
LCX
Security Assessment

November 4th, 2020

For :

LCX AG, Herrengasse 6, 9490 Vaduz Liechtenstein www.LCX.com

RVW Security Token for RVW Limited

Tokenizing the Roe V. Wade Movie

Project Name RVW Token

Description An ERC-20 and ERC-1404 compatible security token implementation.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. eeb44d3917b00bcfbb71ec9a7184b72bec62241f
2. 7014d3c784cb7eed81127496a54a4aae31fd1c04

Delivery Date November 4th, 2020

Method of Audit Static Analysis, Manual Review

Consultants Engaged 3

Timeline October 27th, 2020 - October 28th, 2020

Total Issues 19 (17 Resolved, 2 Acknowledged)

Total Critical 0

Total Major 0

Total Medium 0

Total Minor 2 (2 Resolved)

Total Informational 17 (15 Resolved, 2 Acknowledged)

 Overview

Project Summary

Audit Summary

Vulnerability Summary

ID Contract Location

ERC ERC1404.sol contracts/ERC1404.sol

RVW RVW.sol contracts/RVW.sol

 Executive Summary

The audit of the RVW security token identified certain minor and informational findings, which were relayed to
the LCX development team. The LCX team reverted back with an updated commit hash that contained the code
changes they made in response to our audit. Out of 2 minor findings and 17 informational findings, all of the
minor findings were resolved and all but 2 informational findings were resolved. The remaining
informational findings were determined to not compromise the system and can be implemented at the team's

will.

 Files In Scope

ID Title Type Severity Resolved

ERC-01 Unconventional Naming Conventions Coding Style Informational

ERC-02 User-Defined Getters Gas Optimization Informational

ERC-03 require Checks w/ No Error Message Coding Style Informational

ERC-04 Pull-over-Push Pattern Logical Issue Minor

ERC-05 Redundant Casting Gas Optimization Informational

ERC-06 Redundant public Attribute Language Specific Informational

RVW-01 User-Defined Getters Gas Optimization Informational

RVW-02 Mutability Specifiers Missing Gas Optimization Informational

RVW-04 Redundant Statements Dead Code Informational

RVW-05 require Checks w/ No Error Message Coding Style Informational

RVW-06 Pull-over-Push Pattern Logical Issue Minor

RVW-07 Redundant Variable Initialization Coding Style Informational

RVW-08 User-Defined Getters Gas Optimization Informational

RVW-09 Setter Functions to Toggle Mechanic Gas Optimization Informational

RVW-10 ERC20 Variable Shadowing Gas Optimization Informational

RVW-11 Redundant Casting Coding Style Informational

RVW-12 Early End of Execution Logical Issue Informational

RVW-13 Function Visibility Optimization Gas Optimization Informational

RVW-14 Return Variable Utilization Gas Optimization Informational

 Findings

Type Severity Location

Coding Style Informational ERC1404.sol L26

 ERC-01: Unconventional Naming Conventions

Description:
The linked line contains a function definition for checking whether an address is locked, however the name of the
function is isLockup and the name of its input variable is _address which are slightly confusing.

Recommendation:
We advise that isLockup is renamed to isLocked and _address is renamed to account or wallet . The
declaration address _address is slightly confusing and reserved Solidity keywords should be avoided from being
utilized as function input names.

Alleviation:
The linked function was indeed renamed to isLocked to increase legibility, alleviating this exhibit.

Type Severity Location

Gas Optimization Informational ERC1404.sol L38, L48-L51

 ERC-02: User-Defined Getters

Description:
The linked variables contain user-defined getter functions that are equivalent to their name barring for an underscore
(_) prefix / suffix.

Recommendation:
We advise that the linked variables are instead declared as public and that they are renamed to their respective
getter's name as compiler-generated getter functions are less prone to error and much more maintainable than
manually written ones.

Alleviation:
The team alleviated this exhibit by setting the linked variables as public and properly adjusting their name.

Type Severity Location

Coding Style Informational ERC1404.sol L55, L77

 ERC-03: require Checks w/ No Error Message

Description:
The linked require checks contain no error message that accompanies the condition they evaluate.

Recommendation:
We advise that an error message is explicitly set for those require checks to aid in the debugging process of the
smart contracts.

