
Fetch.ai
Atomix Smart Contracts

Security Assessment

February 12th, 2021

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of
the economics or value of any “product” or “asset” created by any team or project that
contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free
nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice,
nor should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source
code provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the
structure, implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has completed a round of auditing with the intention
to increase the quality of the company/product's IT infrastructure and or source code.

Project Name Fetch.ai - Atomix Smart Contracts

Description Smart contracts of the atomix_contracts repository.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. 707cca61374923246436f990447aae68570d6905
2. 294675db10f0aeffb7ef442f1a6e320afa3599ed

Delivery Date Feb. 12, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline Feb. 1, 2021 - Feb. 6, 2021

 Total Issues 39 (35 Resolved, 4 Informational Acknowledged)

 Total Critical 4 (4 Resolved)

 Total Major 0

 Total Medium 8 (8 Resolved)

 Total Minor 9 (9 Resolved)

 Total Informational 18 (14 Resolved, 4 Acknowledged)

 Overview

Project Summary

Audit Summary

Vulnerability Summary

 Executive Summary

The codebase of Fetch.ai's Atomix repository was found to be well-written, but contained
some inefficient usage of named return variables and function visibilities. Multiple cases were
identified in the LendingPool contract where minor re-entrancy was possible, leading to
events being emitted out of order but not compromising the state of the pool itself. In the
same locations within the LendingPool contract, the ERC20.transferFrom function was
called often, without checking its result. Not all ERC-20 implementations are guaranteed to
revert, so we recommended to import the OpenZeppelin SafeERC20 library and use its
safeTransferFrom function instead.

While not in the scope of the audit, we noted that the AtomixBase contract declares two
public virtual functions onRegistryUpdate and onRegistryPostUpdate , both of which take
an IContractRegistry parameter and have no modifiers or requirements within their
function bodies. Due to the manner of implementation, the InterestManager , LendingPool
and LendingPoolStorageModifier contracts override these functions in order to apply
changes to their state variables, taking the values from the supplied IContractRegistry
parameter, before calling the base function implementation by way of super . No
requirements or any form of access restriction is implemented in these functions, which
allowed anyone to call them and supply their own IContractRegistry value, setting the
state variables within each of the contracts to any of the values that they require. Additionally,
the system became paused. We pointed out that this can be resolved by either introducing
access restriction to the onRegistryUpdate and onRegistryPostUpdate functions, or by
changing their visibility to internal in order to prevent external calling altogether. The
corresponding functions are now declared as internal.

INC-04, LPO-19 and PSB-02 suggest refactoring functions into modifiers, which the Fetch.ai
team agreed could be done, but stated that they seem to be more of a question of style. They
have chosen not to create their own modifiers because the development environment,
Brownie, has a bug where the code coverage tools do not instrument them properly.
Implementing this as functions is no worse from a gas-cost POV and in fact, if comparing their
method to a straight replacement with modifiers, their approach is more gas-efficient as the
file size is smaller due to the code being implemented as a function rather than inlined.

During the course of the engagement, the Fetch.ai team have also been made aware of a re-
entrancy issue with the withdrawACT which was consider of critical severity. The
msg.sender (usually the borrower) could be a contract and implement the
ERC1155Receiver function onERC1155Received and use it to borrow funds. This would have

resulted in a borrower taking out a loan with no ACT collateral backing it. All of the specific re-
entrancy issues have been resolved, and additional more general guards are in place for
unseen attacks. The implementation was found to be implemented correctly. Key changes
here:

1. Require that spreadDestinationWallet , lendingPoolWalletAddress and
breachAddress all implement the AtomixWallet interface (so we can be reasonably

sure we are not passing in an incorrect contract when we deploy the system).
2. Relevant contracts implement the checks-effects-interactions pattern as well as inheriting

from OpenZeppelin ReentrancyGuard and employing the nonReentrant() modifier.
3. There is an additional check at the end of withdrawACT() and borrow() to confirm that

the borrower is within their borrowing limit when we exit the function.

