
Audit Report
Produced by CertiK

for

Sep 13th, 2019

CertiK Audit Report
For Fetch.AI

Request Date: 2019-08-13
Revision Date: 2019-09-13
Platform Name: Ethereum

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Contents
Disclaimer 1

About CertiK 2

Executive Summary 3

Vulnerability Classification 3

Testing Summary 4
Audit Score . 4
Type of Issues . 4
Vulnerability Details . 5

Review Notes 6

Source Code 17

page i

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Disclaimer
This Report is subject to the terms and conditions (including without limitation, de-
scription of services, confidentiality, disclaimer and limitation of liability) set forth in
the Verification Services Agreement between CertiK and Fetch.AI(the “Company”), or
the scope of services/verification, and terms and conditions provided to the Company in
connection with the verification (collectively, the “Agreement”). This Report provided
in connection with the Services set forth in the Agreement shall be used by the Company
only to the extent permitted under the terms and conditions set forth in the Agreement.
This Report may not be transmitted, disclosed, referred to or relied upon by any person
for any purposes without CertiK’s prior written consent.

page 1

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

About CertiK
CertiK is a technology-led blockchain security company founded by Computer Science
professors from Yale University and Columbia University built to prove the security and
correctness of smart contracts and blockchain protocols.

CertiK, in partnership with grants from IBM and the Ethereum Foundation, has de-
veloped a proprietary Formal Verification technology to apply rigorous and complete
mathematical reasoning against code. This process ensures algorithms, protocols, and
business functionalities are secured and working as intended across all platforms.

CertiK differs from traditional testing approaches by employing Formal Verification to
mathematically prove blockchain ecosystem and smart contracts are hacker-resistant and
bug-free. CertiK uses this industry-leading technology together with standardized test
suites, static analysis, and expert manual review to create a full-stack solution for our
partners across the blockchain world to secure 6.2B in assets.

For more information: https://certik.org/

page 2

https://certik.org/

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Executive Summary
This report has been prepared for Fetch.AI to discover issues and vulnerabilities in the
source code of their dutchStaking and simpleStakePool smart contracts. A comprehen-
sive examination has been performed, utilizing CertiK’s Formal Verification Platform,
Static Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

• Testing the smart contracts against both common and uncommon attack vectors.

• Assessing the codebase to ensure compliance with current best practice and industry
standards.

• Ensuring contract logic meets the specifications and intentions of the client.

• Cross referencing contract structure and implementation against similar smart con-
tracts produced by industry leaders.

• Thorough line by line manual review of the entire codebase by industry experts.

Vulnerability Classification
CertiK categorizes issues into 3 buckets based on overall risk levels:

The code implementation does not match the specification, or it could result in the loss
of funds for contract owner or users.

The code implementation does not match the specification under certain conditions, or
it could affect the security standard by lost of access control.

The code implementation does not follow best practices, or use suboptimal design pat-
terns, which may lead to security vulnerabilies further down the line.

page 3

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Testing Summary

Type of Issues
CertiK smart label engine applied 100% formal verification coverage on the source code.
Our team of engineers ao scanned the source code using our proprietary static analysis
tools and code-review methodologies. The following technical issues were found:

Title Description Issues SWC ID
Integer Overflow
and Underflow

An overflow/underflow happens when an arithmetic
operation reaches the maximum or minimum size of
a type.

0 SWC-101

Function incor-
rectness

Function implementation does not meet the specifi-
cation, leading to intentional or unintentional vul-
nerabilities.

0

Buffer Overflow An attacker is able to write to arbitrary storage lo-
cations of a contract if array of out bound happens

0 SWC-124

Reentrancy A malicious contract can call back into the calling
contract before the first invocation of the function is
finished.

0 SWC-107

Transaction Or-
der Dependence

A race condition vulnerability occurs when code de-
pends on the order of the transactions submitted to
it.

0 SWC-114

Timestamp De-
pendence

Timestamp can be influenced by minors to some de-
gree.

0 SWC-116

Insecure Com-
piler Version

Using an fixed outdated compiler version or float-
ing pragma can be problematic, if there are publicly
disclosed bugs and issues that affect the current com-
piler version used.

0 SWC-102
SWC-103

Insecure Ran-
domness

Block attributes are insecure to generate random
numbers, as they can be influenced by minors to
some degree.

0 SWC-120

page 4

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

“tx.origin” for
authorization

tx.origin should not be used for authorization. Use
msg.sender instead.

0 SWC-115

Delegatecall to
Untrusted Callee

Calling into untrusted contracts is very dangerous,
the target and arguments provided must be sani-
tized.

0 SWC-112

State Variable
Default Visibil-
ity

Labeling the visibility explicitly makes it easier to
catch incorrect assumptions about who can access
the variable.

0 SWC-108

Function Default
Visibility

Functions are public by default. A malicious user
is able to make unauthorized or unintended state
changes if a developer forgot to set the visibility.

0 SWC-100

Uninitialized
variables

Uninitialized local storage variables can point to
other unexpected storage variables in the contract.

0 SWC-109

Assertion Failure The assert() function is meant to assert invariants.
Properly functioning code should never reach a fail-
ing assert statement.

0 SWC-110

Deprecated
Solidity Features

Several functions and operators in Solidity are dep-
recated and should not be used as best practice.

0 SWC-111

Unused variables Unused variables reduce code quality 0

Vulnerability Details

No issue found.

No issue found.

