
Kava Labs
Issuance Module

Security Assessment

February 9th, 2021

[Final Report]

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that contracts
CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor do they provide any indication of the technologies proprietors,
business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice, nor
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?
A document describing in detail an in depth analysis of a particular piece(s) of source code
provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure,
implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has completed a round of auditing with the intention
to increase the quality of the company/product's IT infrastructure and or source code.

Project Name Kava

Description Multi-chain DeFi lending platform

Platform Cosmos SDK v0.39.2

Codebase GitHub Repository

Commits
1. d701ae8738502b2c8c379ef81d373d9528e6d81c
2. 118942cca602c6848212d3b84e641a5d1101cc23

Delivery Date Feb. 9, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 3

Timeline Dec. 14, 2020 - Feb. 9, 2021

Total Issues 4

 Total Critical 0

 Total Major 0

 Total Medium 0

 Total Minor 2

 Total Informational 2

 Overview

Project Summary

Audit Summary

Vulnerability Summary

 Executive Summary

Preliminary:

Built on top of the Cosmos SDK, Kava is a multi-asset, interoperable Decentralized Finance (DeFi)
platform offering collateralized loans and stablecoins (e.g. USDX), to end-users and other
blockchains. The sole objective of the audit is to verify Kava Labs' implementation of the Issuance
module, the main mechanism of which allows for a white-listed entity (i.e. issuer) to control the
minting and burning of an asset, against the provided specifications. A series of thorough security
assessments were carried out, the goal of which is to help said project protect their users by
finding and fixing known vulnerabilities that could cause unauthorized access, loss of funds,
cascading failures, and/or other vulnerabilities. Alongside each security finding, a
recommendation on fixes and/or mitigation methods will also be given.

 Review Notes

The primary focus for the audit is to have a thorough look into the following parts of the
application:

Code Structure
Application Module Interfaces
Messages and Queries
Invariants (if present)
Keepers
Module Interfaces
Module Genesis
Errors

Following a modular design approach outlined in the Cosmos SDK, we carefully inspect the
module(s) within scope to ensure that:

1. Application module interfaces (AppModuleBasic and AppModule at least) are correctly
implemented

2. Order of execution between key components of the module are properly manager by
Module Manager

3. Messages are accompanied by constructor functions, have proper type definition, and
correctly implement the Msg interface

4. Queries are accompanied by queriers, query commands and query return types
5. Handlers and their corresponding handler functions are properly added and implemented
6. Keepers appropriately expose getter/setter methods for the store(s) managed by the module
7. Invariants are properly implemented and registered
8. Module-specific errors are wrapped to provide additional specific execution context
9. The SDK is utilized in a least-authority manner, primarily for routing messages to their

intended modules

Specifically in the Harvest module we analyze how the state machines are defined and how state
transitions are triggered by messages, the goal of which is to check the implementation against
the specs and hence minimize the possibilities of unintentional state behaviors taking place.

Function Check Reference Pass

Issue
Tokens

Get the asset specified by the denom that's passed in
from the params in the store. If not found, return an
error

issuance.go
L14-L17

✔

Check if the sender address matches the address of
the asset's owner. If not, return an error

issuance.go
L18-L20

✔

Check if the asset has been paused. If true, return an
error

issuance.go
L21-L23

✔

Check if the asset is blockable. If true, then check if
the receiver is in the blocked list. If the receiver has
been blocked, return an error

issuance.go
L24-L29

✔

Check if the receiver address matches that of the
module account. If true, return an error

issuance.go
L30-L34

✔

Check if the asset's rate limit is active. If true, increase
the asset's supply in the store

issuance.go
L37-L42

✔

If all previous checks are passed, mint the asset in the
amount specified. Return any error occurred when
minting

issuance.go
L45-L48

✔

Send the newly minted the asset to the receiver.
Return any error occurred when sending

issuance.go
L50-L53

✔

 Emit event
issuance.go
L54-L59

✔

Redeem
Tokens

Get the asset specified by the denom that's passed in
from the params in the store. If not found, return an
error

issuance.go
L65-L68

✔

Check if the sender address matches the address of
the asset's owner. If not, return an error

issuance.go
L69-L71

✔

Check if the asset has been paused. If true, return an
error

issuance.go
L72-L74

✔

If all previous checks are passed, send tokens from
the owner address to the module account. Return
any error occurred when sending

issuance.go
L75-L79

✔

Burn the tokens from last step in the module
account. Return any error occurred when buring

issuance.go
L80-L83

✔

 Emit event
issuance.go
L84-L89

✔

 State Transition Checks

Claim

Function Check Reference Pass

Block
Addesses

Get the asset specified by the denom that's passed
in from the params in the store. If not found, return
an error

issuance.go
L95-L98

✔

Check if the asset is unblockable. If not, return an
error

issuance.go
L99-L101

✔

Check if the sender address matches the address of
the asset's owner. If not, return an error