ID Contract Location

INC InterestCalculator contracts/ALP/InterestCalculator.sol

INM InterestManager contracts/ALP/InterestManager.sol

LPO LendingPool contracts/ALP/LendingPool.sol

LPS LendingPoolStorage contracts/ALP/LendingPoolStorage.sol

LSM LendingPoolStorageModifier contracts/ALP/LendingPoolStorageModifier.sol

PSB PoolStorageBase contracts/ALP/PoolStorageBase.sol

RLL RateModelLL contracts/ALP/RateModelLL.sol

RLP RateModelLP contracts/ALP/RateModelLP.sol

InterestCalculator
InterestManager

RateModelLP

RateModelLL

LendingPool

LendingPoolStorage
LendingPoolStorageModifier

PoolStorageBase

 Files In Scope

46%
21%

23%

10%

Informational
Medium
Minor
Critical

ID Title Type Severity Resolved

INC-01 Constant variables not
following naming
conventions

Naming Conventions Informational

INC-02 Functions should be re-
declared as external

Gas Optimization Informational

INC-03 Redundant array length
calculation

Gas Optimization Informational

INC-04 Function should be
refactored into a modifier

Implementation Informational

 Findings

INC-05 Contradictory
requirement

Volatile Code Medium

INC-06 Redundant calculation Arithmetic Informational

INC-07 Unused named return
variables

Implementation Informational

INC-08 Potential integer
truncation

Arithmetic Medium

INM-01 Unused named return
variables

Implementation Informational

INM-02 Functions should be re-
declared as external

Gas Optimization Informational

INM-03 Unused named return
variables

Implementation Informational

INM-04 Unused named return
variable

Implementation Informational

INM-05 Lack of access restriction
allows overriding state
variables

Volatile Code Critical

INM-06 Lack of access restriction
allows overriding state
variables

Volatile Code Critical

LPO-01 Unnecessary usage of
SafeMath functionality

Implementation Informational

LPO-02 Functions should be re-
declared as external

Gas Optimization Informational

LPO-03 Potential integer
underflow

Arithmetic Minor

LPO-04 Unused named return
variable

Implementation Informational

LPO-05 Unused result from call to
transferFrom

Volatile Code Medium

LPO-06 Potential for minor re-
entrancy; Out-of-order
events

Volatile Code Minor

LPO-07 Potential for minor re-
entrancy; Out-of-order
events

Volatile Code Minor

LPO-08 Potential for minor re-
entrancy; Out-of-order
events

Volatile Code Minor

LPO-09 Unused result from call to
transferFrom

Volatile Code Medium

LPO-10 Potential for minor re-
entrancy; Out-of-order
events

Volatile Code Minor

LPO-11 Unused result from call to
transferFrom

Volatile Code Medium

LPO-12 Potential for minor re-
entrancy; Out-of-order
events

Volatile Code Minor

LPO-13 Unused result from call to
transferFrom

Volatile Code Medium

LPO-14 Potential for minor re-
entrancy; Out-of-order
events

Volatile Code Minor

LPO-15 Unused result from call to Volatile Code Medium

transferFrom

LPO-16 Potential for minor re-
entrancy; Out-of-order
events

Volatile Code Minor

LPO-17 Unused result from call to
transferFrom

Volatile Code Medium

LPO-18 Potential for minor re-
entrancy; Out-of-order
events

Volatile Code Minor

LPO-19 Function should be
refactored into a modifier

Implementation Informational

LPO-20 Lack of access restriction
allows overriding state
variables

Volatile Code Critical

LSM-01 Lack of access restriction
allows overriding state
variables

Volatile Code Critical

LSM-02 Function should be
refactored into a modifier

Implementation Informational

PSB-01 Function should be re-
declared as external

Gas Optimization Informational

PSB-02 Function should be
refactored into a modifier

Implementation Informational

RLP-01 Unused named return
variables

Implementation Informational

Type Severity Location

Naming
Conventions Informational

contracts/ALP/InterestCalculator.sol L13, L20-L25,
L58

 INC-01: Constant variables not following naming conventions

Description:

The secsPerYear , a0 , a1 , a2 , a3 , a4 , a5 and numBins constant variables in the
InterestCalculator contract are not named in upper-case with underscores, which goes

against the recommended Solidity naming conventions.

