

Ignition

Security Assessment

February 24th, 2021

For :
Paid Network

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that contracts
CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor do they provide any indication of the technologies proprietors,
business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice, nor
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code
provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure,
implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the
intention to increase the quality of the company/product's IT infrastructure and or source
code.

Project Name Ignition

Description A typical crowd-sale smart contract.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. 3877226ab6323ce1cf4d58d0e368407e1e8ad2b1
2. 49f0c3a9c431f723f89ef87de3a5bb59ea9dbf3b

Delivery Date February 24th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline February 17th, 2021 - February 24th, 2021

Total Issues 8

Total Critical 0

Total Major 0

Total Medium 0

Total Minor 2

Total Informational 6

 Overview

Project Summary

Audit Summary

Vulnerability Summary

ID Contract Location

IGN Ignition.sol contracts/Ignition.sol

25%

75%

Finding Summary

Minor
Informational

 Executive Summary

This report represents the results of CertiK's engagement with PAID Network on implementing
the Ignition crowd-sale smart contract.

Our findings mainly refer to optimizations and Solidity coding standards; hence the issues
identified pose no threat to the contract deployment's safety.

 Files In Scope

 Findings

ID Title Type Severity Resolved

IGN-01 struct Optimization Gas Optimization Informational

IGN-02 Redundant Variable
Initialization

Coding Style Informational

IGN-03 Inefficient Greater-
Than Comparison w/
Zero

Gas Optimization Informational

IGN-04 Requisite Value of
ERC-20
transferFrom() /
transfer() Call

Logical Issue Minor

IGN-05 Redundant Type Cast Gas Optimization Informational

IGN-06 Alternative
Assignment

Coding Style Informational

IGN-07 Redundant State
Variable

Data Flow Informational

IGN-08 Ambiguous
Functionality

Volatile Code Minor

Type Severity Location

Gas Optimization Informational Ignition.sol L9-L16

 IGN-01: struct Optimization

Description:

The members of the Whitelist struct are not tightly packed.

Recommendation:

We advise to group the address and bool types together.

Alleviation:

The development team opted to consider our references and strived for a 256-bit packing on the
Whitelist struct members.

Type Severity Location

Coding Style Informational Ignition.sol L31, L32, L33

 IGN-02: Redundant Variable Initialization

Description:

All variable types within Solidity are initialized to their default "empty" value, which is usually their
zeroed out representation. Particularly:

uint / int : All uint and int variable types are initialized at 0
address : All address types are initialized to address(0)
byte : All byte types are initialized to their byte(0) representation
bool : All bool types are initialized to false
ContractType : All contract types (i.e. for a given contract ERC20 {} its contract type is
ERC20) are initialized to their zeroed out address (i.e. for a given contract ERC20 {} its
default value is ERC20(address(0)))
struct : All struct types are initialized with all their members zeroed out according to this
table

Recommendation:

We advise that the linked initialization statements are removed from the codebase to increase
legibility.

Alleviation:

The development team opted to consider our references and removed the redundant variable
initializations.

Type Severity Location

Gas Optimization Informational Ignition.sol L118

 IGN-03: Inefficient Greater-Than Comparison w/ Zero

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the non-
negative integer range, meaning that the comparator can be changed to an inequality one which
is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

The development team acknowledged this exhibit, but opted to entirely remove the functionality
wrapping the linked conditional.

Type Severity Location

Logical Issue Minor Ignition.sol L190

 IGN-04: Requisite Value of ERC-20 transferFrom() /

transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer()
function returns a bool variable yielding true , many token implementations do not return
anything i.e. Tether (USDT) leading to unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the
transferFrom() / transfer() function is safely invoked in all circumstances.

Alleviation:

The development team opted to consider our references and used the SafeERC20 library.

Type Severity Location

Gas Optimization Informational Ignition.sol L238

 IGN-05: Redundant Type Cast

Description:

The linked statement redundantly casts the global variable msg.value to uint256 , as it is
already of that data type.

Recommendation:

We advise to omit the type cast in the linked statement.

Alleviation:

The development team opted to consider our references and removed the redundant data type
cast.

Type Severity Location

Coding Style Informational Ignition.sol L161

 IGN-06: Alternative Assignment

Description:

The linked statement sets the oneEther variable equal to 1 ether .

Recommendation:

We advise to use the global variable ether instead, striving for code readability.

Alleviation:

The development team opted to consider our references and set the oneEther variable equal to
1 ether .

Type Severity Location

Data Flow Informational Ignition.sol L28

 IGN-07: Redundant State Variable

Description:

The whitelistAddresses array is introduced to store the whitelisted addresses of the system,
yet it is not used direct by the contract.

Recommendation:

We advise to index the events off-chain, instead of storing extra data on-chain.

Alleviation:

The development team opted to consider our references, removed the whitelistAddresses
array and decided to handle the events off-chain instead.

Type Severity Location

Volatile Code Minor Ignition.sol L236-L254

 IGN-08: Ambiguous Functionality

Description:

A whitelisted user can buy tokens even after the end of the sale, as the linked function only
checks against the starting sale time.

Recommendation:

We advise to either revise the linked function or add descriptive documentation for the edge case.

Alleviation:

The development team opted to consider our references and added a require statement
checking that the sale period is finished.

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a
transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such
as overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only
functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases
that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the
result of a struct assignment operation affecting an in-memory struct rather than an in-
storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of
private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements on
the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw
format and should otherwise be specified as constant contract variables aiding in their legibility
and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to
compile using the specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

