
For :
Chiliz

By :
Camden Smallwood @ CertiK
camden.smallwood@certik.org

Angelos Apostolidis @ CertiK
angelos.apostolidis@certik.org

Chiliz

Security Assessment

February 10th, 2021

mailto:camden.smallwood@certik.org
mailto:angelos.apostolidis@certik.org

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that contracts
CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor do they provide any indication of the technologies proprietors,
business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice, nor
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code
provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure,
implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the
intention to increase the quality of the company/product's IT infrastructure and or source
code.

af://n419
af://n428

Project Name Chiliz

Description An upgradeable ERC20 implementation via the proxy upgrade
pattern.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. ed186b51bfbe8a28b3376bfcc82b5cc93806cc94
2. de64f33f9448c485d4cec0948daf2e25e6493b0d

Delivery Date February 10th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline January 6th, 2021 - February 10th, 2021

Total Issues 10

Total Critical 0

Total Major 0

Total Medium 0

Total Minor 1

Total Informational 9

 Overview

Project Summary

Audit Summary

Vulnerability Summary

https://www.chiliz.com/
https://github.com/chiliz/FanTokenSmartContract
https://github.com/chiliz/FanTokenSmartContract/commit/ed186b51bfbe8a28b3376bfcc82b5cc93806cc94
https://github.com/chiliz/FanTokenSmartContract/commit/de64f33f9448c485d4cec0948daf2e25e6493b0d
af://n438
af://n440
af://n458
af://n473

ID Contract Location

VTP VoteTokenProxy.sol VoteTokenProxy.sol

VTI VoteTokenImplementation.sol VoteTokenImplementation.sol

10%

90%

Finding Summary

Minor
Informational

 Executive Summary

This report represents the results of CertiK's engagement with Chiliz on their implementation of
the Chiliz token smart contract.

Our findings mainly refer to optimizations and Solidity coding standards, hence the issues
identified pose no threat to the contract deployment's safety.

 Files In Scope

 Findings

https://github.com/chiliz/FanTokenSmartContract/blob/de64f33f9448c485d4cec0948daf2e25e6493b0d/VoteTokenProxy.sol
https://github.com/chiliz/FanTokenSmartContract/blob/de64f33f9448c485d4cec0948daf2e25e6493b0d/VoteTokenImplementation.sol
af://n495
af://n500
af://n515

ID Title Type Severity Resolved

VTI-01 Unlocked Compiler
Version

Language Specific Informational

VTI-02 Array Size Alteration
via length

Volatile Code Minor

VTI-03 Inefficient address
Storage

Volatile Code Informational

VTI-04 Visibility Specifiers
Missing

Language Specific Informational

VTI-05 Redundant
require

Statements

Dead Code Informational

VTI-06 Conditional
Optimization

Gas Optimization Informational

VTI-07 Redundant
Statement

Dead Code Informational

VTI-08 Multiple Instances
of the
initialize()

Function

Volatile Code Informational

VTP-01 Unlocked Compiler
Version

Language Specific Informational

VTP-02 Multiple Instances
of the
initialize()

Function

Volatile Code Informational

Type Severity Location

Language Specific Informational VoteTokenImplementation.sol L1077

 VTI-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.2 the contract should contain the
following line:

Alleviation:

The development team opted to consider our references and locked the compiler to version
0.5.1 .

pragma solidity 0.6.2;

https://github.com/chiliz/FanTokenSmartContract/blob/ed186b51bfbe8a28b3376bfcc82b5cc93806cc94/VoteTokenImplementation.sol#L1077
af://n585
af://n597
af://n600
af://n604

Type Severity Location

Volatile Code Minor VoteTokenImplementation.sol L1061

 VTI-02: Array Size Alteration via length

Description:

In general, it is a bad practice to alter the length of an array by directly increasing/decreasing the
length member of the array.

Recommendation:

We advise to use the pop() array member, which in turn implicitly calls delete on the removed
element.

Alleviation:

The development team opted to consider our references, removed the direct array size alteration
along with the delete statement and used the pop() function instead.

https://github.com/chiliz/FanTokenSmartContract/blob/ed186b51bfbe8a28b3376bfcc82b5cc93806cc94/VoteTokenImplementation.sol#L1061
af://n607
af://n619
af://n622
af://n625

Type Severity Location

Volatile Code Informational VoteTokenImplementation.sol L1021-
L1030

 VTI-03: Inefficient address Storage

Description:

The linked code segment redundantly stores the new entries of address in ListItem.item ,
StoredList.storageMap and StoredList.storageList members.

Recommendation:

We advise to revise the linked code block and implement a more efficient functionality.

Alleviation:

The development team opted to consider our references, removed the ListItem struct along
with the storageMap member of the StoredList struct and only used the storageList of the
latter struct to store the address entries.

https://github.com/chiliz/FanTokenSmartContract/blob/ed186b51bfbe8a28b3376bfcc82b5cc93806cc94/VoteTokenImplementation.sol#L1021-L1030
af://n628
af://n640
af://n643
af://n646

Type Severity Location

Language Specific Informational VoteTokenImplementation.sol L1085

 VTI-04: Visibility Specifiers Missing

Description:

The linked variable declarations do not have a visibility specifier explicitly set.

Recommendation:

Inconsistencies in the default visibility the Solidity compilers impose can cause issues in the
functionality of the codebase. We advise that visibility specifiers for the linked variables are
explicitly set.

Alleviation:

The development team opted to consider our references and added the private visibility
specifier for the linked variable.

https://github.com/chiliz/FanTokenSmartContract/blob/ed186b51bfbe8a28b3376bfcc82b5cc93806cc94/VoteTokenImplementation.sol#L1085
af://n649
af://n661
af://n664
af://n667

Type Severity Location

Dead Code Informational VoteTokenImplementation.sol L1119-
L1120, L1140-L1141

 VTI-05: Redundant require Statements

Description:

The linked statements redundantly check the input values, as the parent function is already
checking against the same conditional.