No issue found.

page 5

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Review Notes
Source Code SHA-256 Checksum1

• dutchStaking.vy
7377dd040f1d398747c0933d6ef0d81e7cbf15514a2b6570a24191321472763e

• simpleStakePool.vy
a25a58d9a7bb86e47a1c5f5f4f5795151e928296b7f071f27e12566d04a8e604

Summary
CertiK was chosen by Fetch.AI to audit the design and implementation of its dutchStaking
and simpleStakePool smart contracts. To ensure comprehensive protection,the source code
has been analyzed by the proprietary CertiK formal verification engine and manually re-
viewed by our smart contract experts and engineers. That end-to-end process ensures
proof of stability as well as a hands-on, engineering-focused process to close potential
loopholes and recommend design changes in accordance with the best practices in the
space.

Overall we found the smart contracts to follow good practices. With the final update of
source code and delivery of the audit report, we conclude that the contract is structurally
sound and not vulnerable to any classically known anti-patterns or security issues. The
audit report itself is not necessarily a guarantee of correctness or trustworthiness, and
we always recommend to seek multiple opinions, keep improving the codebase, and more
test coverage and sandbox deployments before the mainnet release.

Documentation
CertiK used the following source of truth to enhance the understanding of Fetch.AI’s
systems:

1. Fetch.AI Whitepaper2

2. Fetch.AI Developer Documentation3

3. Fetch.AI Medium Press4

4. Project README5

5. Project Test Cases5

All listed sources act as specification. For any inconsistency discovered between the
actual code behavior and the specification, CertiK would consult with the Fetch.AI team
for further discussion and confirmation.

1Commit: 2cfbd1d0c2edc86cb8f74881d311444cac60b33c
2Whitepaper: https://fetch.ai/uploads/technical-introduction.pdf
3Documentation: https://docs.fetch.ai/
4Medium: https://medium.com/fetch-ai
5GitHub: https://github.com/fetchai/research-staking-contract

page 6

https://github.com/fetchai/research-staking-contract/tree/2cfbd1d0c2edc86cb8f74881d311444cac60b33c
https://fetch.ai/uploads/technical-introduction.pdf
https://docs.fetch.ai/
https://medium.com/fetch-ai
https://github.com/fetchai/research-staking-contract

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Components
The following simplifed sequence graphs are used to give a brief demonstration of the
function logics. The dashed arrows L99, 99K are redefined for the token contract, while
the solid arrows ←,→ are used for the staking contract.

Owner Priviledged

The following methods in figure 1, 2, figure 3, and figure 4 are to be called by the
dutchStaking contract owner only.

Figure 1: initialiseAuction

Figure 2: abortAuction

page 7

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Figure 3: retrieveUndistributedAuctionRewards

Figure 4: deleteContract

The determination of whether the current auction is at the bidding phase is determined
as follows (see figure 5):

page 8

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Figure 5: isBiddingPhase

Pool Register

Any individual or contract may register as a pool address for an auction. Users may
pledge money to a registered pool. The following methods in figure 6 are to be called by
account that desires to be registered as pool and registered pool, respectively.

page 9

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Figure 6: registerPool and retrieveUnclaimedPoolRewards

Any Participant

The following methods in figure 7, 8, 9, figure 12 and figure 13 can be called by any
auction participant.

Figure 7: bid

page 10

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Figure 8: endLockup

Figure 9: finaliseAuction

The flowchart in figure 10 demonstrates the calculation of the price of the slot at the
moment in the current auction. It uses _getScheduledPrice and _isFinalised as shown in
figure 10 and 11.

page 11

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Figure 10: getCurrentPrice & getScheduledPrice

Figure 11: isFinalised

page 12

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Figure 12: pledgeStake and withdrawPledgedStake

Figure 13: withdrawSelfStake

page 13

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Figure 14: calculateSelfStakeNeeded

The calculation of the minimal required stake at the moment is shown in figure 14.

Details
Items in this section are low impact to the overall aspects of the smart contracts, thus will
let client to decide whether to have those reflected in the final deployed version of source
codes. They are labeled CRITICAL , MAJOR , MINOR , INFO , and DISCUSSION
(in decreasing significance level).

dutchStaking.vycommit 8d1179ccff03690343fdb345909923ffbfb347a5, previous

• MAJOR getCurrentPrice: Taking the ceiling for declinePerBlock may result in a
price lower than reserveStake. If this is not the desired behavior, recommend adding
condional clause in getCurrentPrice().

– (FetchAI - Confirmed) Fixed in commit 7e030eead901aa92c041cfddd8d5dec6fc18fd4a.

• INFO Recommend supplementing informative error messages to all assert state-
ments.

– (FetchAI - Confirmed) Added in commit 7e030eead901aa92c041cfddd8d5dec6fc18fd4a.

• DISCUSSION bid(): AID can be added to function parameter to clarity. It can
also be added to the event log.

– (FetchAI - Confirmed) Refactored in commit 7e030eead901aa92c041cfddd8d5dec6fc18fd4a.

page 14

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

• DISCUSSION calculateSelfStakeNeeded(): The calculation of selfStakeNeeded can
be refactored for clarity:
if self.isStaker[_address]:

selfStakeNeeded = self.rewardPerSlot
if self.getCurrentPrice() > self.pledgedDeposits[_address]:

selfStakeNeeded += (self.getCurrentPrice() - self.pledgedDeposits[
_address])

– (FetchAI - Confirmed) Refactored in commit 7e030eead901aa92c041cfddd8d5dec6fc18fd4a.

• DISCUSSION Auction: The use of int128for slotsSold, slotsOnSale, and MAX_SLOTS
may be switched to uint256 for consistency with other fields.

– (FetchAI - Confirmed) Switched in commit 7e030eead901aa92c041cfddd8d5dec6fc18fd4a.

• DISCUSSION The block.number plays an important role in the contract. Recom-
mend revisiting the difference between block.number and block.timestamp to ensure
that the business need is met.
block.timestamp: Manipulatable by the miner;
block.number: The Ethereum block confirmation currently takes approximately 14
seconds, and the average block time is between 13 ∼ 15 seconds. However the

block.number will be a dangourous and inaccurate choice of time control during
difficulty bomb stage or hard/soft fork upgrade of the network.

