CertiK Audit Report for ForTube Bank

Contents
Contents 1
Disclaimer 3
About CertiK 3
Executive Summary 4
Testing Summary 5
Review Notes 6
Introduction 6
Documentation 6
Summary 7
Recommendations 7
Findings 8
Exhibit 1 8
Exhibit 2 9
Exhibit 3 11
Exhibit 4 12
Exhibit 5 13
Exhibit 6 14
Exhibit 7 15
Exhibit 8 16
Exhibit 9 17
Exhibit 10 18
Exhibit 11 19
Exhibit 12 20
Exhibit 13 21
Exhibit 14 23
Exhibit 15 24

Exhibit 16
Exhibit 17
Exhibit 18
Exhibit 19
Exhibit 20
Exhibit 21
Exhibit 22
Exhibit 23
Exhibit 24
Exhibit 25
Exhibit 26
Exhibit 27
Exhibit 28
Exhibit 29
Exhibit 30
Exhibit 31
Exhibit 32
Exhibit 33
Exhibit 34
Exhibit 35
Exhibit 36
Exhibit 37

25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
43
44
45
46
47

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of
services, confidentiality, disclaimer and limitation of liability) set forth in the Verification
Services Agreement between CertiK and ForTube (the “Company”), or the scope of
services/verification, and terms and conditions provided to the Company in connection with the
verification (collectively, the “Agreement”). This report provided in connection with the Services
set forth in the Agreement shall be used by the Company only to the extent permitted under the
terms and conditions set forth in the Agreement. This report may not be transmitted, disclosed,

referred to or relied upon by any person for any purposes without CertiK's prior written consent.

About CertiK

CertiK is a technology-led blockchain security company founded by Computer Science
professors from Yale University and Columbia University built to prove the security and

correctness of smart contracts and blockchain protocols.

CertiK, in partnership with grants from IBM and the Ethereum Foundation, CertiK's mission of
every audit is to apply different approaches and detection methods, ranging from manual, static,
and dynamic analysis, to ensure that projects are checked against known attacks and potential
vulnerabilities. CertiK leverages a team of seasoned engineers and security auditors to apply
testing methodologies and assessments to each project, in turn creating a more secure and

robust software system.

CertiK has served more than 100 clients with high quality auditing and consulting services,

ranging from stablecoins such as Binance's BGBP and Paxos Gold to decentralized oracles

such as Band Protocol and Tellor. CertiK customizes its engineering tool kits, while applying
cutting-edge research on smart contracts, for each client on its project to offer a high quality

deliverable. For more information: https://certik.io.

Executive Summary

This report has been prepared for ForTube to discover issues and vulnerabilities in the source
code of their ForTube’'s Bank project Smart Contracts as well as any contract dependencies
that were not part of an officially recognized library. A comprehensive examination has been

performed, utilizing Dynamic Analysis, Static Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

e Testing the smart contracts against both common and uncommon attack vectors.

e Assessing the codebase to ensure compliance with current best practices and industry
standards.

e Ensuring contract logic meets the specifications and intentions of the client.

e Cross referencing contract structure and implementation against similar smart
contracts produced by industry leaders.

e Thorough line-by-line manual review of the entire codebase by industry experts.

https://certik.io/

Testing Summary

SECURITY LEVEL

vilihyy
\\\‘ Iy,

Smart Contract Audit

This report has been prepared as a product of the Smart
Contract Audit request by ForTube.

This audit was conducted to discover issues and
vulnerabilities in the source code of ForTube's Bank project

Smart Contracts.

TYPE Smart Contracts

https://github.com/thefortube/bank/t

SOURCE CODE
ree/bank/contracts
PLATFORM EVM
LANGUAGE Solidity
REQUEST DATE Jul 8,2020
DELIVERY DATE Aug 1, 2020
A comprehensive examination has
METHODS been performed using Dynamic

Analysis, Static Analysis, and Manual

Review.

https://github.com/thefortube/bank/tree/bank/contracts
https://github.com/thefortube/bank/tree/bank/contracts

Review Notes

Introduction

CertiK team was contracted by the ForTube team to audit the design and implementations of
their Bank project Smart Contracts. The audited source code linkis:

e https://qithub.com/thefortube/bank/commit/15c978700fc550e6616c791f92eb5d354e6

05a9b

The goal of this audit was to review the Solidity implementation for its business model, study
potential security vulnerabilities, its general design and architecture, and uncover bugs that

could compromise the software in production.

