
 

 

 

 

 

 

 

0 



 

 

 

 

 

   

1 



 

Contents 

Contents 2 

Disclaimer 3 

About CertiK 3 

Executive Summary 4 

Testing Summary 5 
SECURITY LEVEL 5 

Review Notes 6 
Introduction 6 
Summary 7 

Findings 8 
Exhibit 1 8 
Exhibit 2 9 
Exhibit 3 10 
Exhibit 4 11 
Exhibit 5 12 
Exhibit 6 13 
Exhibit 7 14 
Exhibit 8 15 

 

 

 

 

 

 

 

2 



 

 Disclaimer 

This report is subject to the terms and conditions (including without limitation, description of 

services, confidentiality, disclaimer and limitation of liability) set forth in the Verification 

Services Agreement between CertiK and Fetch.ai (the “Company”), or the scope of 

services/verification, and terms and conditions provided to the Company in connection with the 

verification (collectively, the “Agreement”). This report provided in connection with the Services 

set forth in the Agreement shall be used by the Company only to the extent permitted under the 

terms and conditions set forth in the Agreement. This report may not be transmitted, disclosed, 

referred to or relied upon by any person for any purposes without CertiK’s prior written consent. 

 

About CertiK 

CertiK is a technology-led blockchain security company founded by Computer Science 

professors from Yale University and Columbia University built to prove the security and 

correctness of smart contracts and blockchain protocols. 

 

CertiK, in partnership with grants from IBM and the Ethereum Foundation, CertiK’s mission of 

every audit is to apply different approaches and detection methods, ranging from manual, static, 

and dynamic analysis, to ensure that projects are checked against known attacks and potential 

vulnerabilities. CertiK leverages a team of seasoned engineers and security auditors to apply 

testing methodologies and assessments to each project, in turn creating a more secure and 

robust software system. 

 

3 



 

CertiK has served more than 100 clients with high quality auditing and consulting services, 

ranging from stablecoins such as Binance’s BGBP and Paxos Gold to decentralized oracles 

such as Band Protocol and Tellor. CertiK customizes its engineering tool kits, while applying 

cutting-edge research on smart contracts, for each client on its project to offer a high quality 

deliverable.  For more information: https://certik.io. 

 

Executive Summary 

This report has been prepared for Fetch.ai to discover issues and vulnerabilities in the source 

code of their MetalX smart contracts. A comprehensive examination has been performed, 

utilizing Dynamic Analysis, Static Analysis, and Manual Review techniques. 

 

The auditing process pays special attention to the following considerations: 

 

● Testing the smart contracts against both common and uncommon attack vectors. 

● Assessing the codebase to ensure compliance with current best practices and industry 

standards. 

● Ensuring contract logic meets the specifications and intentions of the client. 

● Cross referencing contract structures and implementations against similar smart 

contracts produced by industry leaders. 

● Thorough line-by-line manual review of the entire codebase by industry experts. 

 

 

 

 

4 

https://certik.io/


 

Testing Summary 

SECURITY LEVEL 

 

Smart Contract Audit 

This report has been prepared as a product of the 

Smart Contract Audit request by Fetch.ai.  

This audit was conducted to discover issues and 

vulnerabilities in the source code of Fetch.ai’s 

MetalX Smart Contracts. 

TYPE  Smart Contract 

SOURCE CODE 

https://github.com/orgbitsap

phire/metalx-token/tree/52a5

a6281196a5750cab54245622

d2e613e4727c 

PLATFORM  EVM 

 

 
LANGUAGE  Solidity 

REQUEST 

DATE 
Aug 17, 2020 

REVISION 

DATE 
Sep 09, 2020 

METHODS 

A comprehensive examination 

has been performed using 

Dynamic Analysis, Static 

Analysis, and Manual Review. 

5 



 

Review Notes 

Introduction 

CertiK team was contracted by Fetch.ai to audit the design and implementation of their MetalX 

Smart Contracts for security vulnerabilities and compliance with Solidity language standards 

under different perspectives and with different tools such as static analysis and manual reviews 

by smart contract experts to find specific areas of the code that present concrete problems, as 

well as general observations that traverse the entire codebase horizontally, which could improve 

its quality as a whole. 