– (FetchAI - Confirmed) Resolved by the newly added abortAuction() method
in commit 2cfbd1d0c2edc86cb8f74881d311444cac60b33c.

• DISUCSSION isStaker, stakers: An owner priviledged function capable of re-
moving malicious staker may be considered added to help prevent griefing attack.

– (FetchAI - Confirmed) Resolved by the newly added abortAuction() method
in commit 2cfbd1d0c2edc86cb8f74881d311444cac60b33c.

Best practice
Smart contract development requires a particular engineering mindset. A failure in the
initial construction can be catastrophic, and changing the project after the fact can be
exceedingly difficult.

To ensure success and to avoid the challenges above smart contracts should here to
best practices at their conception. Below, we summarized a checklist of key points that
help to indicate a high overall quality of the current project. (X indicates satisfaction; ×
indicates unsatisfaction; − indicates inapplicablility)

page 15

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

General

X Corrent environment settings, e.g. compiler version, test framework

X No compiler warnings

X Provide error message along with assert

X Use events to monitor contract activities

X Import and use libraries properly

− Correct upgradibility mechanism

X Correct time dependency

Vyper Specific

X Correct usage of as_unitless_number()

X No redundant default function

X Correct visibility for functions

X Correct visibility for state variables

− Correct handling of @payable function

X No manipulatable obstruction for selfdestruct

Privilege Control

X Provide pause functionality for control and emergency handling

X Provide time buffer between certain operations

X Provide proper access control for functions

X Establish rate limit for certain operations

X Restrict access to sensitive functions

X Restrict permission to contract destruction

Documentation

X Provide project README and execution guidance

X Provide inline comment for function intention

X Provide instruction to initialize and execute the test files

Testing

X Provide migration scripts

X Provide test scripts and coverage for potential scenarios

page 16

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Source Code
dutchStaking.vy

1 #--
2 #
3 # Copyright 2019 Fetch.AI Limited
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0

10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.↪→

14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16 #
17 #--
18 from vyper.interfaces import ERC20
19

20 units: {
21 tok: "smallest ERC20 token unit",
22 }
23

24 # maximum possible number of stakers a new auction can specify
25 MAX_SLOTS: constant(uint256) = 300
26 # number of blocks during which the auction remains open at reserve

price↪→

27 RESERVE_PRICE_DURATION: constant(uint256) = 25 # number of blocks
28 # number of seconds before deletion of the contract becomes possible

after last lockupEnd() call↪→

29 DELETE_PERIOD: constant(timedelta) = 60 * (3600 * 24)
30 # defining the decimals supported in pool rewards per token
31 REWARD_PER_TOK_DENOMINATOR: constant(uint256(tok)) = 100000
32

33 # Structs
34 struct Auction:
35 finalPrice: uint256(tok)
36 lockupEnd: uint256
37 slotsSold: uint256
38 start: uint256
39 end: uint256
40 startStake: uint256(tok)
41 reserveStake: uint256(tok)

page 17

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

42 declinePerBlock: uint256(tok)
43 slotsOnSale: uint256
44 uniqueStakers: uint256
45

46 struct Pledge:
47 amount: uint256(tok)
48 AID: uint256
49

50 struct Pool:
51 remainingReward: uint256(tok)
52 rewardPerTok: uint256(tok)
53 AID: uint256
54

55 # Events
56 Bid: event({AID: uint256, _from: indexed(address), currentPrice:

uint256(tok), amount: uint256(tok)})↪→

57 NewAuction: event({AID: uint256, start: uint256, end: uint256,
58 lockupEnd: uint256, startStake: uint256(tok), reserveStake:

uint256(tok),↪→

59 declinePerBlock: uint256(tok), slotsOnSale: uint256,
60 rewardPerSlot: uint256(tok)})
61 PoolRegistration: event({AID: uint256, _address: address,
62 maxStake: uint256(tok), rewardPerTok: uint256(tok)})
63 NewPledge: event({AID: uint256, _from: indexed(address), operator:

address, amount: uint256(tok)})↪→

64 AuctionFinalised: event({AID: uint256, finalPrice: uint256(tok),
slotsSold: uint256(tok)})↪→

65 LockupEnded: event({AID: uint256})
66 AuctionAborted: event({AID: uint256, rewardsPaid: bool})
67

68 # Contract state
69 token: ERC20
70 owner: public(address)
71 earliestDelete: public(timestamp)
72 # address -> uint256 Slots a staker has won in the current auction

(cleared at endLockup())↪→

73 stakerSlots: map(address, uint256)
74 # auction winners
75 stakers: address[MAX_SLOTS]
76

77 # pledged stake + committed pool reward, excl. selfStakerDeposit; pool
-> deposits↪→

78 pledgedDeposits: public(map(address, uint256(tok)))
79 # staker (through pool) -> Pledge{pool, amount}
80 poolStakerDeposits: public(map(address, Pledge))
81 # staker (directly) -> amount
82 selfStakerDeposits: public(map(address, uint256(tok)))
83 # staker (directly) -> price at which the bid was made

page 18

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

84 bidAtPrice: public(map(address, uint256(tok)))
85 # pool address -> Pool
86 registeredPools: public(map(address, Pool))
87

88 # Auction details
89 currentAID: public(uint256)
90 auction: public(Auction)
91 totalAuctionRewards: public(uint256(tok))
92 rewardPerSlot: public(uint256(tok))
93