Recommendation:

Consider renaming the constant variables to SECS_PER_YEAR , A0 , A1 , A2 , A3 , A4 , A5
and NUM_BINS respectively.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Gas
Optimization Informational

contracts/ALP/InterestCalculator.sol L74, L144, L158,
L165

 INC-02: Functions should be re-declared as external

Description:

The public uploadRateData , getBorrowerAPRRate , minBorrowingApr and
maxBorrowingApr functions in the InterestCalculator contract is should be re-declared

as external.

Recommendation:

Consider re-declaring the public uploadRateData function as external.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Gas Optimization Informational contracts/ALP/InterestCalculator.sol L76-L77

 INC-03: Redundant array length calculation

Description:

The public uploadRateData function in the InterestCalculator contract queries the length
of the supplied rateData array parameter multiple times, which is inefficient.

Recommendation:

Consider storing the rateData.length in a local variable and referencing it in the requirement
and loop on lines 76 and 77 in order to save on the overall cost of gas.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Implementation Informational contracts/ALP/InterestCalculator.sol L85

 INC-04: Function should be refactored into a modifier

Description:

The internal requireOnlyAdmin function should be refactored into a modifier.

Recommendation:

Consider refactoring the requireOnlyAdmin function into a modifier.

Alleviation:

The recommendation was not applied, with the Fetch.ai team stating "Code style favours
functions over modifiers."

Type Severity Location

Volatile Code Medium contracts/ALP/InterestCalculator.sol L111

 INC-05: Contradictory requirement

Description:

The private getFracLookup function in the InterestCalculator contract contains a
contradictory requirement that the supplied utilisationRatio uint256 parameter is greater
than or equal to zero, which will always be true regardless of the supplied value due to being
unsigned.

Recommendation:

Since unsigned integers cannot be negative, consider refactoring the greater-than-or-equal-to
comparion (>=) in the requirement into a greater-than comparison (>).

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Arithmetic Informational contracts/ALP/InterestCalculator.sol L113, L117

 INC-06: Redundant calculation

Description:

The private getFracLookup function in the InterestCalculator contract performs a
redundant calculation on lines 113 and 117 of subtracting 1 from the numBins state variable
and multiplying it by the supplied utilisationRatio parameter:

Recommendation:

Consider storing the result of numBins.sub(1).mul(utilisationRatio) in a local
_minUtilisation variable, then changing the calculation of the local _minIndex variable to
_minUtilisation.div(10**18) and the local _fracIndex variable to
_minUtilisation.sub(_minIndex.mul(10**18)) .

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

uint256 _minIndex = (numBins.sub(1)).mul(utilisationRatio).div(10**18);

uint256 _fracIndex =
(numBins.sub(1)).mul(utilisationRatio).sub(_minIndex.mul(10**18));

Type Severity Location

Implementation Informational contracts/ALP/InterestCalculator.sol L113-L118

 INC-07: Unused named return variables

Description:

The private getFracLookup function in the InterestCalculator contract declares named
minIndex , maxIndex and fracIndex return variables, yet declares local _minIndex ,
_maxIndex and _fracIndex variables and explicitly returns those instead of using the return

variables, which is inefficient.

Recommendation:

Consider removing the local _minIndex , _maxIndex and _fracIndex variable declarations
and assigning to the named minIndex , maxIndex and fracIndex return variables
respectively.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Arithmetic Medium contracts/ALP/InterestCalculator.sol L129-L131

 INC-08: Potential integer truncation

Description:

The public getBorrowerLnAPRRate function in the InterestCalculator contract performs
primitive arithmetic without requiring the values to be valid beforehand, which can result in
over/underflow or multiplying/dividing by zero:

Recommendation:

Since the SafeMath library is already imported in the InterestCalculator contract,
consider using its add , sub , mul and div functions in order to prevent over/underflow or
multiplying/dividing by zero.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

borrowingRateData[minIndex] +
 (fracIndex * (borrowingRateData[maxIndex] -
borrowingRateData[minIndex])) /
 (10**18)

Type Severity Location

Implementation Informational contracts/ALP/InterestManager.sol L84-L90, L92-L99

 INM-01: Unused named return variables

Description:

The private generateHashNames and generateAllHashNames functions in the
InterestManager contract declares a named hashNames return variable, yet declares a local
_hashNames variable and explicitly returns that instead of utilizing the return variable, which is

inefficient.

