
Celer Network
Security Assessment

October 23rd, 2020

For :

Celer Network

Disclaimer
CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team.
These reports are not, nor should be considered, an indication of the economics or value of any “product” or “asset”
created by any team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal
compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any
particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice
of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their
code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each
company and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help
reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing
technologies, and in no way claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?
A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK
by a Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation
and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the intention to increase
the quality of the company/product's IT infrastructure and or source code.

Project Name Celer Network

Description The code-base comprise DPoS contract, State Guardian Network
(SGN) contract, Example ERC-20 token implementation and library
contracts to decode protobuf encoded data. DPoS contract act as a
single point to manage all operations of validators, delegators and
sidechain contracts such as SGN.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commit 4e8ef997047c17e35c6194716d423709fe6e8371

Delivery Date Oct 23, 2020

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline Oct. 05, 2020 - Oct. 10 2020

Total Issues 49

Total Critical 0

Total Major 0

Total Minor 3

Total Informational 46

Overview

Project Summary

Audit Summary

Vulnerability Summary

https://www.celer.network/
https://github.com/celer-network/sgn-contract/tree/master/contracts
https://github.com/celer-network/sgn-contract/tree/4e8ef997047c17e35c6194716d423709fe6e8371

Executive Summary
The codebase comprise of contracts implementing logic for operations related to Celer sidechain. The contracts
make use of OpenZeppelin contracts to implement ERC20 token, pausable, whitelisting and ownable
functionalities.
All of the contracts in repository were reviewed and majority of the findings are informational for enhancing the
optimization and code legibility of the contracts.