Recommendation:

We advise to remove redundant code.

Alleviation:

The development team opted to consider our references and removed the redundant code.

https://github.com/chiliz/FanTokenSmartContract/blob/ed186b51bfbe8a28b3376bfcc82b5cc93806cc94/VoteTokenImplementation.sol#L1119-L1120
https://github.com/chiliz/FanTokenSmartContract/blob/ed186b51bfbe8a28b3376bfcc82b5cc93806cc94/VoteTokenImplementation.sol#L1140-L1141
af://n670
af://n682
af://n685
af://n688

Type Severity Location

Gas Optimization Informational VoteTokenImplementation.sol L1177

 VTI-06: Conditional Optimization

Description:

The linked for conditional redundantly checks the array length on every iteration.

Recommendation:

We advise to declare a local variable and assign it the value of the length of the array and use this
local variable on the conditional to save gas.

Alleviation:

The development team opted to consider our references and changed the linked code segment
as proposed.

https://github.com/chiliz/FanTokenSmartContract/blob/ed186b51bfbe8a28b3376bfcc82b5cc93806cc94/VoteTokenImplementation.sol#L1177
af://n691
af://n703
af://n706
af://n709

Type Severity Location

Dead Code Informational VoteTokenImplementation.sol L1200

 VTI-07: Redundant Statement

Description:

The linked statement does not affect the functionality of the codebase, as the linked variable is
declared, and initialized to zero by default, in L1192.

Recommendation:

We advise to remove the linked statement.

Alleviation:

The development team opted to consider our references and removed the redundant code.

https://github.com/chiliz/FanTokenSmartContract/blob/ed186b51bfbe8a28b3376bfcc82b5cc93806cc94/VoteTokenImplementation.sol#L1200
af://n712
af://n724
af://n727
af://n730

Type Severity Location

Volatile Code Informational VoteTokenImplementation.sol General

 VTI-08: Multiple Instances of the initialize() Function

Description:

Instances of the initialize() function with different signatures are exposed upon contract
deployment. In the case an incorrect initialize() function is called, the majority (if not all) of
the intented functionality will be rendered useless.

Recommendation:

We advise to ensure that a parent initializer is not invoked.

Alleviation:

The development team acknowledged this exhibit and will take it into consideration upon
deployment.

https://github.com/chiliz/FanTokenSmartContract/blob/ed186b51bfbe8a28b3376bfcc82b5cc93806cc94/VoteTokenImplementation.sol#General
af://n733
af://n745
af://n748
af://n751

Type Severity Location

Language Specific Informational VoteTokenProxy.sol L413

 VTP-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.2 the contract should contain the
following line:

Alleviation:

The development team opted to consider our references and locked the compiler to version
0.5.1 .

pragma solidity 0.6.2;

https://github.com/chiliz/FanTokenSmartContract/blob/ed186b51bfbe8a28b3376bfcc82b5cc93806cc94/VoteTokenProxy.sol#L413
af://n754
af://n766
af://n769
af://n773

Type Severity Location

Volatile Code Informational VoteTokenProxy.sol General

 VTP-02: Multiple Instances of the initialize() Function

Description:

Instances of the initialize() function with different signatures are exposed upon contract
deployment. In the case an incorrect initialize() function is called, the majority (if not all) of
the intented functionality will be rendered useless.

Recommendation:

We advise to ensure that a parent initializer is not invoked.

Alleviation:

The development team acknowledged this exhibit and will take it into consideration upon
deployment.

https://github.com/chiliz/FanTokenSmartContract/blob/ed186b51bfbe8a28b3376bfcc82b5cc93806cc94/VoteTokenProxy.sol#General
af://n776
af://n788
af://n791
af://n794

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a
transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such
as overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only
functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases
that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the
result of a struct assignment operation affecting an in-memory struct rather than an in-
storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of
private or delete .

af://n797
af://n799
af://n801
af://n804
af://n807
af://n810
af://n813
af://n816
af://n819

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements on
the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw
format and should otherwise be specified as constant contract variables aiding in their legibility
and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to
compile using the specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

af://n822
af://n825
af://n828
af://n831
af://n834

	 Disclaimer
	What is a CertiK report?

	 Overview
	Project Summary
	Audit Summary
	Vulnerability Summary

	 Executive Summary
	 Files In Scope
	 Findings
	 VTI-01: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 VTI-02: Array Size Alteration via length
	Description:
	Recommendation:
	Alleviation:

	 VTI-03: Inefficient address Storage
	Description:
	Recommendation:
	Alleviation:

	 VTI-04: Visibility Specifiers Missing
	Description:
	Recommendation:
	Alleviation:

	 VTI-05: Redundant require Statements
	Description:
	Recommendation:
	Alleviation:

	 VTI-06: Conditional Optimization
	Description:
	Recommendation:
	Alleviation:

	 VTI-07: Redundant Statement
	Description:
	Recommendation:
	Alleviation:

	 VTI-08: Multiple Instances of the initialize() Function
	Description:
	Recommendation:
	Alleviation:

	 VTP-01: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 VTP-02: Multiple Instances of the initialize() Function
	Description:
	Recommendation:
	Alleviation:

	Appendix
	Finding Categories
	Gas Optimization
	Mathematical Operations
	Logical Issue
	Control Flow
	Volatile Code
	Data Flow
	Language Specific
	Coding Style
	Inconsistency
	Magic Numbers
	Compiler Error
	Dead Code