Documentation

The sources of truth regarding the operation of the codebase were extensive and well
documented. We would advise the team to fully translate the in-line comments to aid our

understanding of the specification implementation and the functionality of the code.

https://github.com/thefortube/bank/commit/15c978700fc550e6616c791f92eb5d354e605a9b
https://github.com/thefortube/bank/commit/15c978700fc550e6616c791f92eb5d354e605a9b

Summary

The codebase of the project was identified to be carefully designed and detailed, as well as

properly documented.

While most of the issues pinpointed were of negligible importance and mostly referred to
coding standards and inefficiencies, any minor (or above) flaws that were identified, should be
remediated as soon as possible to ensure the contracts of ForTube’s team are of the highest

standard and quality.

Recommendations

Concerning the codebase, the main recommendation we can make is to consider restructuring

the custom libraries to make more optimal use of the Ethereum Virtual Machine.

Additionally, our original advice, that all our findings were carefully considered and assimilated
in the codebase of the project to ensure the highest code standard was achieved, was

actualized.

Overall, the codebase of the contracts was refactored to assimilate the majority of the findings
of this report, enforced linters and/or coding styles as well as corrected any spelling errors and
mistakes that appeared throughout the code to achieve a high standard of code quality and

security.

Findings
Exhibit 1
TITLE TYPE SEVERITY LOCATION
Unlocked Compiler Version Language
Declaration & Different versions of Specific Informational First SLoC of all Contracts
Solidity used Issue

[INFORMATIONAL] Description:

“upn

The compiler version utilized throughout the project uses the “*” prefix specifier, denoting that a
compiler at or above the version included after the specifier should be used to compile the

contracts. Also, the compiler version should be consistent throughout the codebase.

Recommendations:

It is a general practise to instead lock the compiler at a specific version rather than allow a
range of compiler versions to be utilized to avoid compiler-specific bugs and be able to identify
ones more easily. We recommend locking the compiler at the lowest possible version that
supports all the capabilities wished by the codebase. This will ensure that the project utilizes a
compiler version that has been in use for the longest time and as such is less likely to contain

yet-undiscovered bugs.

Alleviation:
The team heeded our advice and locked the version of their contracts at version 0.5.13, ensuring

that compiler-related bugs can easily be narrowed down should they occur.

Exhibit 2

TITLE TYPE SEVERITY LOCATION

ExponentLib.sol
FixidityLib.sol
Incorrect Naming Convention _) InterestRateModel.sol
Coding Style Informational
Utilization LogarithmLib.sol
PoolPawn.sol

PriceOracles.sol

[INFORMATIONAL] Description:
Solidity defines a naming convention that should be followed. In general, the following haming
conventions should be utilized in a Solidity file:

- Contracts should be in CapWords

- Functions and parameters should be in mixedCase

- Constants should be in UPPER_CASE_WITH_UNDERSCORES
In case the naming conventions are not followed, there should be proper documentation to
explain the naming and the purpose of the variable.
Examples:

- Variable “fixed_1" in “FixidityLib.sol” file.

- Variable "Index" has unconventional capitalization in “InterestRateModel.sol” file.

- Function “make_payable” is in snake case when camel case is the defacto of ethereum

in “PoolPawn.sol” file.

- Variable “_1" in “PoolPawn.sol” file.

Recommendations:

https://solidity.readthedocs.io/en/v0.4.25/style-guide.html#naming-conventions

The recommendations outlined here are intended to improve the readability, and thus they are
not rules, but rather guidelines to try and help convey the most information through the names

of things.

Alleviation:
The team neatly renamed the variables, constants, parameters and functions, following closely

the general Solidity naming conventions.

10

Exhibit 3

TITLE

TYPE

SEVERITY

LOCATION

Incorrect Order of Layout Utilization | Coding Style

Informational

PoolPawn.sol

PriceOracles.sol

[INFORMATIONAL] Description:

Solidity defines an Order of Layout that should be followed. In general, inside each contract,

library or interface, use the following order:

1. Type declarations
2. State variables
3. Events

4. Functions

Recommendations:

See Exhibit 2.

