
Fetch.ai Fetch Token

Security Assessment

October 5th, 2020

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. These reports are not, nor should be considered, an indication of the economics or
value of any “product” or “asset” created by any team or project that contracts CertiK to perform a
security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of
the technology analyzed, nor do they provide any indication of the technologies proprietors, business,
business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement
with any particular project. These reports in no way provide investment advice, nor should be
leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the
quality of their code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position
is that each company and individual are responsible for their own due diligence and continuous
security. CertiK’s goal is to help reduce the attack vectors and the high level of variance associated
with utilizing new and consistently changing technologies, and in no way claims any guarantee of
security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code
provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure,
implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the
intention to increase the quality of the company/product's IT infrastructure and or source code.

Project Name Fetch.ai Fetch Token

Description The contract implements standard ERC-20
token with mintable and pausable
functionalities.

Platform Ethereum; Solidity

Codebase GitHub Repository

Commit 46bfb327d694f65e75b78c52da80aeb02d4235c1

Delivery Date Oct. 05, 2020

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline Oct. 02, 2020 - Oct. 05, 2020

Total Issues 5

Total Critical 0

Total Major 0

Total Minor 0

Total Informational 5

 Overview

Project Summary

Audit Summary

Vulnerability Summary

ID Title Type Severity

FET-01 Unlocked Compiler Version Compiler Version Informational

FET-02 Substitution of require call with Modifier Coding Style Informational

FET-03 Substitution of require calls with Modifier Coding Style Informational

FET-04 virtual modifier can be removed Language Specific Informational

FET-05 Function visibility can be external Function Visibility Informational

 Executive Summary

The file FetToken.sol contains flattened FetchToken contract which makes use of OpenZeppelin 's
contracts to implement standard ERC20 interface with Mintable and Pausable functionalities. The
OpenZeppelin 's contracts are well tested and officially recognized.
The compiler version of the contract can be locked to a specific solidity version.
The require calls in the functions of FetchToken contract can be converted to modifiers. The
virtual modifier can be removed from all the functions of FetchToken contract and the functions
with public visibilities can have their visibility changed to external .

 Findings

Type Severity Location

Compiler Version Informational FetToken.sol L3

 FET-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the
contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in the
codebase that would be hard to identify over a span of multiple compiler versions rather than a
specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract
can be compiled at f.e. the contract can be safely locked at v0.6.2 .

Alleviation:

Alleviations were applied as advised and the compiler version was locked to v0.6.2 .

pragma solidity 0.6.2;

Type Severity Location

Coding Style Informational FetToken.sol L1216

 FET-02: Substitution of require call with Modifier

Description:

The aformentioned require call can be converted into a modifier to increase the legibility of the
code.

Recommendation:

We recommend to convert the require call to a modifier.

The usage of modifier in the function would be as followed.

Alleviation:

Alleviations were applied as advised with introduction of onlyMinter modifier.

modifier onlyMinter {
 require(
 hasRole(MINTER_ROLE, _msgSender()),
 "signer must have minter role to mint"
);
 _;
}

function mint(address to, uint256 amount) public virtual onlyMinter {...}

Type Severity Location

Coding Style Informational FetToken.sol L1230, L1244

 FET-03: Substitution of require calls with Modifier

Description:

The require calls on the aforementioned lines can be converted into a modifier to aid readability
and maintainability of the code by avoiding code duplication.

Recommendation:

We recommend to convert the require calls to a modifier.

The usage of modifier in the functions would be as followed.

Alleviation:

Alleviations were applied as advised with the introduction of onlyPauser modifier.

modifier onlyPauser {
 require(
 hasRole(PAUSER_ROLE, _msgSender()),
 "signer must have pauser role to pause"
);
 _;
}

function pause() public virtual onlyPauser {...}
function unpause() public virtual onlyPauser {...}

Type Severity Location

Language Specific Informational FetToken.sol L1216, L1230, L1244, L1249

 FET-04: virtual modifier can be removed

Description:

The functions on the aforementioned lines have virtual modifiers and yet they are the final
implementations in the contract's inheritance chain as there are no functions overriding any of them.
As these functions are not being overriden, the virtual modifiers can be safely removed from each
of the functions.

Recommendation:

We recommend to remove virtual modifiers from the functions on aforementioned lines.

Alleviation:

Alleviations were applied as advised and the modifier virtual was removed from the
aforementioned functions.

Type Severity Location

Function Visibility Informational FetToken.sol L1216, L1230, L1244

 FET-05: Function visibility can be external

Description:

The functions which are never called internally from within the contract should have external
visibility. The functions on the aforementioned lines have public visibility which can be safely
changed to external .

Recommendation:

We recommend to change the functions' visibilities from public to external .

Alleviation:

Alleviations were applied as advised and the visibilities of the aforementioned functions were
changed to external .