94 ##
95 # Constant functions
96 ##
97 # @notice True from auction initialisation until either we hit the

lower bound on being clear or↪→

98 # the auction finalised through finaliseAuction()
99 @private

100 @constant
101 def _isBiddingPhase() -> bool:
102 return ((self.auction.lockupEnd > 0)
103 and (block.number < self.auction.end)
104 and (self.auction.slotsSold < self.auction.slotsOnSale)
105 and (self.auction.finalPrice == 0))
106

107 # @notice Returns true if either the auction has been finalised or the
lockup has ended↪→

108 # @dev self.auction will be cleared in endLockup() call
109 # @dev reserveStake > 0 condition in initialiseAuction() guarantees

that finalPrice = 0 can never be↪→

110 # a valid final price
111 @private
112 @constant
113 def _isFinalised() -> bool:
114 return (self.auction.finalPrice > 0) or (self.auction.lockupEnd == 0)
115

116 # @notice Calculate the scheduled, linearly declining price of the
dutch auction↪→

117 @private
118 @constant
119 def _getScheduledPrice() -> uint256(tok):
120 startStake_: uint256(tok) = self.auction.startStake
121 start: uint256 = self.auction.start
122 if (block.number <= start):
123 return startStake_
124 else:
125 # do not calculate max(startStake - decline, reserveStake) as

that could throw on negative startStake - decline↪→

page 19

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

126 decline: uint256(tok) = min(self.auction.declinePerBlock *
(block.number - start),↪→

127 startStake_ -
self.auction.reserveStake)↪→

128 return startStake_ - decline
129

130 # @notice Returns the scheduled price of the auction until the auction
is finalised. Then returns↪→

131 # the final price.
132 # @dev Auction price declines linearly from auction.start over

_duration, then↪→

133 # stays at _reserveStake for RESERVE_PRICE_DURATION
134 # @dev Returns zero If no auction is in bidding or lock-up phase
135 @private
136 @constant
137 def _getCurrentPrice() -> (uint256(tok)):
138 if self._isFinalised():
139 return self.auction.finalPrice
140 else:
141 scheduledPrice: uint256(tok) = self._getScheduledPrice()
142 return scheduledPrice
143

144 # @notice Returns the lockup needed by an address that stakes directly
145 # @dev Will throw if _address is a bidder in current auction & auciton

not yet finalised, as the↪→

146 # slot number & price are not final yet
147 # @dev Calling endLockup() will clear all stakerSlots flags and thereby

set the required↪→

148 # lockups to 0 for all participants
149 @private
150 @constant
151 def _calculateSelfStakeNeeded(_address: address) -> uint256(tok):
152 selfStakeNeeded: uint256(tok)
153 # these slots can be outdated if auction is not yet finalised /

lockup hasn't ended yet↪→

154 slotsWon: uint256 = self.stakerSlots[_address]
155

156 if slotsWon > 0:
157 assert self._isFinalised(), "Is bidder and auction not finalised

yet"↪→

158 pledgedDeposit: uint256(tok) = self.pledgedDeposits[_address]
159 currentPrice: uint256(tok) = self._getCurrentPrice()
160

161 if (slotsWon * currentPrice) > pledgedDeposit:
162 selfStakeNeeded += (slotsWon * currentPrice) - pledgedDeposit
163 return selfStakeNeeded
164

165 ##

page 20

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

166 # Main functions
167 ##
168 @public
169 def __init__(_ERC20Address: address):
170 self.owner = msg.sender
171 self.token = ERC20(_ERC20Address)
172

173 # @notice Owner can initialise new auctions
174 # @dev First auction starts with AID 1
175 # @dev Requires the transfer of _reward to the contract to be approved

with the↪→

176 # underlying ERC20 token
177 # @param _start: start of the price decay
178 # @param _startStake: initial auction price
179 # @param _reserveStake: lowest possible auction price >= 1
180 # @param _duration: duration over which the auction price declines.

Total bidding↪→

181 # duration is _duration + RESERVE_PRICE_DURATION
182 # @param _lockup_duration: number of blocks the lockup phase will last
183 # @param _slotsOnSale: size of the assembly in this cycle
184 # @param _reward: added to any remaining reward of past auctions
185 @public
186 def initialiseAuction(_start: uint256,
187 _startStake: uint256(tok),
188 _reserveStake: uint256(tok),
189 _duration: uint256,
190 _lockup_duration: uint256,
191 _slotsOnSale: uint256,
192 _reward: uint256(tok)):
193 assert msg.sender == self.owner, "Owner only"
194 assert _startStake > _reserveStake, "Invalid startStake"
195 assert (_slotsOnSale > 0) and (_slotsOnSale <= MAX_SLOTS), "Invald

slot number"↪→

196 assert _start >= block.number, "Start before current block"
197 # NOTE: _isFinalised() relies on this requirement
198 assert _reserveStake > 0, "Reserve stake has to be at least 1"
199 assert self.auction.lockupEnd == 0, "End current auction"
200

201 self.currentAID += 1
202

203 # Use integer-ceil() of the fraction with (+ _duration - 1)
204 declinePerBlock: uint256(tok) = (_startStake - _reserveStake +

_duration - 1) / _duration↪→

205 end: uint256 = _start + _duration + RESERVE_PRICE_DURATION
206 self.auction.start = _start
207 self.auction.end = end
208 self.auction.lockupEnd = end + _lockup_duration
209 self.auction.startStake = _startStake

page 21

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

210 self.auction.reserveStake = _reserveStake
211 self.auction.declinePerBlock = declinePerBlock
212 self.auction.slotsOnSale = _slotsOnSale
213 # Also acts as the last checked price in _updatePrice()
214 self.auction.finalPrice = 0
215

216 # add auction rewards
217 self.totalAuctionRewards += _reward
218 self.rewardPerSlot = self.totalAuctionRewards /

self.auction.slotsOnSale↪→

219 success: bool = self.token.transferFrom(msg.sender, self,
as_unitless_number(_reward))↪→