Alleviation:

Although the team did not follow our advice step-by-step, they reorganized the order of layout in

the contracts to match their coding style.

11

Exhibit 4
TITLE TYPE SEVERITY LOCATION
FixidityLib.sol
Mathematical Line 119, 148
Potential Overflow Informational
Operations PoolPawn.sol
Lines 568, 580, 1416-1418

[INFORMATIONAL] Description:
The exponentiation can result in an overflow, as the variable “decimals” is set by admin to an
arbitrary "uint" type.

The variable “digits” will overflow if its value is equal to or greater than seventy-seven (77).

Recommendations:
It is possible that the exponentiation will overflow, causing incorrect values to be passed as the
value. We advise the utilization of the already-imported “SafeMath” library to conduct the

multiplication to ensure no overflow occurs however unlikely.

Alleviation:
The team extensively tested for the cases that can cause an overflow and concluded that this

case would not appear through this version of the code.

12

Exhibit 5

TITLE TYPE SEVERITY LOCATION
Ineffectual FixidityLib.sol
Unused Function Parameter Informational
Code Lines 79, 89, 112

[INFORMATIONAL] Description:

Parameter “fixidity” is declared but never used in the function body.

Recommendations:

Remove or comment out the variable name.

Alleviation:

No alleviation.

13

Exhibit 6
TITLE TYPE SEVERITY LOCATION
FixidityLib.sol
Function State Mutability Coding Style Informational
Lines 82,92,115

[INFORMATIONAL] Description:

Functions can be declared pure in which case they promise not to read from or modify the state.

Recommendations:

Functions “add”, “subtract” and “round_off” state mutability can be restricted to “pure”.

Alleviation:

The team changed the state mutability of the said functions to “pure”.

14

Exhibit 7

TITLE TYPE SEVERITY LOCATION

FixidityLib.sol
Lines 45, 59-62
LogarithmLib.sol
Potentially Dangerous Operation
Coding Style Informational Lines 52-60
(Multiplication After Division)
PoolPawn.sol
Lines 1436-1440,

1456-1461

[INFORMATIONAL] Description:
Solidity integer division might truncate. As a result, performing a multiply before a division might

lead to loss of precision.

Recommendations:

Be overly cautious when performing multiplication on the result of a division.

Alleviation:
The team made great use of the SafeMath library while also avoiding multiplication on the result
of a division as much as possible. As a result, the possibility of a bad result, due to truncated

digits, is significantly lowered.

15

Exhibit 8
TITLE TYPE SEVERITY LOCATION
PoolPawn.sol
Use of the “transfer” Function Coding Style Informational
Lines 1887, 1904, 1906

[INFORMATIONAL] Description:
When using the “transfer” function, one should consider some drawbacks that come along with
them, such as the hardcoded gas amount that they forwarded to the recipient. If “t0” is a

contract, the transfer may fail due to gas stipend.

Recommendations:

No recommendation.

Alleviation:

No alleviation.

16

Exhibit 9
TITLE TYPE SEVERITY LOCATION

ExponentLib.sol
Line 16

Proper Usage of “require” and _) FixidityLib.sol

Coding Style Informational

“assert” Functions Lines 23,711,138
LogarithmLib.sol
Line 21

[INFORMATIONAL] Description:

The “assert” function should only be used to test for internal errors, and to check invariants.
The “require” function should be used to ensure valid conditions, such as inputs, or contract
state variables are met, or to validate return values from calls to external contracts.

In case the “require” function is called, like in line 713 in “PoolPawn.sol” file, a custom error

message should be provided.

Recommendations:

Consider using the “require” function, along with a custom error message when the condition

fails, instead of the “assert” function on the lines showcased above.

Alleviation:

The team heeded our advice and opted to change from “assert” to “require” function calls.

17

Exhibit 10

TITLE

TYPE

SEVERITY

LOCATION

Greater-Than Comparison with Zero

Mathematical

Operations

Informational

Address.sol

Line 26

PoolPawn.sol

Lines 34, 65, 567, 579,
1016, 1222, 1862
SafeMath.sol

Line 30

[INFORMATIONAL] Description:

When comparing variables of unsigned type, it's more efficient gas-wise, while taking into

account that any value other than zero is indeed valid.