Recommendation:

Consider removing the local _hashNames variable declaration and assigning to the named
hashNames return variable instead.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Gas Optimization Informational contracts/ALP/InterestManager.sol L145, L178

 INM-02: Functions should be re-declared as external

Description:

The public getSPRRates and getLoanSPRRate functions in the InterestManager contract
should be re-declared as external.

Recommendation:

Consider re-declaration the public getSPRRates and getLoanSPRRate functions as external.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Implementation Informational contracts/ALP/InterestManager.sol L165-L169

 INM-03: Unused named return variables

Description:

The public getSPRRates function in the InterestManager contract declares named
lenderLPSPR , borrowerLPSPR and borrowerLLSPR return variables, yet declares local
lenderLPSPR , borrowerLPSPR and borrowerLLSPR variables and returns those instead,

which is inefficient.

Recommendation:

Consider removing the local lenderLPSPR , borrowerLPSPR and borrowerLLSPR variable
declarations and assigning to the named local lenderLPSPR , borrowerLPSPR and
borrowerLLSPR return variables respectively.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Implementation Informational contracts/ALP/InterestManager.sol L215

 INM-04: Unused named return variable

Description:

The public getLoanSPRRate function in the InterestManager contract declares a named
loanSPR return variable, yet it is never referenced and an explicit return statement is used

instead, which is inefficient.

Recommendation:

Consider assigning to the named loanSPR return variable instead of using an explicit return
statement.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Critical contracts/ALP/InterestManager.sol L221-L238

 INM-05: Lack of access restriction allows overriding state variables

Description:

The public onRegistryUpdate function in the InterestManager contract does not
implement access restriction, which allows anyone to call the function and supply their own
IContractRegistry value, pausing the system and effectively overriding the
tokenValueStorageContract , rateModelLPContract , rateModelLLContract ,
lendingPoolContract , loanLiquidatorContract , utilizationRatioContract and
spread state variables with the sender's own supplied values.

Recommendation:

Consider changing the visibility of the base onRegistryUpdate(IContractRegistry)
function in the AtomixBase contract to internal in order to prevent ordinary users from calling
it and overriding the state variables of the InterestManager contract.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Critical contracts/ALP/InterestManager.sol L244-L260

 INM-06: Lack of access restriction allows overriding state variables

Description:

The public onRegistryPostUpdate function in the InterestManager contract does not
implement access restriction, which allows anyone to call the function and supply their own
IContractRegistry value, unpausing the system if the paused state has changed and

initializing the tokenValueStorage with their own values if it has not already been initialized.

Recommendation:

Consider changing the visibility of the base onRegistryPostUpdate(IContractRegistry)
function in the AtomixBase contract to internal in order to prevent ordinary users from calling
it and overriding the state variables of the InterestManager contract.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Implementation Informational contracts/ALP/LendingPool.sol L219

 LPO-01: Unnecessary usage of SafeMath functionality

Description:

The public getUtilizationRatio function in the LendingPool contract performs zero-
checks on the local iSCTotalValue and xSCTotalValue variables before utilizing the
SafeMath.mul and SafeMath.div functions, which is unnecessary and inefficient.

Recommendation:

Since the values are already checked to be valid, consider utilizing primitive multiplication and
division operations in order to save on the overall cost of gas.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Gas
Optimization Informational

contracts/ALP/LendingPool.sol L226, L323, L353,
L492

 LPO-02: Functions should be re-declared as external

Description:

The public getTotalSCDepositValue , getXSCValue , isDebtOverLimit , withdrawAct
functions in the LendingPool contract should be re-declared as external.

Recommendation:

Consider re-declaring the public getTotalSCDepositValue , getXSCValue ,
isDebtOverLimit , withdrawAct functions as external.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Arithmetic Minor contracts/ALP/LendingPool.sol L315

 LPO-03: Potential integer underflow

Description:

The public getAvailableBorrowerLimit function in the LendingPool contract performs a
primitive subtraction on the local totalBorrowingLimit and loanValue variables without
checking if their values are valid beforehand, which has the potential for underflow.