ID Title Type Severity

GEX-01 Unlocked Compiler Version Compiler Version Informational

GOV-01 Inefficient usage of
SafeMath

Optimization Informational

GOV-02 Missing check for the valid
input

Code Legibility Informational

GOV-03 Substitution of require calls
with Modifier

Coding Style Informational

GOV-04 Substitution of require calls
with Modifier

Coding Style Informational

GOV-05 Substitution of require calls
with Modifier

Coding Style Informational

GOV-06 Incorrect order of functions Language Specific Informational

GOV-07 Storage Updated after
External Call

External Interaction Informational

GOV-08 Storage Updated after
External Call

External Interaction Informational

GOV-09 Function visibility can be
changed to external

Language Specific Informational

SGN-01 Ineffectual Library import
and declaration

Coding Style Informational

SGN-02 Variable not named in
camel case

Coding Style Informational

SGN-03 Spelling Error Comment Informational

SGN-04 Potentially Incorrect Error
Message

Coding Style Informational

SGN-05 Incorrect Comparison Implementation Minor

SGN-06 Ability of Owner to
withdraw at Will

Code Legibility Informational

Findings

ID Title Type Severity

PBU-01 Usage of uint alias
instead of uint256

Coding Style Informational

PBU-02 Redundant initialization with
default value

Optimization Informational

PBU-03 Potential Overflow of bytes
Array

Array Overflow Minor

PBU-04 Inexistence of reason in
Require Statements

Coding Style Informational

PGN-01 Usage of uint alias
instead of uint256

Coding Style Informational

PGN-02 Ineffectual if statement Optimization Informational

DPS-01 TODO comment Comment Informational

DPS-02 Spelling Error Comment Informational

DPS-03 Redundant State Variable Optimization Informational

DPS-04 Spelling Error Comment Informational

DPS-05 Ability of Owner to withdraw
at Will

Code Legibility Informational

DPS-06 Inefficient use of local
variable

Optimization Informational

DPS-07 Inefficient use of local
variable

Optimization Informational

DPS-08 Substitution of require calls
with Modifier

Coding Style Informational

DPS-09 Redundant initialization with
default value

Optimization Informational

DPS-10 Redundant initialization with
default value

Optimization Informational

ID Title Type Severity

DPS-11 Confusing Variable Name Code Legibility Informational

DPS-12 require statement can be
substituted with a function

Coding Style Informational

DPS-13 require statement can be
substituted with a function

Code Legibility Informational

DPS-14 Inexistence of reason in
Require Statements

Coding Style Informational

DPS-15 Missing check for the valid
input

Coding Style Informational

DPS-16 Usage of ether instead of
Decimals Multiplier

Code Legibility Informational

DPS-17 Inefficient Code Optimization Informational

DPS-18 Potentially Incorrect
Comparison

Code Legibility Informational

DPS-19 Potentially Incorrect
Implementation

Code Legibility Minor

DPS-20 Usage of storage Variable
Instead of memory

Optimization Informational

DPS-21 Inefficient storage Read Optimization Informational

DPS-22 Inefficient Code Optimization Informational

DPS-23 Inefficient use of local variable Optimization Informational

DPS-24 Function visibility can be
changed to external

Language Specific Informational

CER-01 Can be declared constant
and use uint256 instead of
alias uint

Optimization Informational

DPC-01 Spelling Error Comment Informational

DPC-02 Grammar Error Comment Informational

Type Severity Location

Compiler Version Informational All Contracts

pragma solidity 0.5.0;

GEX-01: Unlocked Compiler Version

Description:
The contracts have unlocked compiler versions. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of multiple
compiler versions rather than a specific one.

Recommendation:
We advise that the compiler version is instead locked at the lowest version possible that the contracts can be
compiled at f.e. the contracts can be safely locked at v0.5.0.

Alleviation:
Alleviations were applied as advised

Type Severity Location

Optimization Informational Govern.sol L137, L151, L219, L233

//L137 nextParamProposalId = nextParamProposalId.add(1);
// TO
nextParamProposalId = nextParamProposalId + 1;

//L151 nextParamProposalId.sub(1),
// TO
nextParamProposalId - 1,

//L219 nextSidechainProposalId = nextSidechainProposalId.add(1);
// TO
nextSidechainProposalId = nextSidechainProposalId + 1;

//L233 nextSidechainProposalId.sub(1),
// TO
nextSidechainProposalId - 1,

GOV-01: Inefficient usage of SafeMath

Description:
The Addition and Subtraction operations on the aforementioned lines do not depend upon the values received
outside of the contract and hence their chances of oveflowing or underflowing are neglibible considering a
uint256 can store a large enough value for their use cases. These operations can be safely performed without
SafeMath which will save the additional gas cost associated with Safe Addition and Safe Subtraction without

comprising the security of the contract.

Recommendation:
We advise that the SafeMath library usage on the aforementioned lines be replaced with UnSafe Addition and
Subtraction.

We advise following changes for the code.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Code Legibility Informational Govern.sol L167, L249

require(
 _vote != VoteType.UnVoted,
 "_vote cannot be Unvoted"
);

GOV-02: Missing check for the valid input

Description:
The functions on the aforementioned lines has parameter _vote of type VoteType . The code does not have a
check against a VoteType value of VoteType.UnVoted , which if passed would successfully execute the
transaction without changing the state of the vote.

Recommendation:
We recommend that a require statement is added in the functions on aforementioned lines to check against
VoteType.Unvoted value of parameter _vote .

We advise following changes for the code.

Alleviation:
Client suggested that Vote is allowed to be overwritten to Unvoted state by the voter and hence the exhibit was not
applicable.

Type Severity Location

Coding Style Informational Govern.sol L173, L190, L255, L272

modifier isVoting(uint256 _proposalId) {
 require(
 paramProposals[_proposalId].status == ProposalStatus.Voting,
 'Invalid proposal status'
);
 _;
}
// Usage
function () internal isVoting(_proposalId) {...}

GOV-03: Substitution of require calls with Modifier

Description:
The require statement on the aforementioned lines can be converted into a modifier to avoid code duplication and
increase the legibility of the code.

Recommendation:
We recommend that a require statement on the aforementioned lines be converted into a modifier and used
instead, in their respective function signatures.

We advise following changes for the code.

Alleviation:
Client chose not to apply alleviation stating that proposals are different and duplication is not significant enough.