 

The audited commit hash is: 

52a5a6281196a5750cab54245622d2e613e4727c 

 

The audited files and their associated sha256 hashes are: 

1. interfaces/IERC20.sol 

78d45685e5f888c15af7f2123053c4705bd6f6d632787bf3883c3a9e577a25f2 

2. interfaces/IMetalX.sol 

cf1009985d61b44989d6e862710241dbd09c2abbd743e53767f8d0172284a59e 

3. interfaces/IStaking.sol 

074b6a62ba8f147458746cc82c975e61270a833e3d3a5ec4c8d45cc5143f61f1 

4. contracts/MetalX.sol 

42d4f7ff49093af6fdba84a99713f3089073623e5dac5bb26fb25d303b197796 

5. contracts/Staking.sol 

eee16539ed69e46585f5bb38bdd00d52e76f549bd81286ede4a826b742bb6480 

 

6 



 

Summary 

Fetch.ai has designed and implemented a staking smart contract for their MTLX ERC-20 token. The 

Staking contract allows any user to deposit an amount of FET tokens up until the "frozen window" defined 

by the owner of the Staking contract. During the frozen window, deposited FET tokens cannot be 

deposited or withdrawn and all deposited FET tokens begin to accumulate by the drip amount per-block 

as set by the Staking contract owner. Users can withdraw any amount of their deposited FET tokens 

before the frozen window has been reached without any MTLX token accumulation taking effect. 

Redeeming accumulated MTLX tokens during the frozen window resets the accumulation factor for a 

particular user. Users can redeem accumulated MTLX tokens at any time, but cannot withdraw their 

staked FET tokens until the frozen window has passed. 

The team statically analyzed and manually reviewed the smart contracts of the provided MetalX and 

Staking implementations for security vulnerabilities and compliance with Solidity language preferred 

practices and standards. The codebase was found to be well-written and has a sound implementation, 

but ignored the Check Effects Interactions pattern and did not adhere to typical Solidity naming 

conventions. 2 minor and 7 informational findings were found. While these issues did not compromise 

the system, we recommended that they should be addressed in order to clearly convey and verify that the 

system functions as intended, which Fetch.ai addressed in the following commits: 

1. 06678dd6489c2e51bee5a39cdd26afc74216c529 

2. b3c6cf62a9dc21634436fd04a9a63d8c74827f11 

3. e9e87c74e1cc9eb49f369637587fbb0c56d0658b 

Fetch.ai also made an additional commit to the MetalX repository that introduced a cap to the MetalX 

token contract, which was verified to not introduce any new issues. The commit introducing the token cap 

is 6dfe71d8128966f519d5ef558b19c7e61be02c6a. 

7 



 

Findings 

Exhibit 1 

TITLE  TYPE  SEVERITY  LOCATION 

Unused return value  State Change  Minor 
Staking.sol, 

L136-L138 

Insufficient internal implementation  Implementation  Minor 
Staking.sol, 

L125-140 

 

[MINOR] Description: 

The Staking._redeem function was used by other functions in the contract in a way that prevented it from 

safely considering the Solidity Check Effects Interactions pattern. An external call was also made in the 

internal Staking._redeem function to the issuingToken state variable's IERC20.transfer function without 

taking the result of the token transfer into account. 

 

Recommendation: 

We recommended refactoring the internal Staking._redeem function to return a bool and to take an 

explicit amount parameter, which can be safely calculated ahead of time by other functions in the 

contract. We also recommended that the call to the IERC20.transfer function should be required to 

succeed. 

 

Alleviation: 

The recommendations were applied in commit b3c6cf62a9dc21634436fd04a9a63d8c74827f11. 

 

8 



 

Exhibit 2 

TITLE  TYPE  SEVERITY  LOCATION 

Potential for re-entrancy; Out-of-order events  Control Flow  Informational 
Staking.sol, 

L94-L97 

 

[INFORMATIONAL] Description: 

The Staking.deposit function had the potential for re-entrancy due to ignoring the Solidity Check Effects 

Interactions pattern, which can lead to emitting events out of order and possibly cause issues for third 

parties. 

 

Recommendation: 

We recommended to follow the Solidity Check Effects Interactions pattern and that all events be emitted 

before making external calls. 