Recommendation:

Since the SafeMath library is already imported into the LendingPool contract, consider
utilizing its sub function in order to safely protect against integer underflow.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Implementation Informational contracts/ALP/LendingPool.sol L361-L366

 LPO-04: Unused named return variable

Description:

The private generateHashNames function in the LendingPool contract declares a named
hashNames return variable, yet declares a local _hashNames variable and explicitly returns

that instead of utilizing the return variable, which is inefficient.

Recommendation:

Consider removing the local _hashNames variable declaration and assigning to the named
hashNames return variable instead.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Medium contracts/ALP/LendingPool.sol L463

 LPO-05: Unused result from call to transferFrom

Description:

The public transferSpread function in the LendingPool contract ignores the value returned
from the call to the transferFrom function.

Recommendation:

Since the project imports the @openzeppelin/contracts npm module, consider importing
the SafeERC20 library and utilizing its safeTransferFrom function in order to handle ERC-20
implementations which are not fully compliant.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Minor contracts/ALP/LendingPool.sol L463

 LPO-06: Potential for minor re-entrancy; Out-of-order events

Description:

The public transferSpread function in the LendingPool contract has the potential for re-
entrancy due to transfering from the arbitrary lendingPoolWalletAddress to the arbitrary
spreadDestinationWallet address, which can lead to emitting events out of order.

Recommendation:

Since the project imports the @openzeppelin/contracts npm module, consider importing
the ReentrancyGuard contract and utilizing its nonReentrant modifier in order to prevent re-
entrancy leading to out-of-order events.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Minor contracts/ALP/LendingPool.sol L478

 LPO-07: Potential for minor re-entrancy; Out-of-order events

Description:

The public depositAct function in the LendingPool contract has the potential for re-
entrancy due to transfering from msg.sender to the arbitrary lendingPoolWalletAddress
address, which can lead to emitting events out of order.

Recommendation:

Since the project imports the @openzeppelin/contracts npm module, consider importing
the ReentrancyGuard contract and utilizing its nonReentrant modifier in order to prevent re-
entrancy leading to out-of-order events.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed, with the Fetch.ai team stating "Used the
checks-effects-interactions pattern, Checked that lendingPoolWalletAddress does point to an
AtomixWallet and implemented RentrancyGuard."

Type Severity Location

Volatile Code Minor contracts/ALP/LendingPool.sol L494

 LPO-08: Potential for minor re-entrancy; Out-of-order events

Description:

The public withdrawAct function in the LendingPool contract has the potential for re-
entrancy due to transfering from the arbitrary lendingPoolWalletAddress address to
msg.sender , which can lead to emitting events out of order.

Recommendation:

Since the project imports the @openzeppelin/contracts npm module, consider importing
the ReentrancyGuard contract and utilizing its nonReentrant modifier in order to prevent re-
entrancy leading to out-of-order events.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Medium contracts/ALP/LendingPool.sol L507

 LPO-09: Unused result from call to transferFrom

Description:

The external borrow function in the LendingPool contract ignores the value returned from
the call to the transferFrom function.

Recommendation:

Since the project imports the @openzeppelin/contracts npm module, consider importing
the SafeERC20 library and utilizing its safeTransferFrom function in order to handle ERC-20
implementations which are not fully compliant.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Minor contracts/ALP/LendingPool.sol L507

 LPO-10: Potential for minor re-entrancy; Out-of-order events

Description:

The external borrow function in the LendingPool contract has the potential for re-entrancy
due to transfering from the arbitrary lendingPoolWalletAddress address to msg.sender ,
which can lead to emitting events out of order.

Recommendation:

Since the project imports the @openzeppelin/contracts npm module, consider importing
the ReentrancyGuard contract and utilizing its nonReentrant modifier in order to prevent re-
entrancy leading to out-of-order events.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Medium contracts/ALP/LendingPool.sol L532

 LPO-11: Unused result from call to transferFrom

Description:

The external repay function in the LendingPool contract ignores the value returned from
the call to the transferFrom function.