Type Severity Location

Coding Style Informational Govern.sol L256, L174

modifier deadlineNotReached(uint256 _proposalId) {
 require(
 block.number < paramProposals[_proposalId].voteDeadline,
 'Vote deadline reached'
);
 _;
}
// Usage
function () internal deadlineNotReached(_proposalId) {...}

GOV-04: Substitution of require calls with Modifier

Description:
The require statement on the aforementioned lines can be converted into a modifier to avoid code duplication and
increase the legibility of the code.

Recommendation:
We recommend that a require statement on the aforementioned lines be converted into a modifier and used
instead, in their respective function signatures.

We advise following changes for the code.

Alleviation:
Client chose not to apply alleviation stating that proposals are different and duplication is not significant enough.

Type Severity Location

Coding Style Informational Govern.sol L175, L257

modifier alreadyNotVoted(uint256 _proposalId) {
 require(
 paramProposals[_proposalId].votes[_voter] == VoteType.Unvoted,
 'Voter has voted'
);
 _;
}
// Usage
function () internal alreadyNotVoted(_proposalId) {...}

GOV-05: Substitution of require calls with Modifier

Description:
The require statement on the aforementioned lines can be converted into a modifier to avoid code duplication and
increase the legibility of the code.

Recommendation:
We recommend that a require statement on the aforementioned lines be converted into a modifier and used
instead, in their respective function signatures.

We advise following changes for the code.

Alleviation:
Client chose not to apply alleviation stating that proposals are different and duplication is not significant enough.

Type Severity Location

Language Specific Informational Govern.sol

constructor
fallback function (if exists)
external
public
internal
private

GOV-06: Incorrect order of functions

Description:
The structure of the codebase does not conform to the official Solidity style guide of v0.5.x .

Recommendation:
An indicative excerpt of the style guide is that functions should be grouped according to their visibility and ordered:

Within a grouping, place the view and pure functions last.

Alleviation:
No alleviations.

Type Severity Location

External Interaction Informational Govern.sol L195-L196

if (_passed) {
 UIntStorage[p.record] = p.newValue;
 governToken.safeTransfer(p.proposer, p.deposit);
}

GOV-07: Storage Updated after External Call

Description:
The code on the aforementioned lines update storage after making an external call which violates the checks-
effects-interactions pattern and poses threat for reentrancy attack.

Reference the Check Effects Interactions pattern:
https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

Recommendation:
We advise that the code be rectified to make storage changes first before making an external.

We advise following changes for the code.

Alleviation:
No alleviations.

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

Type Severity Location

External Interaction Informational Govern.sol L277-L278

if (_passed) {
 registeredSidechains[p.sidechainAddr] = p.registered;
 governToken.safeTransfer(p.proposer, p.deposit);
}

GOV-08: Storage Updated after External Call

Description:
The code on the aforementioned lines update storage after making an external call which violates the checks-
effects-interactions pattern and poses threat for reentrancy attack.

Reference the Check Effects Interactions pattern:
https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

Recommendation:
We advise that the code be rectified to make storage changes first before making an external.

We advise following changes for the code.

Alleviation:
No alleviations.

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

Type Severity Location

Language Specific Informational Govern.sol L135, L217

GOV-09: Function vibility can be changed to external

Description:
The functions on the aforementioned lines are never called from within the contract and hence their visibilities can be
changed to external .

Recommendation:
We recommend to change the visibilites of function on the aforementioned lines to external

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Coding Style Informational SGN.sol L6, L22

SGN-01: Ineffectual Library import and declaration

Description:
The library ECDSA is imported and declared but is never used in the contract. The import and declaration on the
aforementioned lines can be safely removed.

Recommendation:
We advise that the import and declaration of library ECDSA on the aforementioned lines be removed.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Coding Style Informational SGN.sol L25

SGN-02: Variable not named in camelCase

Description:
The state variable DPoSContract of type IDPoS is not named in camelCase which violates the best coding
practices of Solidity.

Recommendation:
We advise that the variable DPoSContract be renamed to dPoSContract and used in all of the occurences in the
contract.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Comment Informational SGN.sol L52

SGN-03: Spelling Error

Description:
The comment on the aforementioned line has a spelling error in the word Owner .