220 assert success, "Transfer failed"
221

222 log.NewAuction(self.currentAID, _start, end, end + _lockup_duration,
_startStake,↪→

223 _reserveStake, declinePerBlock, _slotsOnSale,
self.rewardPerSlot)↪→

224

225 # @notice Move unclaimed auction rewards back to the contract owner
226 # @dev Requires that no auction is in bidding or lockup phase
227 @public
228 def retrieveUndistributedAuctionRewards():
229 assert msg.sender == self.owner, "Owner only"
230 assert self._isBiddingPhase() == False, "In bidding phase"
231 assert self.auction.lockupEnd == 0, "Lockup ongoing"
232 undistributed: uint256(tok) = self.totalAuctionRewards
233 clear(self.totalAuctionRewards)
234

235 success: bool = self.token.transfer(self.owner,
as_unitless_number(undistributed))↪→

236 assert success, "Transfer failed"
237

238 # @notice The owner can clear the auction and all recorded slots in the
case of an emergency and↪→

239 # thereby immediately lift any lockups and allow the immediate
withdrawal of any made deposits.↪→

240 # @param payoutRewards: whether rewards get distributed to bidders
241 @public
242 def abortAuction(payoutRewards: bool):
243 assert msg.sender == self.owner, "Owner only"
244 assert self.auction.lockupEnd > 0, "Nothing to abort"
245

246 staker: address
247 rewardPerSlot_: uint256(tok)
248 slotsSold: uint256 = self.auction.slotsSold
249

250 if payoutRewards:

page 22

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

251 assert self._isFinalised(), "Not finalised"
252 rewardPerSlot_ = self.rewardPerSlot
253 self.totalAuctionRewards -= slotsSold * rewardPerSlot_
254

255 for i in range(MAX_SLOTS):
256 staker = self.stakers[i]
257 if staker == ZERO_ADDRESS:
258 break
259

260 if payoutRewards:
261 self.selfStakerDeposits[staker] += self.stakerSlots[staker] *

rewardPerSlot_↪→

262 clear(self.stakerSlots[staker])
263

264 clear(self.stakers)
265 clear(self.auction)
266 clear(self.rewardPerSlot)
267

268 log.AuctionAborted(self.currentAID, payoutRewards)
269

270

271 # @notice Enter a bid into the auction. Requires the sender's deposits
+ _topup >= currentPrice or↪→

272 # specify _topup = 0 to automatically calculate and transfer the
topup needed to make a bid at the↪→

273 # current price. Beforehand the sender must have approved the ERC20
contract to allow the transfer↪→

274 # of at least the topup to the auction contract via
ERC20.approve(auctionContract.address, amount)↪→

275 # @param _topup: Set to 0 to bid current price (automatically
calculating and transfering required topup),↪→

276 # o/w it will be interpreted as a topup to the existing deposits
277 # @dev Only one bid per address and auction allowed, as time of bidding

also specifies the priority↪→

278 # in slot allocation
279 # @dev No bids below current auction price allowed
280 @public
281 def bid(_topup: uint256(tok)):
282 assert self._isBiddingPhase(), "Not in bidding phase"
283 assert self.stakerSlots[msg.sender] == 0, "Sender already bid"
284

285 _currentAID: uint256 = self.currentAID
286 currentPrice: uint256(tok) = self._getCurrentPrice()
287 totDeposit: uint256(tok) = self.pledgedDeposits[msg.sender] +

self.selfStakerDeposits[msg.sender]↪→

288

289 # cannot modify input argument
290 topup: uint256(tok) = _topup

page 23

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

291 if (currentPrice > totDeposit) and(_topup == 0):
292 topup = currentPrice - totDeposit
293 else:
294 assert totDeposit + topup >= currentPrice, "Bid below current

price"↪→

295

296 # Update deposits & stakers
297 self.bidAtPrice[msg.sender] = currentPrice
298 self.selfStakerDeposits[msg.sender] += topup
299 slots: uint256 = min((totDeposit + topup) / currentPrice,

self.auction.slotsOnSale - self.auction.slotsSold)↪→

300 self.stakerSlots[msg.sender] = slots
301 self.auction.slotsSold += slots
302 self.stakers[self.auction.uniqueStakers] = msg.sender
303 self.auction.uniqueStakers += 1
304

305 # If pool: move unclaimed rewards and clear
306 if self.registeredPools[msg.sender].AID == _currentAID:
307 unclaimed: uint256(tok) =

self.registeredPools[msg.sender].remainingReward↪→

308 clear(self.registeredPools[msg.sender])
309 self.pledgedDeposits[msg.sender] -= unclaimed
310 self.selfStakerDeposits[msg.sender] += unclaimed
311

312 # Transfer topup if necessary
313 if topup > 0:
314 success: bool = self.token.transferFrom(msg.sender, self,

as_unitless_number(topup))↪→

315 assert success, "Transfer failed"
316 log.Bid(_currentAID, msg.sender, currentPrice, totDeposit + topup)
317

318 # @Notice Anyone can supply the correct final price to finalise the
auction and calculate the number of slots each↪→

319 # staker has won. Required before lock-up can be ended or withdrawals
can be made↪→

320 # @param finalPrice: proposed solution for the final price. Throws if
not the correct solution↪→

321 # @dev Allows to move the calculation of the price that clear the
auction off-chain↪→

322 @public
323 def finaliseAuction(finalPrice: uint256(tok)):
324 currentPrice: uint256(tok) = self._getCurrentPrice()
325 assert finalPrice >= currentPrice, "Suggested solution below current

price"↪→

326 assert self.auction.finalPrice == 0, "Auction already finalised"
327 assert self.auction.lockupEnd >= 0, "Lockup has already ended"
328