Recommendations:

Change the condition to check inequality with zero, as it is more efficient regarding unsigned

integer variables.

Alleviation:

The team heeded our advice and changed the conditions to check inequality with zero to the

highlighted cases.

18

Exhibit 11

TITLE

TYPE

SEVERITY

LOCATION

Ineffectual Condition

Volatile Code

Informational

FixidityLib.sol

Line 147

[INFORMATIONAL] Description:

Unsigned integers cannot be less than zero, so the condition should only check for equality with

Zero.

Recommendations:

Change the condition to check equality with zero, as it is more efficient regarding unsigned

integer variables.

Alleviation:

The team, following our recommendations, alleviated this finding.

19

Exhibit 12
TITLE TYPE SEVERITY LOCATION
Optimization PoolPawn.sol
Format Long Lines & Coding Informational Lines 1436-1440,
Style 1456-1461

[INFORMATIONAL] Description:

The multiple variable assignments can be grouped into a single assignment by instantiating an

instance of the struct in-memory.

Recommendations:

Convert the multiple assignments to a single one with properly formatted key-value

assignments on the struct.

Alleviation:

No alleviation.

20

Exhibit 13
TITLE TYPE SEVERITY LOCATION
FixidityLib.sol
Mathematical Lines 78-96
Potential Overflow/ Underflow Medium
Operations PoolPawn.sol
Line 844-845

[Medium] Description:

The “add” and “subtract” functions that implement the Mathematical operations of addition and
subtraction in the “FixidityLib.sol” file allows for parameters of type “int256", while the majority
of the Mathematical operations done in the “PoolPawn.sol” file consist of variables of type
“uint256”. This can quickly lead to either an overflow or an underflow, due to the nature of the
input variables (unsigned and not).

|n

For example, the result of the “add” operation in the line 844 in the “PoolPawn.sol” can overflow

if token supplies are large which is highly likely leading to function being uncallable.

Recommendations:
The "add" operation on line 844 should be swapped with a safe alternative to deal with
overflows. Additionally, upper and / or lower bounds to the array of tokens being queried could

be provided as input parameters.

Alleviation:
The team heeded our advice and adjusted the custom libraries they have implemented for their
internal operations, after thoroughly testing for the edge cases highlighted in our description

section. Although there is still room for a better resource allocation within the libraries, the use

21

of SignedSafeMath is a great starting point to narrow down the possibility of an

overflow/underflow.

22

Exhibit 14

TITLE TYPE SEVERITY LOCATION
FixidityLib.sol
Line 16
)) _) InterestRateModel.sol
Unconventional Naming Coding Style Informational
Line 150
PoolPawn.sol

Lines 251, 439

[INFORMATIONAL] Description:

Solidity defines a naming convention that should be followed

Recommendations:

See Exhibit 2.

Alleviation:
The team heeded our advice and changed the unconventional naming of the highlighted

variables, constants, parameters and function.

23

https://solidity.readthedocs.io/en/v0.4.25/style-guide.html#naming-conventions

Exhibit 15
TITLE TYPE SEVERITY LOCATION
PoolPawn.sol
Lines 707,791, 847, 980,
Unnecessary “Return” Variable Volatile Code | Informational
1123, 1284, 1401, 1852,
1910, 1933

[INFORMATIONAL] Description:
Unnecessary/unclear “return” variable. In some cases it is instantiated to zero and explicitly

returned.

Recommendations:

Naming the return variable to be descriptive of its role.

Alleviation:

The team heeded our advice and removed the unnecessary code.

24

Exhibit 16

TITLE TYPE SEVERITY LOCATION
Language PoolPawn.sol
Potential Out-Of-Gas Specific Informational Lines 442-449, 696-707,
Issue 779-792, 829-847

[INFORMATIONAL] Description:

Potential Gas limit exhaustion if too many markets are added.

Recommendations:

No recommendation.

Alleviation:

No alleviation.