Recommendation:
We advise that the spellings error is corrected on the aforementioned line.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Coding Style Informational SGN.sol L106

SGN-04: Potentially Incorrect Error Message

Description:
The error message on the aforementioned line has a potentially incorrect error message Fail to check
validator sigs which implies that the operation of validating signatures itself failed to initiate. The require
statement throws when the signatures are invalid and as such the error message should highlight it.

Recommendation:
We advise that the error message be changed to validator sigs verification failed .

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Implementation Minor SGN.sol L115

require(
 servicePool >= newServiceReward,
 'Service pool is smaller than new service reward'
);

SGN-05: Incorrect Comparison

Description:
The require statement on the aforementioned line checks against that the servicePool should always be
greater than newServiceReward which will result in not being able to claim all of funds specified by servicePool .

Recommendation:
We advise that the conditional in the require statement be changed to greater-than-or-equal so that all the
funds in servicePool are claimable.

We advise following changes for the code.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Code Legibility Informational SGN.sol L56

SGN-06: Ability of Owner to withdraw at Will

Description:
The function on the aforementioned line allows the owner of contract to withdraw celerToken funds at will.
Although, it does not compromise the security of the system in any way but the owner has to be trusted to maintain
the funds of the contract.

Recommendation:
There are no recommendations for this exhibit.

Alleviation:
No alleviations were needed.

Type Severity Location

Coding Style Informational Pb.sol

PBU-01: Usage of uint alias instead of uint256

Description:
The library is using uint to declare 256-bit unsigned integers. Although, uint is an alias for uint256 and both
represent the same underlying integer allocation. It is advisable that for clean coding practices the complete form
uint256 should be used instead of the alias uint .

Recommendation:
We advise to use uint256 instead of alias uint in all of the occurrences in the contract.

Alleviation:
Alleviations were optional and client chose not to apply the alleviations as the code was auto-generated.

Type Severity Location

Optimization Informational Pb.sol L15, L98

PBU-02: Redundant initialization with default value

Description:
The aforementioned lines declare variables of type uint256 and initialize it with 0 . In Solidity, all un-initialized
variables have a default value which for the uint256 variable is 0 , hence the initialization part is redundant and
can be removed.

Recommendation:
We recommend that the explicit initialization of type uin256 with default value 0 be removed as it is redundant.

Alleviation:
Alleviations were partly applied as alleviation was not applied on L15 .

Type Severity Location

Array Overflow Minor Pb.sol L72-L73, L93-L94, L115-L116

uint256 end = buf.idx.add(len);
require(end < buf.b.length) // end is `idx`

PBU-03: Potential Overflow of bytes Array

Description:
The addition of idx and len is Unsafe and can potentially overflow resulting in the followed require check
potentially passing despite the overflow.
Additionally, The require statements on the aforementioned lines check against that the current read index idx
should not exceed the length of buf , which is of type bytes . As the idx starts from 0 and the length of buf
starts from 1 , if in any case idx is equal to length of buf , the require statement evaluates to true and the
memory read in that case would not be a part of buf as the idx would have oveflown.

Recommendation:
We advise that the SafeMath library be used for the Safe addition of idx and len and the conditional in
require statements changed from less-than-or-equal-to to less-than .

We advise following changes for the code.

Alleviation:
Client suggested that vector for overflow is negligible as the end is not used for current read, but points to the next
read start index. There is also a hasMore() function to decide whether a next read should happen. No alleviations.

Type Severity Location

Coding Style Informational Pb.sol L73, L94, L116, L126, L136,
L142

PBU-04: Inexistence of reason in Require Statements

Description:
The require statements on the aforementioned lines do not specify reason string . The reason string s
should be provided to require statements to aid debugging and readability of the code.

Recommendation:
We advise that the reason string s be added to the require statements on the aforementioned lines.

Alleviation:
Alleviations were optional and client chose not to apply the alleviations as the code was auto-generated.