329 slotsOnSale: uint256 = self.auction.slotsOnSale

page 24

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

330 slotsRemaining: uint256 = slotsOnSale
331 slotsRemainingP1: uint256 = slotsOnSale
332 finalPriceP1: uint256(tok) = finalPrice + 1
333

334 uniqueStakers_int128: int128 = convert(self.auction.uniqueStakers,
int128)↪→

335 staker: address
336 totDeposit: uint256(tok)
337 slots: uint256
338 currentSlots: uint256
339 _bidAtPrice: uint256(tok)
340

341 for i in range(MAX_SLOTS):
342 if i >= uniqueStakers_int128:
343 break
344

345 staker = self.stakers[i]
346 _bidAtPrice = self.bidAtPrice[staker]
347 slots = 0
348

349 if finalPrice <= _bidAtPrice:
350 totDeposit = self.selfStakerDeposits[staker] +

self.pledgedDeposits[staker]↪→

351

352 if slotsRemaining > 0:
353 # finalPrice will always be > 0 as reserveStake required

to be > 0↪→

354 slots = min(totDeposit / finalPrice, slotsRemaining)
355 currentSlots = self.stakerSlots[staker]
356 if slots != currentSlots:
357 self.stakerSlots[staker] = slots
358 slotsRemaining -= slots
359

360 if finalPriceP1 <= _bidAtPrice:
361 slotsRemainingP1 -= min(totDeposit / finalPriceP1,

slotsRemainingP1)↪→

362

363 # later bidders dropping out of slot-allocation as earlier
bidders already claim all slots at the final price↪→

364 if slots == 0:
365 clear(self.stakerSlots[staker])
366 clear(self.stakers[i])
367

368 if (finalPrice == self.auction.reserveStake) and
(self._isBiddingPhase() == False):↪→

369 # a) reserveStake clears the auction and reserveStake + 1 does
not↪→

page 25

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

370 doesClear: bool = (slotsRemaining == 0) and (slotsRemainingP1 >
0)↪→

371 # b) reserveStake does not clear the auction, accordingly
neither will any other higher price↪→

372 assert (doesClear or (slotsRemaining > 0)), "reserveStake is not
the best solution"↪→

373 else:
374 assert slotsRemaining == 0, "finalPrice does not clear auction"
375 assert slotsRemainingP1 > 0, "Not largest price clearing the

auction"↪→

376

377 self.auction.finalPrice = finalPrice
378 self.auction.slotsSold = slotsOnSale - slotsRemaining
379 log.AuctionFinalised(self.currentAID, finalPrice, slotsOnSale -

slotsRemaining)↪→

380

381 # @notice Anyone can end the lock-up of an auction, thereby allowing
everyone to↪→

382 # withdraw their stakes and rewards. Auction must first be finalised
through finaliseAuction().↪→

383 @public
384 def endLockup():
385 # Prevents repeated calls of this function as self.auction will get

reset here↪→

386 assert self.auction.finalPrice > 0, "Auction not finalised yet or no
auction to end"↪→

387 assert block.number >= self.auction.lockupEnd, "Lockup not over"
388

389 slotsSold: uint256 = self.auction.slotsSold
390 rewardPerSlot_: uint256(tok) = self.rewardPerSlot
391 self.totalAuctionRewards -= slotsSold * rewardPerSlot_
392 self.earliestDelete = block.timestamp + DELETE_PERIOD
393

394 # distribute rewards & cleanup
395 staker: address
396

397 for i in range(MAX_SLOTS):
398 staker = self.stakers[i]
399 if staker == ZERO_ADDRESS:
400 break
401

402 self.selfStakerDeposits[staker] += self.stakerSlots[staker] *
rewardPerSlot_↪→

403 clear(self.stakerSlots[staker])
404

405 clear(self.stakers)
406 clear(self.auction)
407 clear(self.rewardPerSlot)

page 26

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

408

409 log.LockupEnded(self.currentAID)
410

411 # @param AID: auction ID, has to match self.currentAID
412 # @param _totalReward: total reward committed to stakers, has to be

paid upon↪→

413 # calling this and be approved with the ERC20 token
414 # @param _rewardPerTok: _rewardPerTok / REWARD_PER_TOK_DENOMINATOR will

be paid↪→

415 # for each stake pledged to the pool. Meaning _rewardPerTok should
equal↪→

416 # reward per token * REWARD_PER_TOK_DENOMINATOR (see
getDenominator())↪→

417 @public
418 def registerPool(AID: uint256,
419 _totalReward: uint256(tok),
420 _rewardPerTok: uint256(tok)):
421 assert AID == self.currentAID, "Not current auction"
422 assert self._isBiddingPhase(), "Not in bidding phase"
423 assert self.registeredPools[msg.sender].AID < AID, "Pool already

exists"↪→

424 assert self.registeredPools[msg.sender].remainingReward == 0,
"Unclaimed rewards"↪→

425

426 self.registeredPools[msg.sender] = Pool({remainingReward:
_totalReward,↪→

427 rewardPerTok: _rewardPerTok,
428 AID: AID})
429 # overwrite any pledgedDeposits that existed for the last auction
430 self.pledgedDeposits[msg.sender] = _totalReward
431

432 success: bool = self.token.transferFrom(msg.sender, self,
as_unitless_number(_totalReward))↪→

433 assert success, "Transfer failed"
434

435 maxStake: uint256(tok) = (_totalReward * REWARD_PER_TOK_DENOMINATOR)
/ _rewardPerTok↪→

