INFORMATIONAL] Description:
All values in Solidity obtain a default value on instantiation usually equal to zero. Thus, a
consequent assignment of zero to an already initialized variable is unnecessary and the linked

code block can be omitted.

Recommendations:

We advise the team to remove redundant code.

Alleviations:

The team opted to change the codebase according to our references.

101

Exhibit 89

TITLE

TYPE

SEVERITY

LOCATION

Redundant Conditional

Optimization

Informational

LoanClosings.sol:
L638-L645

[INFORMATIONAL] Description:

The conditional ensures that the subtraction of L633 yields a non-zero value. This means that it

essentially guarantees that “interestRefundToBorrower" is greater-than (*>") the value of

‘loanCloseAmountLessinterest’.

Recommendations:

As this is always true due to the conditional of the outer "if* clause on L619, the "if clause can

be safely removed as “interestRefundToBorrower will always be non-zero.

Alleviations:

The team opted to change the codebase according to our references.

102

Exhibit 90
TITLE TYPE SEVERITY LOCATION
Potentially Redundant Utilization of o) LoanClosings.sol:
Optimization Informational
Assembly L841-L856

[INFORMATIONAL] Description:
The rationale behind utilizing a “staticcall” instead of wrapping the "address’ to the provided

‘IPriceFeeds’ interface and invoking the function directly should be relayed to us.

Recommendations:

We advise the team to remove redundant code.

Alleviations:

No alleviations.

103

Exhibit 91

TITLE TYPE SEVERITY LOCATION

LoanMaintenance.sol:

Fallback Paradigm Optimization Informational
L39-L43

[INFORMATIONAL] Description:
The current fallback function implementation ‘revert's to prevent any type of Ethereum transfer
to the contract. This paradigm was deployed pre-v0.4.0 because a contract would be able to

receive and essentially lock Ethereum as part of regular transfers.

After v0.4.0, a contract automatically throws if no fallback function is provided and as such the

linked code can simply be omitted if the desire is to prevent Ether transfers to the contract.

The warning of the linked Solidity docs should be kept in mind whereby a contract is still able to

receive Ether either from a “selfdestruct’ operation or a block reward.

Recommendations:

We advise the team to remove redundant code.

Alleviations:

The team opted to change the codebase according to our references.

104

https://solidity.readthedocs.io/en/v0.5.17/contracts.html#fallback-function

Exhibit 92

TITLE

TYPE

SEVERITY

LOCATION

Struct Optimization

Optimization

Informational

LoanMaintenance.sol:

L19-L35

[INFORMATIONAL] Description:

The variable "endTimestamp™ can safely be grouped with an "address™ declaration as a unix

timestamp, even on contemporary systems, has at most 64-bits of precision and an "address’

leaves up 96 bits that could be utilized by the unix timestamp to store it in a single “storage’ slot

reducing the number of words the “struct™ occupies by one.

Recommendations:

We advise the team to change the data type of variable "endTimestamp’ to "uint64".

Alleviations:

The team opted to change the codebase according to our references.

105

Exhibit 93
TITLE TYPE SEVERITY LOCATION
) o) LoanMaintenance.sol:
Provide Error Message Optimization Informational
L127-L128

[INFORMATIONAL] Description:
This "SafeMath” subtraction will fail in case the withdrawal amount requested is greater than the

amount of available collateral.

Recommendations:

We advise a proper error message is provided as this is a likely scenario.

Alleviations:

The team opted to change the codebase according to our references.

106

Exhibit 94

TITLE

TYPE

SEVERITY

LOCATION

Ungrouped Conditional

Optimization

Informational

LoanMaintenance.sol:
L250-L256, L331-L337

[INFORMATIONAL] Description:

Instead of conducting assignments past the first ‘require’ clause, a ‘&& conditional pair could

be used whereby the second conditional simply subtracts “block.timestamp™ and evaluates the

second ‘require’ conditional. This is possible because if the first conditional of the pair

evaluates to ‘true’ any "SafeMath’ utilization will be redundant as the subtraction will never

underflow.

Recommendations:

We advise the team to change the ‘require’ statement, as described.

Alleviations:

The team opted to change the codebase according to our references.

107

Exhibit 95
TITLE TYPE SEVERITY LOCATION
LoanMaintenance.sol:
Code Block Optimization Optimization Informational
L441-L463, L492-L.514

[INFORMATIONAL] Description:
The linked code block can be greatly optimized. First, the "LoanReturnData[] array instantiation
should have a length of “‘count.min256(set.values.length) rather than simply “count™ as an

‘assembly” "hack" is utilized to manually reduce the size here.
Secondly, instead of retaining a separate ‘itemCount’ variable it would be possible to instead
decrement the “count’ variable until it reaches zero and utilize “loansData.length - count™ as the

index in the assignment instead of “itemCount’.