Type Severity Location

Coding Style Informational PbSgn.sol

PGN-01: Usage of uint alias instead of uint256

Description:
The library is using uint to declare 256-bit unsigned integers. Although, uint is an alias for uint256 and both
represent the same underlying integer allocation. It is advisable that for clean coding practices the complete form
uint256 should be used instead of the alias uint . As the comment at the top of library indicates that it is a code

generated library and the rectification may require changes in the tool used to generate this library. The exhibit is
informational and can be safely ignored.

Recommendation:
We advise to use uint256 instead of alias uint in all of the occurrences in the contract.

Alleviation:
Alleviations were optional and client chose not to apply the alleviations as the code was auto-generated.

Type Severity Location

Optimization Informational PbSgn.sol L25, L114, L148, L172

PGN-02: Ineffectual if statement

Description:
The if statements on the aforementioned lines have hardcoded false conditional as predicate which makes the
if statement and its block ineffectual. As the comment at the top of library indicates that it is a code generated

library and the rectification may require changes in the tool used to generate this library. The exhibit is
informational and can be safely ignored.

Recommendation:
We recommend to remove the if clause from the aforementioned lines and converting the following else-if
clause to if clause.

Alleviation:
Alleviations were optional and client chose not to apply the alleviations as the code was auto-generated.

Type Severity Location

Comment Informational DPoS.sol L68

DPS-01: TODO comment

Description:
The aforementioned line has a TODO which we advise that be removed from code.

Recommendation:
We advise the removal of TODO comment on the aforementioned line.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Comment Informational DPoS.sol L142

DPS-02: Spelling Error

Description:
The aforementioned line has a spelling error for the word creation .

Recommendation:
We advise that the spelling of creation be corrected on the aforementioned line.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Optimization Informational DPoS.sol L167

DPS-03: Redundant State Variable

Description:
The variable celerToken on the aforementioned line is initialized with the same address as governToken variable
in the parent Govern contract on L71 . As both the variables are initialized with the same ERC-20 token address,
one of them can removed to save gas costs associated with additional storage slot and to avoid the duplicate code to
achieve code legibility.

Recommendation:
We advise that the state variable celerToken is removed from the DPoS contract and instead governToken
variable inherited from Govern contract be used in all of the occurrences of celerToken in the DPoS contract.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Comment Informational DPoS.sol L189

DPS-04: Spelling Error

Description:
The comment on the aforementioned line has spelling error for the word Owner .

Recommendation:
We advise that the spelling of word Owner are corrected on the aforementioned line.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Code Legibility Informational DPoS.sol L189

DPS-05: Ability of Owner to withdraw at Will

Description:
The function on the aforementioned line allows the owner of contract to withdraw celerToken funds at will.
Although, it does not compromise the security of the system in any way but the owner has to be trusted to maintain
the funds of the contract.

Recommendation:
There are no recommendations for this exhibit.

Alleviation:
No alleviations were needed for this exhibit.

Type Severity Location

Optimization Informational DPoS.sol L214

// Usage
for (uint256 i = 0; i < getUIntValue(uint256(ParamNames.MaxValidatorNum)); i++) {...}

DPS-06: Inefficient use of local variable

Description:
The declaration of local variable on the aforementioned line is inefficient as the variable is never used at more than
one places. The gas cost associated with local variable declaration can be saved by using the initialization part
directly in place of the declared local variable.

Recommendation:
We advise that the initialization part of the local variable declaration be directly used in place of the local variable.

We advise following changes for the code.

Alleviation:
The exhibit was ignored as it was incorrectly identified.

Type Severity Location

Optimization Informational DPoS.sol L248

// Usage
for (uint256 i = 0; i < getUIntValue(uint256(ParamNames.MaxValidatorNum)); i++) {...}

DPS-07: Inefficient use of local variable

Description:
The declaration of local variable on the aforementioned line is inefficient as the variable is never used at more than
one places. The gas cost associated with local variable declaration can be saved by using the initialization part
directly in place of the declared local variable.

Recommendation:
We advise that the initialization part of the local variable declaration be directly used in place of the local variable.

We advise following changes for the code.

Alleviation:
The exhibit was ignored as it was incorrectly identified.