436 log.PoolRegistration(AID, msg.sender, maxStake, _rewardPerTok)
437

438 # @notice Move pool rewards that were not claimed by anyone into
439 # selfStakerDeposits. Automatically done if pool enters a bid.
440 # @dev Requires that the auction has passed the bidding phase
441 @public
442 def retrieveUnclaimedPoolRewards():
443 assert ((self._isBiddingPhase() == False)
444 or (self.registeredPools[msg.sender].AID <

self.currentAID)), "Bidding phase of AID not over"↪→

445

page 27

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

446 unclaimed: uint256(tok) =
self.registeredPools[msg.sender].remainingReward↪→

447 clear(self.registeredPools[msg.sender])
448

449 self.pledgedDeposits[msg.sender] -= unclaimed
450 self.selfStakerDeposits[msg.sender] += unclaimed
451

452 # @notice Pledge stake to a staking pool. Possible from auction
intialisation↪→

453 # until the end of the bidding phase or until the pool has made a
bid.↪→

454 # Stake from the last auction can be taken over to the next auction.
If amount↪→

455 # exceeds the previous stake, this contract must be approved with the
ERC20 token↪→

456 # to transfer the difference to this contract.
457 # @dev Only one pledge per address and auction allowed
458 # @dev If decreasing the pledge, the difference is immediately paid out
459 # @dev If the pool operator has already bid, this will throw with

"Rewards depleted"↪→

460 # @param AID: The auction ID
461 # @pool: The address of the pool
462 # @param amount: The new total amount, not the difference to existing

pledges↪→

463 @public
464 def pledgeStake(AID: uint256, pool: address, amount: uint256(tok)):
465 assert AID == self.currentAID, "Not current AID"
466 assert self._isBiddingPhase(), "Not in bidding phase"
467 assert self.registeredPools[pool].AID == AID, "Not a registered pool"
468

469 existingPledgeAmount: uint256(tok) =
self.poolStakerDeposits[msg.sender].amount↪→

470 assert self.poolStakerDeposits[msg.sender].AID < AID, "Already
pledged"↪→

471

472 reward: uint256(tok) = ((self.registeredPools[pool].rewardPerTok *
amount)↪→

473 / REWARD_PER_TOK_DENOMINATOR)
474 assert self.registeredPools[pool].remainingReward >= reward, "Rewards

depleted"↪→

475 self.registeredPools[pool].remainingReward -= reward
476

477 # pool reward is already included in pledgedDeposits
478 self.pledgedDeposits[pool] += amount
479 self.poolStakerDeposits[msg.sender] = Pledge({amount: amount +

reward,↪→

480 AID: AID})
481

page 28

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

482 if amount > existingPledgeAmount:
483 success: bool = self.token.transferFrom(msg.sender, self,

as_unitless_number(amount - existingPledgeAmount))↪→

484 assert success, "Transfer failed"
485 elif amount < existingPledgeAmount:
486 success: bool = self.token.transfer(msg.sender,

as_unitless_number(existingPledgeAmount - amount))↪→

487 assert success, "Transfer failed"
488

489 log.NewPledge(AID, msg.sender, pool, amount)
490

491 # @notice Withdraw any self-stake exceeding the required lockup. In
case sender is a bidder in the↪→

492 # current auction, this requires the auction to be finalised through
finaliseAuction(),↪→

493 # o/w _calculateSelfStakeNeeded() will throw
494 @public
495 def withdrawSelfStake() -> uint256(tok):
496 selfStake: uint256(tok) = self.selfStakerDeposits[msg.sender]
497 selfStakeNeeded: uint256(tok) =

self._calculateSelfStakeNeeded(msg.sender)↪→

498 # not guaranteed to be initialised to 0 without setting it
explicitly↪→

499 withdrawal: uint256(tok) = 0
500

501 if selfStake > selfStakeNeeded:
502 withdrawal = selfStake - selfStakeNeeded
503 self.selfStakerDeposits[msg.sender] -= withdrawal
504 elif selfStake < selfStakeNeeded:
505 assert False, "Critical failure"
506

507 success: bool = self.token.transfer(msg.sender,
as_unitless_number(withdrawal))↪→

508 assert success, "Transfer failed"
509

510 return withdrawal
511

512 # @notice Withdraw pledged stake after the lock-up has ended
513 @public
514 def withdrawPledgedStake() -> uint256(tok):
515 withdrawal: uint256(tok)
516 if ((self.poolStakerDeposits[msg.sender].AID < self.currentAID)
517 or (self.auction.lockupEnd == 0)):
518 withdrawal += self.poolStakerDeposits[msg.sender].amount
519 clear(self.poolStakerDeposits[msg.sender])
520

521 success: bool = self.token.transfer(msg.sender,
as_unitless_number(withdrawal))↪→

page 29

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

522 assert success, "Transfer failed"
523

524 return withdrawal
525

526 # @notice Allow the owner to remove the contract, given that no auction
is↪→

527 # active and at least DELETE_PERIOD blocks have past since the last
lock-up end.↪→

528 @public
529 def deleteContract():
530 assert msg.sender == self.owner, "Owner only"
531 assert self.auction.lockupEnd == 0, "In lockup phase"
532 assert block.timestamp >= self.earliestDelete, "earliestDelete not

reached"↪→

533

534 contractBalance: uint256 = self.token.balanceOf(self)
535 success: bool = self.token.transfer(self.owner, contractBalance)
536 assert success, "Transfer failed"
537

538 selfdestruct(self.owner)
539

540 ##
541 # Getters
542 ##
543 @public
544 @constant
545 def getERC20Address() -> address:
546 return self.token
547

548 @public
549 @constant
550 def getDenominator() -> uint256(tok):
551 return REWARD_PER_TOK_DENOMINATOR
552