Finally, the loop conditionals as well as the location the _i" variable is utilized can be adjusted to

not require an addition and subtraction on each iteration by adjusting the ends of the “for™ loop,
i.e. have i start at 'end - 1" instead of “end - start” and convert the conditional from i >0 to 'i >
start- 1.

The logic would be equivalent whilst the gas cost will be reduced.

Although the linked blocks concern exhibit A, the same optimizations can be applied in exhibit

108

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanMaintenance.sol#L460-L462
https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanMaintenance.sol#L443
https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanMaintenance.sol#L448
https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanMaintenance.sol#L441-L463
https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanMaintenance.sol#L492-L514
https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanMaintenance.sol#L492-L514

Recommendations:

We advise the team to change the code block as described above.

Alleviations:

The team opted to change the codebase according to our references.

109

Exhibit 96

TITLE

TYPE

SEVERITY

LOCATION

“if” Block Optimization

Optimization

Informational

LoanMaintenance.sol:
L528-L535

[INFORMATIONAL] Description:

The convoluted "if block can be greatly optimized into two conditionals. As “loanType™ can only

be "0, "1" or '2" the conditional can be simplified to a single "if* clause with the expression

‘(loanType == 1 && loanParamsLocal.maxLoanTerm == 0) || (loanType == 2 &&

loanParamsLocal.maxLoanTerm != 0)".

Additionally, as "loanType’ can only hold 3 values it would be wise to use an ‘enum’ instead.

Recommendations:

We advise the team to change the code block as described above.

Alleviations:

The team opted to change the codebase according to our references.

110

Exhibit 97

TITLE TYPE SEVERITY LOCATION

LoanOpenings.sol:

Fallback Paradigm Optimization Informational
L20-L24

[INFORMATIONAL] Description:
The current fallback function implementation ‘revert's to prevent any type of Ethereum transfer
to the contract. This paradigm was deployed pre-v0.4.0 because a contract would be able to

receive and essentially lock Ethereum as part of regular transfers.

After v0.4.0, a contract automatically throws if no fallback function is provided and as such the

linked code can simply be omitted if the desire is to prevent Ether transfers to the contract.

The warning of the linked Solidity docs should be kept in mind whereby a contract is still able to

receive Ether either from a “selfdestruct’ operation or a block reward.

Recommendations:

We advise the team to remove redundant code.

Alleviations:

The team opted to change the codebase according to our references.

111

https://solidity.readthedocs.io/en/v0.5.17/contracts.html#fallback-function

Exhibit 98
TITLE TYPE SEVERITY LOCATION
. . LoanOpenings.sol:
Inefficient “return’ Variable Optimization Informational
L468-L536

[INFORMATIONAL] Description:

As the function "_initializeLoan is called once here, it would be possible to return a “storage’

pointer directly instead of an ID that is subsequently looked up again in the ‘'mapping’.

Recommendations:

We advise the team to change the code statement, as described.

Alleviations:

The team opted to change the codebase according to our references.

112

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanOpenings.sol#L247-L255

Exhibit 99
TITLE TYPE SEVERITY LOCATION
Redundant “abi.encodePacked" LoanOpenings.sol:
Optimization Informational
Utilization L487-L492

[INFORMATIONAL] Description:

All variables included in the “abi.encodePacked’ invocation cannot be packed under a single
256-bit slot and as such, the invocation is equivalent to "abi.encode’ which is more gas efficient.
Additionally, when calculating hashes as identifiers it is wise to utilize "abi.encode’ instead of
“abi.encodePacked” as unaccounted-for tight packs can lead to the same ID being generated

with different input variables.

Recommendations:

We advise the team to favor utilizing "abi.encode’ over "abi.encodePacked'.

Alleviations:

No alleviations.

113

Exhibit 100

TITLE TYPE SEVERITY LOCATION

Fallback Paradigm Optimization Informational LoanSettings.sol: L17-L21

[INFORMATIONAL] Description:
The current fallback function implementation ‘revert's to prevent any type of Ethereum transfer
to the contract. This paradigm was deployed pre-v0.4.0 because a contract would be able to

receive and essentially lock Ethereum as part of regular transfers.

After v0.4.0, a contract automatically throws if no fallback function is provided and as such the

linked code can simply be omitted if the desire is to prevent Ether transfers to the contract.

The warning of the linked Solidity docs should be kept in mind whereby a contract is still able to

receive Ether either from a “selfdestruct’ operation or a block reward.

Recommendations:

We advise the team to remove redundant code.

Alleviations:

The team opted to change the codebase according to our references.