Type Severity Location

Coding Style Informational DPoS.sol L204, L238

modifier onlyValidator() {
 require(
 isValidator(msgSender),
 'msg sender is not a validator'
);
 _;
}
// Usage
function voteParam(uint256 _proposalId, VoteType _vote) external onlyValidator {...}
function voteSidechain(uint256 _proposalId, VoteType _vote) external onlyValidator {...}

DPS-08: Substitution of require calls with Modifier

Description:
The require statements on the aforementioned lines can be converted to a modifier to avoid code duplication and
increase legibility of the code.

Recommendation:
We advise that the require statements on the aforementioned lines be converted to a modifier.

We advise following changes for the code.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Optimization Informational DPoS.sol L217, L251, L424, L537,
L543, L577, L610, L678, L790,
L926

DPS-09: Redundant initialization with default value

Description:
The aforementioned lines declare variables of type uint256 and initialize it with 0 . In Solidity, all un-initialized
variables have a default value which for the uint256 variable is 0 , hence the initialization part is redundant and
can be removed.

Recommendation:
We recommend that the explicit initialization of type uin256 with default value 0 be removed as it is redundant.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Optimization Informational DPoS.sol L927

DPS-10: Redundant initialization with default value

Description:
The aforementioned line declares variablesof type bool and initialize it with false . In Solidity, all un-initialized
variables have a default value which for the bool variable is false , hence the initialization part is redundant and
can be removed.

Recommendation:
We recommend that the explicit initialization of type bool with default value false be removed as it is redundant.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Code Legibility Informational DPoS.sol L217, L251

DPS-11: Confusing Variable Name

Description:
The variable name yesVotes on the aforementioned line implies that it represents the count of yes votes yet it
specifies the amount of total stakes represented by validators with yes votes. The variable name should reflect the
staking amount it represents.

Recommendation:
We recommend that the variable be renamed to f.e. yesVotesStakeAmt and be used in all of its ocurrences.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Coding Style Informational DPoS.sol L329, L342, L357, L373,
L395, L411

modifier isCandidateInitialized() {
 require(
 candidateProfiles[msg.sender].initialized,
 'Candidate is not initialized'
);
}

DPS-12: require statement can be substituted with a
modifier

Description:
The require statements on the aforementioned lines have the same predicates and error message. The require
statement can be converted into a modifier to avoid code duplication and increase legibility of the code.

Recommendation:
We advise that the require statement on the aforementioned lines be converted into a modifier for assertion.

We advise following changes for the code.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Code Legibility Informational DPoS.sol L330

require(
 _newRate < candidate.commissionRate,
 'Invalid new rate'
);

if (_newRate < _candidate.commissionRate) {...}

DPS-13: require statement can be substituted with a
function

Description:
The require statement on the aforementioned line asserts that the new commission rate should be less-than-or-
equal to the already set commission rate. However, the function name nonIncreaseCommissionRate implies that
the new rate should be less-than the already set rate. Also, the execution of the function will be ineffectual and non-
state changing if the provided rate and time in the parameters is same as the already set values.

Recommendation:
We advise that the conditional of require statement on the aforementioned line be changed from less-than-or-
equal to less-than.

We advise following changes for the code.

With the application of above code changes, the following change can also applied on L814 to optimize the code.

Alleviation:
Client suggested that New Rate can be equal to Current Rate , as the operation may be just increasing rate lock
end time. Alleviations were not needed.

Type Severity Location

Coding Style Informational DPoS.sol L98, L310, L412, L450,
L421, L869

DPS-14: Inexistence of reason in Require Statements

Description:
The require statements on the aforementioned lines do not specify reason string . The reason string s
should be provided to require statements to aid debugging and readability of the code.

Recommendation:
We advise that the reason string s be added to the require statements on the aforementioned lines.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Coding Style Informational DPoS.sol L303, L340

require(
 rate > block.number,
 'rate must be greater than block.number'
);

DPS-15: Missing check for the valid input

Description:
The functions on the aforementioned lines has parameter lock end time . There are no checks in the function to
assert against a valid value of it which should be greater than block.number .