25

Exhibit 17
TITLE TYPE SEVERITY LOCATION
Language
Multiple Storage Reads & Writes Specific Informational PoolPawn.sol
Issue

[INFORMATIONAL] Description:
Assigning a value to a “storage” variable and then changing and re-assigning to the same one
can be very taxing to the contract.

Example: Implement "mktslt]" to store as memory and then re-assign to storage.

Recommendations:
Consider converting to "memory" and then assigning to "storage" to avoid multiple storage

reads and writes.

Alleviation:

The team heeded our advice and opted to avoid extensive use of storage reads by either
assigning the storage value to a local variable and then using the local variable when needed or
using the “memory” keyword when viable, instead of repeatedly reading and writing from

storage.

26

Exhibit 18

TITLE TYPE SEVERITY LOCATION

PoolPawn.sol

Undocumented Magic Number Coding Style Informational
Lines 1319, 1705

[INFORMATIONAL] Description:

Undocumented differentiation of functionality based on magic number "uint(-1)".

Recommendations:

Consider using boolean variables.

Alleviation:

The team added inline comments on the highlighted cases.

27

Exhibit 19

TITLE TYPE SEVERITY LOCATION

PoolPawn.sol

Avoid Multiple Assignments Optimization Informational
Lines 1044-1048

[INFORMATIONAL] Description:
The function “min” is called on two consecutive occasions to assign the proper value to the

same variable.

Recommendations:

Consider nesting "min" calls to avoid 2 assignments.

Alleviation:

The team heeded our advice and neatly bypassed this finding.

28

Exhibit 20
TITLE TYPE SEVERITY LOCATION
PoolPawn.sol
No Transfer “Route” Volatile Code Informational
Lines 1880-1909

[INFORMATIONAL] Description:
Code path of "owner != spender’, "token == address(0)" and ("msgValue == 0" or "msgValue <=

amount") will lead to no transfer being made.

Recommendations:

This case should be further evaluated by the team.

Alleviation:

No alleviation.

29

Exhibit 21

TITLE TYPE SEVERITY LOCATION

PoolPawn.sol

Variable Duplicate Optimization Informational
Lines 307, 436

[INFORMATIONAL] Description:

Definition of “10**18” in two different formats as constant public variables.

Recommendations:

Evaluate whether the second declaration is necessary.

Alleviation:

The team removed the unnecessary code.

30

Exhibit 22
TITLE TYPE SEVERITY LOCATION
InterestRateModel.sol
Simplifying Existing Code Optimization Informational
Lines 89-104

[INFORMATIONAL] Description:

The existing code that spans from lines 79 to 84 can be optimized.

Recommendations:
The lines of code showcased above can be simplified by:

- assigning the result "fixidity.add(cash, borrow)" to "y

“..n

- check if “y” is not equal to zero, then assign “y” the result of "fixidity.divide(borrow, total)"

Alleviation:

The team opted to change their code, following our recommendation as highlighted.

31

Exhibit 23
TITLE TYPE SEVERITY LOCATION
InterestRateModel.sol
Lines 38-50
Change of Administrator Procedure | Volatile Code | Informational
PriceOracles.sol
Lines 65-77

[INFORMATIONAL] Description:

Change of administrator should follow a propose & accept model to avoid delegating to an

unowned address.

Recommendations:

Implementation of a propose & accept model to change admin.

Alleviation:

The team heeded our advice and implemented a model where one can propose an administrator

and then the administrator rights can be accepted by the nominee, as per recommendation.

32

Exhibit 24
TITLE TYPE SEVERITY LOCATION
PriceOracles.sol
Reducing Lines of Code Optimization Informational
Lines 86-105

[INFORMATIONAL] Description:

Code redundancy in the function body.
Recommendations:

The function body can be branched based on "token == address(0)" to reduce lines of code and

redundancy.

Alleviation:

No alleviation.

33

Exhibit 25
TITLE TYPE SEVERITY LOCATION
PoolPawn.sol
New Instantiation of a Struct Optimization Informational
Lines 363-373

[INFORMATIONAL] Description:

Current struct filling pattern conducts 7 storage assignments.

Recommendations:

Conduct a single newly instantiated struct storage.

Alleviation:

The team heeded our advice and instantiated a new variable of the custom struct type, filled the

struct with the correct value and only then was the mapping reference updated.