114

https://solidity.readthedocs.io/en/v0.5.17/contracts.html#fallback-function

Exhibit 101
TITLE TYPE SEVERITY LOCATION
LoanSettings.sol:
Code Block Optimization Optimization Informational
L112-L126

[INFORMATIONAL] Description:
The linked code block can be greatly optimized. First, the "LoanReturnData[] array instantiation
should have a length of “‘count.min256(set.values.length) rather than simply “count™ as an

‘assembly” "hack" is utilized to manually reduce the size here.
Secondly, instead of retaining a separate ‘itemCount’ variable it would be possible to instead
decrement the “count’ variable until it reaches zero and utilize “loansData.length - count™ as the

index in the assignment instead of “itemCount’.

Finally, the loop conditionals as well as the location the _i" variable is utilized can be adjusted to

not require an addition and subtraction on each iteration by adjusting the ends of the “for™ loop,
i.e. have i start at 'end - 1" instead of “end - start” and convert the conditional from i >0 to 'i >

start-1".

The logic would be equivalent whilst the gas cost will be reduced.

115

https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanSettings.sol#L123-L125
https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanSettings.sol#L114
https://github.com/bZxNetwork/contractsV2/blob/471dce9bbbf4f8204c0fb5a13a8f9c38babd502e/contracts/modules/LoanSettings.sol#L118

Recommendations:

We advise the team to change the code block as described above.

Alleviations:

The team opted to change the codebase according to our references.

116

Exhibit 102
TITLE TYPE SEVERITY LOCATION
Redundant “abi.encodePacked" LoanSettings.sol:
Optimization Informational
Utilization L144-L151

[INFORMATIONAL] Description:

All variables included in the “abi.encodePacked’ invocation cannot be packed under a single
256-bit slot and as such, the invocation is equivalent to "abi.encode’ which is more gas efficient.
Additionally, when calculating hashes as identifiers it is wise to utilize "abi.encode’ instead of
“abi.encodePacked” as unaccounted-for tight packs can lead to the same ID being generated

with different input variables.

Recommendations:

We advise the team to favor utilizing "abi.encode’ over "abi.encodePacked'.

Alleviations:

The team opted to change the codebase according to our references.

117

Exhibit 103

TITLE TYPE SEVERITY LOCATION

ProtocolSettings.sol:

Fallback Paradigm Optimization Informational
L20-L24

[INFORMATIONAL] Description:
The current fallback function implementation ‘revert's to prevent any type of Ethereum transfer
to the contract. This paradigm was deployed pre-v0.4.0 because a contract would be able to

receive and essentially lock Ethereum as part of regular transfers.

After v0.4.0, a contract automatically throws if no fallback function is provided and as such the

linked code can simply be omitted if the desire is to prevent Ether transfers to the contract.

The warning of the linked Solidity docs should be kept in mind whereby a contract is still able to

receive Ether either from a “selfdestruct’ operation or a block reward.

Recommendations:

We advise the team to remove redundant code.

Alleviations:

The team opted to change the codebase according to our references.

118

https://solidity.readthedocs.io/en/v0.5.17/contracts.html#fallback-function

Exhibit 104

TITLE TYPE SEVERITY LOCATION

Invalid ‘require’ Message Coding Style Informational ProtocolSettings.sol: L94

[INFORMATIONAL] Description:
The ‘require’ conditional ensures that either an addition or removal of a pool "address’ is being
done in the particular loop iteration yet the error message implies that the pool simply does not

exist which is not the case for the first part of the "OR" conditional.

Recommendations:

We advise the message be adapted to better represent the check imposed here.

Additionally, we would advise an additional check whereby, in case of an addition, it is ensured

that the pool hasn't been added in the past as it would be overwriting storage.

Alleviations:

The team opted to change the codebase according to our references.

119

Exhibit 105

TITLE TYPE SEVERITY LOCATION

SwapsExternal.sol:

Fallback Paradigm Optimization Informational
L20-L24

[INFORMATIONAL] Description:
The current fallback function implementation ‘revert's to prevent any type of Ethereum transfer
to the contract. This paradigm was deployed pre-v0.4.0 because a contract would be able to

receive and essentially lock Ethereum as part of regular transfers.

After v0.4.0, a contract automatically throws if no fallback function is provided and as such the

linked code can simply be omitted if the desire is to prevent Ether transfers to the contract.

The warning of the linked Solidity docs should be kept in mind whereby a contract is still able to

receive Ether either from a “selfdestruct’ operation or a block reward.

Recommendations:

We advise the team to remove redundant code.

Alleviations:

The team opted to change the codebase according to our references.

120

https://solidity.readthedocs.io/en/v0.5.17/contracts.html#fallback-function

Exhibit 106

TITLE TYPE SEVERITY LOCATION

Inefficient “require’ Location Optimization Informational SwapsExternal.sol: L55

[INFORMATIONAL] Description:
The ‘require’ statement could instead be relocated to an “else’ branch of the preceding "if’

clause as the logical check is redundant if the "if’ clause evaluates to “true’.

Recommendations:

We advise the team to change the relevant code, as described above.

Alleviations:

The team opted to change the codebase according to our references.

121