Recommendation:
We advise that a require statement or perhaps a modifier is added in the aforementioned functions to assert that
the new lock end time is greater-than block.number .

We advise following addition to the code.

Alleviation:
Client suggested that it is the validator’s responsibility to provide a valid lock end time value so no alleviations
were applied.

Type Severity Location

Code Legibility Informational DPoS.sol L392, L467, L491

uint256 constant DECIMALS_MULTIPLIER = 10**18;
// Usage
minAmount(_amount, 1 * DECIMALS_MULTIPLIER)

DPS-16: Usage of ether instead of Decimals Multiplier

Description:
The modifier usage on the aforementioned passes minimum of token as 1 CELR . The decimals multiplier used is
ether global variable which represents 18 decimals. Although, it is functionally correct but we advise that actual

decimals multiplier of the token be used instead of ether global variable for better readability of the code.

Recommendation:
We advise that the actual decimals multiplier of the token be used in place of the ether global variable.

We advise following changes to the code.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Optimization Informational DPoS.sol L823-L825

function confirmIncreaseCommissionRate() external {
 ValidatorCandidate storage candidate = candidateProfiles[msg.sender];
 require(candidate.initialized, 'Candidate is not initialized');
 uint256 advanceNoticePeriod = getUIntValue(uint256(ParamNames.AdvanceNoticePeriod));
 require(
 block.number > candidate.announcementTime.add(advanceNoticePeriod),
 'Still in notice period'
);
 _updateCommissionRate(candidate, candidate.announcedRate,
candidate.announcedLockEndTime);
 delete _candidate.announcedRate;
 delete _candidate.announcedLockEndTime;
 delete _candidate.announcementTime;
}

DPS-17: Inefficient Code

Description:
The code on the aforementioned lines only effectually executes when the function _updateCommissionRate is
called from confirmIncreaseCommissionRate as part of announced rate update. When the function
_updateCommissionRate is called from nonIncreaseCommissionRate , the execution of aforementioned lines is

ineffectual and hence costs unwanted gas. The aforementioned lines can be moved to
confirmIncreaseCommissionRate after the call to _updateCommissionRate so that the execution of
nonIncreaseCommissionRate does not execute the code on aforementioned lines.

Recommendation:
We advise that the code from aforementioned lines be move to the body of function
confirmIncreaseCommissionRate after it makes call to _updateCommissionRate .

We advise following changes to the code.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Code Legibility Informational DPoS.sol L416

require(
 block.number >= candidate.earliestBondTime,
 'Not earliest bond time yet'
);

DPS-18: Potentially Incorrect Comparison

Description:
The require statement on the aforementioned line asserts that block.number should be greater than the
earliestBondTime for the earliest bond time to arrive. However, intiuitively when the block.number is equal to
earliestBondTime then it should be considered that the bond time has arrived.

Recommendation:
We advise that the conditional in require statement be changed from greater-than to greater-than-or-equal to take
account the arrival of bond time if the block.Number and earliestBondTime are equal.

We advise following changes to the code.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Code Legibility Minor DPoS.sol L247 - L260

DPS-19: Potentially Incorrect Implementation

Description:
The function confirmSidechainProposal does not handle the assignment of deposited funds when a sidechain
proposal does not pass. In the function confirmParamProposal , when a Param proposal does not pass, the
deposited funds are assigned to miningPool but no such assignment of funds is implemented in
confirmSidechainProposal .

Recommendation:
We advise that the code is added to handle the assignment of funds in case when a sidechain proposal does not
pass. If the current implementation is intentional then this exhibit can be safely ignored.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Optimization Informational DPoS.sol L731, L761

DPS-20: Usage of storage Variable Instead of memory

Description:
The local variables on the aforementioned lines are declared as storage yet no write operations are performed.
The usage of local storage variables is optimal in read operations only when the count of read operations is less
than 4. As both of the aforementioned local storage variables perform more than 3 read operations, their data
location can be changed to memory as it costs significantly less gas to read from memory . Although, the usage of
memory data location will copy the data to memory but it is still cheaper than to make several read operations on
storage .