34

Exhibit 26
TITLE TYPE SEVERITY LOCATION
PoolPawn.sol
“else” Branch Introduction Optimization Informational
Lines 886-891

[INFORMATIONAL] Description:
In this case, only the “if” block is implemented. Perhaps it would be better to implement an

“else” block and provide a “require” statement.

Recommendations:

The “else” block should be introduced that asserts "msg.value" is equal to zero in case "t" was

supplied.

Alleviation:

The team heeded our advice and implemented the “else” block, as recommended.

35

Exhibit 27

TITLE

TYPE

SEVERITY

LOCATION

Unclear “require” Condition

Optimization

Informational

PoolPawn.sol
Lines 1719-1722

[INFORMATIONAL] Description:

In this case, “msg.value” is required to be greater than or equal

“closeBorrowAmount_TargetUnderwaterAsset”.

Recommendations:

Perhaps equality should be required here.

Alleviation:

No alleviation.

36

Exhibit 28
TITLE TYPE SEVERITY LOCATION
PoolPawn.sol
Unnecessary “else-if” Condition Optimization Informational
Line 1905

[INFORMATIONAL] Description:

The “else-if” block here is redundant. If code reaches here, “msgValue” will always be equal to

Zero.

Recommendations:

Replace the “else-if” block with an “else” one.

Alleviation:

The team changed the “else-if” block with an “else” one, as per our recommendations.

37

Exhibit 29
TITLE TYPE SEVERITY LOCATION
Function FixidityLib.sol
Missing else branch Major
Logics Lines 111-131

[MAJOR] Description:

The usual definition of round-off function is to approximate the number with the nearest power

of 10. The number is rounded up if the first digit of the rounding block is at least 5 and the

number is rounded down otherwise. The if “if” clause on line 74 only takes care of the rounding

up case and the rounding down case is missing.

Recommendations:

Add an “else” block with the following logics: “v = v - v % t” for the rounding down case.

Alleviation:

The team heeded our advice and implemented the “else” block, following our recommendations.

38

Exhibit 30
TITLE TYPE SEVERITY LOCATION
Function FixidityLib.sol
Unnecessary case splitting Informational
Logics Lines 111-131

[INFORMATIONAL] Description:
The function round_off also splits the logics into two separate cases, nonnegative and negative
numbers. We believe this is not necessary as the logics for both cases are still the same.
Moreover it is more gas efficient and readable. For example
e if “"v=-16" and we want to round off the last digit, then “v % 10 = 4" and “4 <10/ 2", so
the result would be “-16 - 4 =-20", exactly what we would expect.
e If “v=-238" and we want to round off the last 2 digits, then “v % 100 = 62" and “62 >= 100

/ 2", so the result would be “-238 + 100 - 62 = -200”, exactly what we would expect

Recommendations:

“.n

Leave out lines 69 - 73 and change return from “v * sign” to “v".

Alleviation:
The team heavily investigated this exhibit and concluded that the existing procedure was

already covering all the edge cases.

39

Exhibit 31
TITLE TYPE SEVERITY LOCATION
Function FixidityLib.sol
Incorrect Rounding . Informational)
Logics Lines 48-63

[INFORMATIONAL] Description:

The arithmetics in the project is implemented with a precision up to a certain number of decimal
digits specified in Fixidity struct. After each operation if the number of decimal digits exceeds
Fixidity.digits the result is rounded off. We believe that the function “multiply” does not round
the last digit correctly. For example if the number of decimal digits is 2 and we want to multiply
267 and 319 (2,67 and 3,19 in reality). The real product is 8,5173 which would correspond to 852

but the function “multiply” returns 851.

Recommendations:
In the return expression we can change “x2 * y2 / fixidity.fixed_1" to “round_off(fixidity, x2 * y2,

fixidity.digits)” to do the rounding.

Alleviation:
The team heeded our advice and changed the return value of the function whilst using their

“round_off” function.

