
Harvest by Kava Labs
Security Assessment

October 16th, 2020

Disclaimer
CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team.
These reports are not, nor should be considered, an indication of the economics or value of any “product” or “asset”
created by any team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal
compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any
particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice
of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their
code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each
company and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help
reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing
technologies, and in no way claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?
A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK
by a Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation
and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the intention to increase
the quality of the company/product's IT infrastructure and or source code.

Project Name Kava

Description Multi-chain DeFi lending platform

Platform Cosmos SDK v0.39.1

Codebase kava

Commits 1.04946493ae927ee7c6dab027f444d32177d82540
2.0ded29678e4e168d20ad89292c470fcff244db95
3.e8a12b5b71ff9115ffe641418011cf63534456e8
4.b6e8759b86a1d75a12dde5a7fd022327f5701588
5.9bbdf1410802a148e61684ef6965a3b345acab2b

Delivery Date Oct. 16, 2020

Audit Methods Static Analysis, Manual Review

Consultants Engaged 2

Timeline Oct. 05, 2020 - Oct. 16 2020

Total Issues 4

Total Critical 0

Total Major 0

Total Minor 0

Total Informational 4

 Overview

Project Summary

Audit Summary

Vulnerability Summary

Executive Summary
Preliminary:

Built on top of the Cosmos SDK, Kava is a multi-asset, interoperable Decentralized Finance (DeFi) platform offering
collateralized loans and stablecoins (e.g. USDX), to end-users and other blockchains. The sole objective of the audit
is to verify Kava Labs' implementation of the Harvest module, a cross-chain money market, against the provided
specifications. A series of thorough security assessments were carried out, the goal of which is to help the said
project protect their users by finding and fixing known vulnerabilities that could cause unauthorized access, loss of
funds, cascading failures, and/or other vulnerabilities. Alongside each security finding, recommendations on fixes and
best practices will also be given.

Alleviations:

All recommendations were addressed and fully attended to in pull request #686.

Review Notes
The primary focus for the audit is to have a thorough look into the following parts of the application:

Code Structure
Application Module Interfaces
Messages and Queries
Invariants (if present)
Keepers
Module Interfaces
Module Genesis
Errors

Following a modular design approach outlined in the Cosmos SDK, we carefully inspect the module(s) within scope to
ensure that:

1. Application module interfaces (AppModuleBasic and AppModule at least) are correctly implemented
2. Order of execution between key components of the module are properly manager by Module Manager
3. Messages are accompanied by constructor functions, have proper type definition, and correctly implement the

Msg interface
4. Queries are accompanied by queriers, query commands and query return types
5. Handlers and their corresponding handler functions are properly added and implemented
6. Keepers appropriately expose getter/setter methods for the store(s) managed by the module
7. Invariants are properly implemented and registered
8. Module-specific errors are wrapped to provide additional specific execution context
9. The SDK is utilized in a least-authority manner, primarily for routing messages to their intended modules

Specifically in the Harvest module we analyze how the state machines are defined and how state transitions are
triggered by messages, the goal of which is to check the implementation against the specs and hence minimize the
possibilities of unintentional state behaviors taking place.

Function Check Reference Pass

ClaimReward get a claim from the store claim.go L25-L28

✔

 validate the claim owner and
the reward receiver

claim.go L30-L33

✔

 claim the rewards according
to the depositType and
send them to the reward
owner

claim.go L35-L45

✔

 delete the claim from the
store

claim.go L56

✔

GetPeriodLength check if lockup period in
multiplier is zero

claim.go L64-L66

✔

 calculate the length of the
period based on block time
and multiplier

claim.go L67-L78

✔

claimLPReward get the liquidity provider's
distribution schedule and the
multiplier for it

claim.go L83-L90

✔

 check if the claim had
expired

claim.go L91-L93

✔

 calculate the reward amount
and mint new coins for it

claim.go L94-L98

✔

 get the length of reward
period

claim.go L99-L102

✔

 send the rewards to the
recipient

claim.go L104

✔

 State Transition Checks

Claim

Function Check Reference Pass

claimDelegatorReward get the delegator's
distribution schedule
and the multiplier for it