 

Alleviation: 

The recommendations were applied in commit e9e87c74e1cc9eb49f369637587fbb0c56d0658b. 

 

 

 

 

 

 

 

 

 

9 



 

Exhibit 3 

TITLE  TYPE  SEVERITY  LOCATION 

Potential for re-entrancy; Out-of-order events  Control Flow  Informational 
Staking.sol, 

L101-L117 

 

[INFORMATIONAL] Description: 

The Staking.withdrawAndRedeem function had the potential for re-entrancy due to ignoring the Solidity 

Check Effects Interactions pattern, which can lead to emitting events out of order and possibly cause 

issues for third parties. 

 

Recommendation: 

We recommended calculating the accumulated MTLX tokens before redeeming, applying changes to all 

state variables, emitting all events, calling the internal Staking._redeem function with the 

already-calculated accumulated amount and requiring it to succeed, then finally withdrawing the staked 

FET tokens. 

 

Alleviation: 

The recommendations were applied in commit e9e87c74e1cc9eb49f369637587fbb0c56d0658b. 

 

 

 

 

 

 

 

10 



 

Exhibit 4 

TITLE  TYPE  SEVERITY  LOCATION 

Potential for re-entrancy; Out-of-order events  Control Flow  Informational 
Staking.sol, 

L119-L123 

 

[INFORMATIONAL] Description: 

The Staking.redeem function had the potential for re-entrancy due to ignoring the Solidity Check Effects 

Interactions pattern, which can lead to emitting events out of order and possibly cause issues for third 

parties. 

 

Recommendation: 

We recommended calculating the accumulated MTLX tokens before redeeming, emitting all events, 

calling the internal Staking._redeem function with the already-calculated accumulated amount and 

requiring it to succeed. 

 

Alleviation: 

The recommendations were applied in commit e9e87c74e1cc9eb49f369637587fbb0c56d0658b. 

 

 

 

 

 

 

 

 

11 



 

Exhibit 5 

TITLE  TYPE  SEVERITY  LOCATION 

Redundant interface definition  Implementation  Informational  IERC20.sol 

 

[INFORMATIONAL] Description: 

There is an unused IERC20 interface included in the codebase inside interfaces/IERC20.sol which is a 

direct copy of the previously-verified OpenZeppelin implementation of the IERC20 interface. 

 

Recommendation: 

Since the codebase already depends on OpenZeppelin contracts and uses its IERC20 interface definition 

in place of the redundant IERC20 interface definition, consider removing the 

interfaces/IERC20.sol file. 

 

Alleviation: 

No alleviation was made, which is acceptable as the interface is unused. 

 

 

 

 

 

 

 

 

 

 

12 



 

Exhibit 6 

TITLE  TYPE  SEVERITY  LOCATION 

Function names not in mixed-case  Naming Conventions  Informational  IStaking.sol 

 

[MINOR] Description: 

The IStaking interface had functions which were not named using mixed-case. 

 

Recommendation: 

We recommended renaming the functions in the IStaking contract using mixed-case instead of 

snake-case. 

 

Alleviation: 

The recommendations were applied in commit b3c6cf62a9dc21634436fd04a9a63d8c74827f11. 

 

 

 

 

 

 

 

 

 

 

 

 

13 



 

Exhibit 7 

TITLE  TYPE  SEVERITY  LOCATION 

Function names not in mixed-case  Naming Conventions  Informational  Staking.sol 

 

[INFORMATIONAL] Description: 

The Staking contract had functions which were not named using mixed-case. 

 

Recommendation: 

We recommended renaming the functions in the Staking contract using mixed-case instead of 

snake-case. 

 

Alleviation: 

The recommendations were applied in commit b3c6cf62a9dc21634436fd04a9a63d8c74827f11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 



 

Exhibit 8 

TITLE  TYPE  SEVERITY  LOCATION 

State variable names not in mixed-case  Naming Conventions  Informational  Staking.sol 

 

[INFORMATIONAL] Description: 

The Staking contract had state variables which were not named using mixed-case. 

 

Recommendation: 

We recommended renaming the state variables in the Staking contract using mixed-case instead of 

snake-case. 

 

Alleviation: 

The recommendations were applied in commit b3c6cf62a9dc21634436fd04a9a63d8c74827f11. 

15 