Recommendation:

Since the project imports the @openzeppelin/contracts npm module, consider importing
the SafeERC20 library and utilizing its safeTransferFrom function in order to handle ERC-20
implementations which are not fully compliant.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Minor contracts/ALP/LendingPool.sol L532

 LPO-12: Potential for minor re-entrancy; Out-of-order events

Description:

The external repay function in the LendingPool contract has the potential for re-entrancy
due to transfering from the supplied payee address parameter to the arbitrary
lendingPoolWalletAddress address, which can lead to emitting events out of order.

Recommendation:

Since the project imports the @openzeppelin/contracts npm module, consider importing
the ReentrancyGuard contract and utilizing its nonReentrant modifier in order to prevent re-
entrancy leading to out-of-order events.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Medium contracts/ALP/LendingPool.sol L554

 LPO-13: Unused result from call to transferFrom

Description:

The external repayAll function in the LendingPool contract ignores the value returned from
the call to the transferFrom function.

Recommendation:

Since the project imports the @openzeppelin/contracts npm module, consider importing
the SafeERC20 library and utilizing its safeTransferFrom function in order to handle ERC-20
implementations which are not fully compliant.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Minor contracts/ALP/LendingPool.sol L554

 LPO-14: Potential for minor re-entrancy; Out-of-order events

Description:

The external repayAll function in the LendingPool contract has the potential for re-
entrancy due to transfering from the supplied payee address parameter to the arbitrary
lendingPoolWalletAddress address, which can lead to emitting events out of order.

Recommendation:

Since the project imports the @openzeppelin/contracts npm module, consider importing
the ReentrancyGuard contract and utilizing its nonReentrant modifier in order to prevent re-
entrancy leading to out-of-order events.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Medium contracts/ALP/LendingPool.sol L567

 LPO-15: Unused result from call to transferFrom

Description:

The external deposit function in the LendingPool contract ignores the value returned from
the call to the transferFrom function.

Recommendation:

Since the project imports the @openzeppelin/contracts npm module, consider importing
the SafeERC20 library and utilizing its safeTransferFrom function in order to handle ERC-20
implementations which are not fully compliant.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Minor contracts/ALP/LendingPool.sol L567

 LPO-16: Potential for minor re-entrancy; Out-of-order events

Description:

The external deposit function in the LendingPool contract has the potential for re-entrancy
due to transfering from the supplied account address parameter to the arbitrary
lendingPoolWalletAddress address, which can lead to emitting events out of order.

Recommendation:

Since the project imports the @openzeppelin/contracts npm module, consider importing
the ReentrancyGuard contract and utilizing its nonReentrant modifier in order to prevent re-
entrancy leading to out-of-order events.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Medium contracts/ALP/LendingPool.sol L592

 LPO-17: Unused result from call to transferFrom

Description:

The external redeem function in the LendingPool contract ignores the value returned from
the call to the transferFrom function.

Recommendation:

Since the project imports the @openzeppelin/contracts npm module, consider importing
the SafeERC20 library and utilizing its safeTransferFrom function in order to handle ERC-20
implementations which are not fully compliant.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Minor contracts/ALP/LendingPool.sol L592

 LPO-18: Potential for minor re-entrancy; Out-of-order events

Description:

The external redeem function in the LendingPool contract has the potential for re-entrancy
due to transfering from the arbitrary lendingPoolWalletAddress address to the supplied
account address parameter, which can lead to emitting events out of order.

Recommendation:

Since the project imports the @openzeppelin/contracts npm module, consider importing
the ReentrancyGuard contract and utilizing its nonReentrant modifier in order to prevent re-
entrancy leading to out-of-order events.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Implementation
Informational

contracts/ALP/LendingPool.sol L604, L618, L636, L649,
L663, L690

 LPO-19: Function should be refactored into a modifier

Description:

The private verifyDepositActAllowed , verifyWithdrawActAllowed ,
verifyDepositAllowed , verifyRedeemAllowed , verifyBorrowAllowed and
verifyRepayAllowed functions in the LendingPool contract should be refactored into

modifiers.