40

Exhibit 32
TITLE TYPE SEVERITY LOCATION
Function FixidityLib.sol
Incorrect Rounding Minor
Logics Lines 65-76

[MINOR] Description:

The arithmetics in the project is implemented with a precision up to a certain number of decimal
digits specified in Fixidity struct. After each operation if the number of decimal digits exceeds
Fixidity.digits the result is rounded off. We believe that the function “divide” does not round the
result correctly. This exhibit is more severe than the previous one because it can affect more
than just the last digit. For example if the number of decimal digits is 2 and we want to divide
1000000 by 300 (10000 by 3 in reality). The real product is 3333,333... which would correspond
to 333333 but the function “divide” returns 330000. The problem lies in the error of

“reciprocal(fixidity, b)” on line 48 getting exacerbated by multiplication with “a”.

Recommendations:

Let's try using this code on line 48 instead:

“return multiply(fixidity, a % b, reciprocal(fixidity, b)) + (a / b) * fixidity.fixed_1;"

Here we compute the residue of the division “a % b", which is at most “b - 1”, so the error after

multiplication is more controlled.

41

Alleviation:
The team heeded our advice and changed the return value of the function, opting for a greater

edge case coverage.

42

Exhibit 33
TITLE TYPE SEVERITY LOCATION
Function FixidityLib.sol
Incorrect Implementation) Minor)
Logics Lines 40-46

[MINOR] Description:

The usual definition of the floor function applied on x gives the greatest integer that is less or

equal to x. For example the floor function on -0.27 would give -1 but the function “floor” would

give 0.

Recommendations:

Let’s try using this code on line 33 instead:

“return v -v % fixidity.fixed_1;"

It is also more gas efficient.

Alleviation:

The team heeded our advice and changed the return value of the function, opting for a greater

edge case coverage.

43

Exhibit 34
TITLE TYPE SEVERITY LOCATION
FixidityLib.sol
Integer Overflow Arithmetics Major
Lines 48-63

[MAJOR] Description:

The arithmetic expression on line 42 can overflow, for example if the number of decimal digits is

2 the input of the function “multiply” is 10**50 and 10**50, then the result would be

unexpectedly - 422425...

Recommendations:

Use SafeMath to prevent integer overflow.

Alleviation:

The team neatly used the SafeMath Library to return the value of the function, opting for a

greater edge case coverage.

44

Exhibit 35
TITLE TYPE SEVERITY LOCATION
Repeated Multiplication of a Gas) InterestRateModel.sol
o Informational)
Constant Optimization Lines 27, 70, 81

[INFORMATIONAL] Description:

In functions “linearSegment” and “curve2” the constant k, resp. c is power involving two
constant “point2” and “e-1e18". Since “fixidity.power_any” is a gas heavy function and the two
aforementioned will be frequently used to calculate loan rate, we believe it would be better if this

constant be precomputed outside the function.

Recommendations:

Precompute “point2 ** e-1e18" outside “linearSegment” and “curve2”.

Alleviation:

The team heeded our advice and precomputed the number, as per our recommendations.

45

Exhibit 36

TITLE

TYPE

SEVERITY

LOCATION

“LoanRate” Calculation not

Consistent with Documentation

Inconsistent

Documentati

on

Informational

InterestRateModel.sol
Lines 107-129

[INFORMATIONAL] Description:

In README.md the calculation of loan rate is split into 3 cases based on the borrow ratio,

whereas in the function “getLoanRate” is split into 5 cases with two additional split points 0.02

and 0.98.

Recommendations:

If this is intended we recommend updating the documentation to be consistent with the

codebase.

Alleviation:

No alleviation.

46

Exhibit 37

TITLE

TYPE

SEVERITY

LOCATION

Multiple Storage Reads

Gas

Optimization

Informational

FixidityLib.sol
Lines 48-63
ExponentLib.sol
Lines 10-34
LogarithmLib.sol
Lines 16-65

[INFORMATIONAL] Description:

"o«

In functions “multiply”,

repeatedly read from storage, which is very gas inefficient.

Recommendations:

We recommend assigning the values to memory variables first before using, as a call from

storage costs 200 gas and a call from memory costs only 3 gas.

Alleviation:

power_e", “log_e” the variables “fixidity.digits” and “fixidity.fixed_1" are

The team heeded our advice and opted to avoid extensive use of storage reads by assigning the

storage value to a local variable and then using the local variable when needed, instead of

repeatedly reading from storage.

47