claim.go L108-L115

✔

 check if the claim had
expired

claim.go L116-L118

✔

 calculate the reward
amount and mint new
coins for it

claim.go L119-L123

✔

 get the length of reward
period

claim.go L125-L128

✔

 send the rewards to the
recipient

claim.go L130

✔

validateSenderReceiver get the sender account
from the store

claim.go L134-L137

✔

 if the sender account is
a validator vesting
account, check if the
sender address
matches to the receiver
address. Otherwise,
check if the two
addresses don't match,
in which case an error
should be raised

claim.go L138-L147

✔

 State Transition Checks

Claim

Function Check Reference Pass

ValidateDeposit check if the depositType is
liquidity provider (lp)

deposit.go L54-L62

✔

ValidateLPDeposit check if the depositDenom
matches the liquidity
provider's denom

deposit.go L67-L75

✔

Deposit validate the deposit and
transfer the coins from the
depositor's account to the
module account ONLY IF the
depositType is liquidity
provider (lp)

deposit.go L14-L27

✔

 check if there's existing
deposits in the store under
the depositor's account. If
there is, add to it. If not, open
a new deposit

deposit.go L29-L34

✔

 store the deposit deposit.go L36

✔

Withdraw get from the store the deposit
to be withdrawn, and check if
the requested withdrawal
amount is larger than the
actual amount in the store

deposit.go L79-L85

✔

 transfer the coins from the
module account to the
original depositor's account
ONLY IF the depositType
is liquidity provider (lp)

deposit.go L88-L96

✔

 subtract the withdrawn
amount from the original
value and update the deposit
amount in the store

deposit.go L121-L122

✔

 State Transition Checks

Deposit

Function Check Reference Pass

ApplyDepositRewards get previousBlockTime and Params from
the store; error out if not found and/or inactive

rewards.go L15-
L24

✔

 range over LiquidityProviderSchedules
(lps) and calculate rewardsDistributed .
Skip if 1) the lps is inactive; 2) lps ends before
(or starts after) blockTime ; 3)
totalDeposited is zero; or 4)
rewardsToDistribute is zero

rewards.go L27-
L67

✔

 Update previousBlockTime in the store rewards.go L68

✔

ShouldDistributeValidatorRewards get previousDelegatorDistribution and
Params from the store; error out if not found

and/or inactive

rewards.go L73-
L81

✔

 range over
DelegatorDistributionSchedules (dds)

and check if timeElapsed exceeds
DistributionFrequency . Skip if 1) denom

doesn't match the DepositDenom in dds; or
2) the DistributionSchedule in dds ends
before the blockTime

rewards.go L82-
L93

✔

 State Transition Checks

Rewards

Function Check Reference Pass

ApplyDelegationRewards get delegatorSchedule from the store;
error out if not found,
DistributionSchedule is inactive, or
DistributionSchedule starts after
blockTime

rewards.go L99-
L108

✔

 get the coin amount in in the boned pool
and check if it is zero

rewards.go L109-
L113

✔

 get previousDelegatorDistribution
from the store and return if not found

rewards.go L114-
L117

✔

 calculate rewardToDistribute rewards.go L119

✔

 iterate over all validators and store the key-
value pair ValAddress→conversion
factor in a map (sharesToTokens);
Continue iteration when the validator has
zero tokens and/or is unbonded

rewards.go L123-
L134

✔

 iterate over all delegations; calculate and
add rewardsEarned to the claim if it is
not zero

rewards.go L138-
L153

✔

 State Transition Checks

Rewards

Function Check Reference Pass

addCoinsToVestingSchedule get PeriodicVestingAccount
from the store

timelock.go L77-
L78

✔

 add the new vesting coins to
OriginalVesting

timelock.go L80

✔

 1) if all vesting periods under the
vesting account have completed
before blockTime, append a new
period to the vesting account →
update EndTime → update the
account in the store; 2) if the
earliest vesting period under the
vesting account starts after
blockTime, update all vesting
periods → set StartTime to now

timelock.go L81-
L104

✔

 insert a new vesting period into the
existing vesting schedule

timelock.go L107-
L143

✔

SendTimeLockedCoinsToPeriodicVestingAccount send time-locked coins from the
module account to the recipient