Recommendation:

Consider refactoring the private verifyDepositActAllowed , verifyWithdrawActAllowed ,
verifyDepositAllowed , verifyRedeemAllowed , verifyBorrowAllowed and
verifyRepayAllowed functions in the LendingPool contract into modifiers.

Alleviation:

The recommendation was not applied, with the Fetch.ai team stating "Code style favours
functions over modifiers."

Type Severity Location

Volatile Code Critical contracts/ALP/LendingPool.sol L710-L737

 LPO-20: Lack of access restriction allows overriding state variables

Description:

The public onRegistryUpdate function in the LendingPool contract does not implement
access restriction, which allows anyone to call the function and supply their own
IContractRegistry value, pausing the system and effectively overriding the actContract ,
stableCoinContract , breachMonitorContract , lendingPoolStorageContract ,
rateModelLPContract , tokenValueStorageContract , xSCContract ,
tokenizerContract , spread , lendingPoolWalletAddress , spreadDestinationWallet ,
breachAddress and lendingPoolStorageModifierContract state variables with the

sender's own supplied values.

Recommendation:

Consider changing the visibility of the base onRegistryUpdate(IContractRegistry)
function in the AtomixBase contract to internal in order to prevent ordinary users from calling
it and overriding the state variables of the InterestManager contract.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Volatile Code Critical contracts/ALP/LendingPoolStorageModifier.sol L155-L164

 LSM-01: Lack of access restriction allows overriding state variables

Description:

The public onRegistryUpdate function in the LendingPoolStorageModifier contract does
not implement access restriction, which allows anyone to call the function and supply their
own IContractRegistry value, pausing the system and effectively overriding the
interestManagerContract and lendingPoolStorageContract state variables with the

sender's own supplied values.

Recommendation:

Consider changing the visibility of the base onRegistryUpdate(IContractRegistry)
function in the AtomixBase contract to internal in order to prevent ordinary users from calling
it and overriding the state variables of the InterestManager contract.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Implementation Informational contracts/ALP/LendingPoolStorageModifier.sol L169

 LSM-02: Function should be refactored into a modifier

Description:

The private requireIsPrivileged function in the LendingPoolStorageModifier contract
should be refactored as a modifier.

Recommendation:

Consider refactoring the private requireIsPrivileged function in the
LendingPoolStorageModifier contract into a modifier.

Alleviation:

The recommendation was not applied, with the Fetch.ai team stating "Code style favours
functions over modifiers."

Type Severity Location

Gas Optimization Informational contracts/ALP/PoolStorageBase.sol L66

 PSB-01: Function should be re-declared as external

Description:

The public getLoanDetails function in the PoolStorageBase contract should be re-
declared as external.

Recommendation:

Consider re-declaring the public getLoanDetails function as external.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

Type Severity Location

Implementation Informational contracts/ALP/PoolStorageBase.sol L194

 PSB-02: Function should be refactored into a modifier

Description:

The internal requireLoanExists function in the PoolStorageBase contract should be
refactored as a modifier.

Recommendation:

Consider refactoring the internal requireLoanExists function in the PoolStorageBase
contract into a modifier.

Alleviation:

The recommendation was not applied, with the Fetch.ai team stating "Code style favours
functions over modifiers."

Type Severity Location

Implementation Informational contracts/ALP/RateModelLP.sol L32, L34, L50, L52

 RLP-01: Unused named return variables

Description:

The external calcNewValues function in the RateModelLP contract declares named
finalValueIn and finalValueOut return variables, yet declares local _finalValueIn and
_finalValueOut variables and explicitly returns those instead of using the return variables,

which is inefficient.

Recommendation:

Consider removing the local _finalValueIn and _finalValueOut variable declarations and
assigning to the named finalValueIn and finalValueOut return variables respectively.

Alleviation:

The recommendation was found to be applied as of commit
294675db10f0aeffb7ef442f1a6e320afa3599ed.

 Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of
a transaction.

Arithmetic

Arithmetic exhibits entail findings that relate to mishandling of math formulas, such as
overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only
functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge
cases that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as
the result of a struct assignment operation affecting an in-memory struct rather than an
in-storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage
of private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements
on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw
format and should otherwise be specified as constant contract variables aiding in their
legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible
to compile using the specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely
omitted.