Recommendation:
We advise that the data location of the variables on the aforementioned lines be changed from storage to
memory .

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Optimization Informational DPoS.sol L766 - L769

for (uint256 i = d.intentStartIndex; i < len; i++) {
 intentAmounts[i] = d.withdrawIntents[i].amount;
 intentProposedTimes[i] = d.withdrawIntents[i].proposedTime;
}

DPS-21: Inefficient storage Read

Description:
The for-loop on the aforementioned lines makes use of inefficient storage read operations on the lines L767
and L768 with the use of d.intentStartIndex . Although, the enclosing function is a view type and is never
called from within the contract but a possible call from another contract will be gas inefficient.

Recommendation:
We advise that the code on the aforementioned lines be rectified to minimize the number of storage read
operations.

We advise following changes for the code.

Alleviation:
Original code suggestion turned out to be incorrect with the follow up of correct code suggestion but client chose not
apply alleviations stating it is inside an external view function called by the off-chain clients, and we expect a
delegator to only have 0 or 1 withdrawal intent in normal cases. So I think gas consumption doesn’t matter here and
we can keep the code as it is.

Type Severity Location

Optimization Informational DPoS.sol L587 - L606

Delegator storage delegator = validator.delegatorProfiles[penalizedDelegator.account];
uint256 _amt;
if (delegator.delegatedStake >= penalizedDelegator.amt) {
 _amt = penalizedDelegator.amt;
} else {
 uint256 remainingAmt = penalizedDelegator.amt.sub(delegator.delegatedStake);
 delegator.undelegatingStake = delegator.undelegatingStake.sub(remainingAmt);
 _amt = delegator.delegatedStake;
}
_updateDelegatedStake(
 validator,
 penalty.validatorAddress,
 penalizedDelegator.account,
 _amt,
 MathOperation.Sub
);

DPS-22: Inefficient Code

Description:
The code on the aforementioned lines can be optimized by the use of a local variable and a single
_updateDelegatedStake call to reduce the bytecode footprint of the contract.

Recommendation:
We advise following changes for the code.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Optimization Informational DPoS.sol L358, L376, L417, L427,
L889, L526, L539, L649, L676,
L692, L788, L907, L955

DPS-23: Inefficient use of local variable

Description:
The declaration of local variables on the aforementioned line is inefficient as any variable is never used at more than
one place. The gas cost associated with local variable declaration can be saved by using the initialization part directly
in place of the declared local variable.

Recommendation:
We advise that the initialization part of the local variable declaration be directly used in place of the local variable.

Alleviation:
Alleviations were partly applied as some of the suggestion were incorrectly indentified.

Type Severity Location

Language Specific Informational DPoS.sol L691, L718, L751

DPS-24: Function vibility can be changed to external

Description:
The functions on the aforementioned lines are never called from within the contract and hence their visibilities can be
changed to external .

Recommendation:
We recommend to change the visibilites of function on the aforementioned lines to external

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Optimization Informational CELRToken.sol L15

uint256 constant public INITIAL_SUPPLY = 1e28;

CER-01: Can be declared constant and use uint256 instead
of alias uint

Description:
The variable declaration on the aforementioned line be changed to a constant to save gas cost associate with
storage slot. Additionaly, the type of declaration is uint which is an alias uint256 . A clean coding practice is to

use complete type name of uint256 instead of alias uint .

Recommendation:
We advise that the variable declaration be chanaged to constant and complete type name of uint256 be used.

We advise following changes for the code.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Comment Informational DPoSCommon.sol L12

DPC-01: Spelling Error

Description:
The aforementioned line has a spelling error for misbehaviour

Recommendation:
We advise that the spelling error for misbehaviour be corrected on the aforementioned line.

Alleviation:
Alleviations were applied as advised.

Type Severity Location

Comment Informational DPoSCommon.sol L10

DPC-02: Grammar Error

Description:
The aforementioned line has a grammar error where it says Delegators has to wait .

Recommendation:
We advise that the grammar error be rectified and the comment part changed to Delegators have to wait .

Alleviation:
Alleviations were applied as advised.