timelock.go L47-
L50

✔

 add coins to the input account's
vesting schedule

timelock.go L51

✔

SendTimeLockedCoinsToBaseAccount send time-locked coins from the
module account to the recipient

timelock.go L57-
L60

✔

 transition the account to a periodic
vesting account and update it in the
store

timelock.go L63-
L70

✔

SendTimeLockedCoinsToAccount get the senderModule account from
the store and check if it has
sufficient balance

timelock.go L19-
L22

✔

 get the recipient account from the
store; check if the recipient account
is a valid account and if the input
length is greater than zero; send
time-locked coins to the recipient
account according to its account
type

timelock.go L25-
L42

✔

 State Transition Checks

Timelock

✔

Resolved

"

In Progress

ℹ

Ignored (pro)

❌

Not Resolved

❓

Incorrect

&

Ignored (con)

ID Title Type Severity Status

KAV-01 Verbose Code Language Best
Practices

Informational

✔

KAV-02 Inefficient Conditional
Statement

Language Best
Practices

Informational

✔

KAV-03 Inefficient Conditional
Statement

Language Best
Practices

Informational

✔

KAV-04 Unused Parameter Language Best
Practices

Informational

✔

Findings

Status Icon Definitions

Findings Overview

Type Severity Location

Language Best Practices Informational querier.go L81

depositDenom := false
owner := false
depositType := false
if len(params.DepositDenom) > 0 {
 depositDenom = true
}
if len(params.Owner) > 0 {
 owner = true
}
if len(params.DepositType) > 0 {
 depositType = true
}

depositDenom := len(params.DepositDenom) > 0
owner := len(params.Owner) > 0
depositType := len(params).DepositType > 0

KAV-01: Verbose Code

Description:
In the following snippet, the declaration and assignment for a variable (e.g. depositDenom) before/after a given
logical statement can be replaced with a one-liner.

Recommendation:
Replace with the following for better readability.

Alleviation:
The recommendation was applied in commit 0ded29678e4e168d20ad89292c470fcff244db95.

Type Severity Location

Language Best Practices Informational querier.go L97

if depositDenom && owner && depositType {
...
} else if depositDenom && owner {
...
}
...

switch {
case depositDenom && owner && depositType:
...
case depositDenom && owner:
...
case depositDenom && depositType:
...
default:
...
}

KAV-02: Inefficient Conditional Statement

Description:
The following snippet exhibits a fair amount of complexity with the nested if/else statements, which sacrifices code
readability.

Recommendation:
Replace the nested if/else statments with a switch statement.

Alleviation:
The recommendation was applied in commit e8a12b5b71ff9115ffe641418011cf63534456e8.

Type Severity Location

Language Best Practices Informational querier.go L249

if depositDenom && owner && depositType {
...
} else if depositDenom && owner {
...
}
...

switch {
case depositDenom && owner && depositType:
...
case depositDenom && owner:
...
case depositDenom && depositType:
...
default:
...
}

KAV-03: Inefficient Conditional Statement

Description:
The following snippet exhibits a fair amount of complexity with the nested if/else statements, which sacrifices code
readability.

Recommendation:
Replace the nested if/else statments with a switch statement.

Alleviation:
The recommendation was applied in commit b6e8759b86a1d75a12dde5a7fd022327f5701588.

Type Severity Location

Language Best Practices Informational querier.go L33

func queryGetParams(ctx sdk.Context, req abci.RequestQuery, k Keeper) ([]byte, error) {
 // Get params
 params := k.GetParams(ctx)
 // Encode results
 bz, err := codec.MarshalJSONIndent(k.cdc, params)
 if err != nil {
 return nil, sdkerrors.Wrap(sdkerrors.ErrJSONMarshal, err.Error())
 }
 return bz, nil
}

KAV-04: Unused Parameter

Description:
The following snippet parameter req is passed in function queryGetParams but not used.

Recommendation:
Remove parameter req .

Alleviation:
The recommendation was applied in commit 9bbdf1410802a148e61684ef6965a3b345acab2b.