553 @public
554 @constant
555 def getFinalStakerSlots(staker: address) -> uint256:
556 assert self._isFinalised(), "Slots not yet final"
557 return self.stakerSlots[staker]
558

559 # @dev Always returns an array of MAX_SLOTS with elements > unique
bidders = zero↪→

560 @public
561 @constant
562 def getFinalStakers() -> address[MAX_SLOTS]:
563 assert self._isFinalised(), "Stakers not yet final"
564 return self.stakers
565

page 30

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

566 @public
567 @constant
568 def getFinalSlotsSold() -> uint256:
569 assert self._isFinalised(), "Slots not yet final"
570 return self.auction.slotsSold
571

572 @public
573 @constant
574 def isBiddingPhase() -> bool:
575 return self._isBiddingPhase()
576

577 @public
578 @constant
579 def isFinalised() -> bool:
580 return self._isFinalised()
581

582 @public
583 @constant
584 def getCurrentPrice() -> uint256(tok):
585 return self._getCurrentPrice()
586

587 @public
588 @constant
589 def calculateSelfStakeNeeded(_address: address) -> uint256(tok):
590 return self._calculateSelfStakeNeeded(_address)

simpleStakePool.vy
1 #--
2 #
3 # Copyright 2019 Fetch.AI Limited
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0

10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied.↪→

14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16 #
17 #--
18 from vyper.interfaces import ERC20
19 import interfaces.dutchStakingInterface as Auction

page 31

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

20

21 units: {
22 tok: "smallest ERC20 token unit",
23 }
24

25 # Only for the pool owner to keep track. This info could also be
inferred from the auction contract,↪→

26 # allowing to safe storage costs
27 struct Pool:
28 maxStake: uint256(tok)
29 totalReward: uint256(tok)
30 rewardPerTok: uint256(tok)
31

32 token: ERC20
33 auctionContract: Auction
34 owner: public(address)
35

36 # AID -> pool
37 registeredPools: public(map(uint256, Pool))
38 rewardPerTokDenominator: uint256(tok)
39

40

41 @public
42 def __init__(_ERC20Address: address, _auctionContract: address):
43 self.owner = msg.sender
44 self.token = ERC20(_ERC20Address)
45 self.auctionContract = Auction(_auctionContract)
46 self.rewardPerTokDenominator = self.auctionContract.getDenominator()
47

48 # @dev Requires that this contract has an ERC20 balance of _totalReward
49 # @dev Cleans up storage for any registered pool for the previous

auction↪→

50 @public
51 def registerPool(AID: uint256,
52 _maxStake: uint256(tok),
53 _totalReward: uint256(tok),
54 _rewardPerTok: uint256(tok)):
55 assert msg.sender == self.owner, "Owner only"
56 assert (_totalReward * self.rewardPerTokDenominator) / _maxStake ==

_rewardPerTok, "_totalReward, _rewardPerTok mismatch"↪→

57

58 self.registeredPools[AID] = Pool({maxStake: _maxStake,
59 totalReward: _totalReward,
60 rewardPerTok: _rewardPerTok})
61

62 self.token.approve(self.auctionContract,
as_unitless_number(_totalReward))↪→

63 self.auctionContract.registerPool(AID, _totalReward, _rewardPerTok)

page 32

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

64

65 clear(self.registeredPools[AID - 1])
66

67 # @dev Enter a bid at the current price, given that pledgedDeposits >=
price↪→

68 @public
69 def bidPledgedStake():
70 assert msg.sender == self.owner, "Owner only"
71 amount: uint256(tok)
72 self.auctionContract.bid(amount)
73

74 # @notice Make a bid at the current price, adding any amount exceeding
75 # pledgedDeposits as selfStake. Requires that this contract has an

ERC20↪→

76 # balance of that amount
77 @public
78 def bidPledgedAndSelfStake(amount: uint256(tok)):
79 assert msg.sender == self.owner, "Owner only"
80

81 currentPrice: uint256(tok) = self.auctionContract.getCurrentPrice()
82 existingPoolStake: uint256(tok) =

self.auctionContract.pledgedDeposits(self) +
self.auctionContract.selfStakerDeposits(self)

↪→

↪→

83 toApprove: uint256(tok)
84

85 if (amount == 0) and (currentPrice > existingPoolStake):
86 toApprove = currentPrice - existingPoolStake
87 else:
88 assert amount >= currentPrice - existingPoolStake, "Amount below

price"↪→

89 toApprove = amount - existingPoolStake
90

91 self.token.approve(self.auctionContract,
as_unitless_number(toApprove))↪→

92 self.auctionContract.bid(toApprove)
93

94 # @notice Withdraw self stake and accumulated rewards, transfer them to
this contract↪→

95 @public
96 def withdrawSelfStake() -> uint256(tok):
97 assert msg.sender == self.owner, "Owner only"
98 return self.auctionContract.withdrawSelfStake()
99

100 # @notice Withdraw this contracts balance
101 # @param amount: amount to transfer to the owner. Set to 0 to transfer

full balance↪→

102 @public
103 def retrievePoolBalance(amount: uint256):

page 33

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

104 assert msg.sender == self.owner, "Owner only"
105 if amount == 0:
106 self.token.transfer(self.owner, self.token.balanceOf(self))
107 else:
108 self.token.transfer(self.owner, amount)
109

110 # @notice Retrieve unclaimed pool rewards.
111 # @dev Automatically done if a bid is entered
112 @public
113 def retrieveUnclaimedPoolRewards():
114 assert msg.sender == self.owner, "Owner only"
115 self.auctionContract.retrieveUnclaimedPoolRewards()

page 34

	Disclaimer
	About CertiK
	Executive Summary
	Vulnerability Classification
	Testing Summary
	Audit Score
	Type of Issues
	Vulnerability Details

	Review Notes
	Source Code