issuance.go
L102-L104

✔

Check if the supplied address has already been
blocked. If yes, return an error

issuance.go
L105-L108

✔

Check if the supplied address exists in the state
machine. If not, return an error

issuance.go
L109-L112

✔

If all previous checks are passed, add the supplied
address to the blocked list and update the asset in
the store

issuance.go
L113-L114

✔

 Emit event
issuance.go
L115-L121

✔

Unblock
Addresses

Check if the supplied address exists in the state
machine. If not, return an error

issuance.go
L127-L130

✔

Check if the asset is unblockable. If not, return an
error

issuance.go
L131-L133

✔

Check if the sender address matches the address of
the asset's owner. If not, return an error

issuance.go
L134-L136

✔

Check if the supplied address has already been
unblocked. If yes, return an error

issuance.go
L137-L142

✔

If all previous checks are passed, remove the
supplied address from the blocked list, update the
blocked list for the asset, and finally update the
asset in the store

issuance.go
L144-L146

✔

 Emit event
issuance.go
L147-L153

✔

Function Check Reference Pass

Set
Pause
Status

Get the asset specified by the denom that's passed in
from the params in the store. If not found, return an
error

issuance.go
L159-L162

✔

Check if the sender address matches the address of
the asset's owner. If not, return an error

issuance.go
L163-L165

✔

Check if the asset's existing Paused status matches
the supplied status. If true, return back out

issuance.go
L166-L168

✔

Flip the asset's Paused status and update the asset in
the store

issuance.go
L169-L170

✔

 Emit event
issuance.go
L171-L177

✔

Seize
Coins

Get all assets from the params in the store and range
over them. If an asset is blockable, attempt to seize
from the blocked list the coins specified by the given
denoms

issuance.go
L183-L191

✔

Get the asset specified by the denom that's passed in
from the params in the store. If not found, return an
error

issuance.go
L197-L200

✔

Range over all addresses in the blocked list for that
asset, and perform the following checks:

issuance.go
L201-L202

✔

Check if the supplied address exists in the state
machine. If not, continue

issuance.go
L202-L207

✔

Check if the balance of the blocked account is
positive. If not, continue

issuance.go
L208-L211

✔

Send the coins from the blocked account to the
module account. Return any error when sending

issuance.go
L212-L216

✔

Send the coins from the module account to the asset
owner account. Return any error when sending

issuance.go
L217-L220

✔

 Emit event
issuance.go
L221-L227

✔

50%

0%

50%

Finding Summary

Informational
Major
Minor

✔ Resolved 🚧 In Progress ℹ Ignored (pro)

❌ Not Resolved ❓ Incorrect 🚫 Ignored (con)

ID Title Type Severity Status

KAV-
01

Ambiguous Comments General Informational ✔

KAV-
02

Redundant else clause
Language
Usage

Informational ✔

KAV-
03

Ambiguous Conditional
Statement

Implementation Minor ✔

KAV-
04

Inefficient use of append
Statement

Implementation Minor ℹ

 Findings

Status Icon Definitions

Findings Overview

Type Severity Location

General Informational params.go L117-L118

Type Severity Location

Language Usage Informational supply.go L59-L69

 KAV-01: Ambiguous Comments

Description:

Assets is best described as a slice of Asset.

Recommendation:

Correct the verbiage as described above.

Alleviation:

The recommendation was applied in commit 118942cca602c6848212d3b84e641a5d1101cc23.

 KAV-02: Redundant else Clause

Description:

The else clauses can be eliminated by keeping the negative path in the if clause, and pulling
the positive path out of the else clause.

Recommendation:

Keep the positive path in a straight line of sight for best readability.

Alleviation:

The recommendation was applied in commit 118942cca602c6848212d3b84e641a5d1101cc23.

Type Severity Location

Implementation Minor issuance.go L138-L142

Type Severity Location

Language Usage Minor issuance.go L113

 KAV-03: Ambiguous Conditional Statement

Description:

The if clause on Line 139 is counterproductive as it blocks the return on Line 140 when the
supplied address is already unblocked. As a result, Line 144 will try to remove an already
unblocked address from the blocked list.

Recommendation:

Remove the if clause on Line 139.

Alleviation:

The recommendation was applied in commit 118942cca602c6848212d3b84e641a5d1101cc23.

 KAV-04: Inefficient use of append

Description:

During a mutation append first makes a copy of the origin slice and then compares the length of
the copied slice with its capacity. When equal, a new backing array with doubled capacity will be
allocated on the heap, resulting a costly allocation. As a general note, avoid using append unless
in a decoding or unmarshaling function.

Recommendation:

As a mitigation method, we recommend replacing append entirely with the following:

Alleviation:

This exhibit was discussed in length with the Kava team. Though not addressed, we consider the
exhibit fully attended to as it doesn't impose any meaningful security concerns.

asset.BlockedAddresses[len(asset.BlockedAddresses)] = blockedAddress