Alleviation:
Error messages were properly set for all require calls.

Type Severity Location

Logical Issue Minor ERC1404.sol L70-L80

 ERC-04: Pull-over-Push Pattern

Description:
The linked functions conduct a transfer of ownership of the contract without necessarily validating that the newOwner
address is indeed owned by an EOA or a smart contract.

Recommendation:
In Solidity, pull patterns should be applied instead of push patterns when dealing with sensitive contract variables. In
this case, a new owner should instead be proposed and another function should be implemented that allows the
proposed owner to accept his invitation, thus ensuring that the new owner is capable of interacting with the contract.

Alleviation:
A new pattern was implemented whereby a new owner is suggested via proposeOwnership and they subsequently
accept via acceptOwnership in a pull-pattern.

Type Severity Location

Gas Optimization Informational ERC1404.sol L115, L117

 ERC-05: Redundant Casting

Description:
The updateChecker function contains an input variable of type address that is casted to a type
IERC1404Checks interface redundantly.

Recommendation:
We advise that the input variable is set to be of IERC1404Checks type and the require check of L116 utilizes a
not-equal comparison with IERC1404Checks(0) .

Alleviation:
The function input as well as require comparison were properly updated to utilize IERC1404Checks .

Type Severity Location

Language Specific Informational ERC1404.sol L90-L93, L95-L99

 ERC-06: Redundant public Attribute

Description:
The linked variables are declared as public yet they are utilized internally as status codes and the error messages
are retrievable via the messageForTransferRestriction function.

Recommendation:
We advise that the public attribute is removed greatly decreasing the generated bytecode. These variables should
instead be set to either private or internal depending on their use case.

Alleviation:
The public attribute was instead replaced by an internal attribute properly denoting their functionality and
reducing the contract's generated bytecode.

Type Severity Location

Gas Optimization Informational RVW.sol L58-L60, L70-L73, L77-
L83, L85-L92, L94-L99

 RVW-01: User-Defined Getters

Description:
The linked variables contain user-defined getter functions that are equivalent to their name barring for an underscore
(_) prefix / suffix.

Recommendation:
We advise that the linked variables are instead declared as public and that they are renamed to their respective
getter's name as compiler-generated getter functions are less prone to error and much more maintainable than
manually written ones.

Alleviation:
The team alleviated this exhibit by setting the linked variables as public and properly adjusting their name.

Type Severity Location

Gas Optimization Informational RVW.sol L60, L66

 RVW-02: Mutability Specifiers Missing

Description:
The linked variables are assigned to only once, either during their contract-level declaration or during the
constructor 's execution.

Recommendation:
For the former, we advise that the constant keyword is introduced in the variable declaration to greatly optimize the
gas cost involved in utilizing the variable. For the latter, we advise that the immutable mutability specifier is set at
the variable's contract-level declaration to greatly optimize the gas cost of utilizing the variables. Please note that the
immutable keyword only works in Solidity versions v0.6.5 and up.

Alleviation:
The decimals variable was properly set to be immutable and thus reduce the gas cost involved in interacting with
it.

Type Severity Location

Dead Code Informational RVW.sol L233-L249

 RVW-04: Redundant Statements

Description:
The linked statements do not affect the functionality of the codebase and appear to be either leftovers from test code
or older functionality.

Recommendation:
We advise that they are removed to better prepare the code for production environments.

Alleviation:
The LCX development team has acknowledged this exhibit and the dead code is now in use by the burn public
functions

Type Severity Location

Coding Style Informational RVW.sol L306, L339

 RVW-05: require Checks w/ No Error Message

Description:
The linked require checks contain no error message that accompanies the condition they evaluate.

Recommendation:
We advise that an error message is explicitly set for those require checks to aid in the debugging process of the
smart contracts.

Alleviation:
Error messages were properly set for all require calls.

Type Severity Location

Logical Issue Minor RVW.sol L326-L342

 RVW-06: Pull-over-Push Pattern

Description:
The linked functions conduct a transfer of ownership of the contract without necessarily validating that the newOwner
address is indeed owned by an EOA or a smart contract.

Recommendation:
In Solidity, pull patterns should be applied instead of push patterns when dealing with sensitive contract variables. In
this case, a new owner should instead be proposed and another function should be implemented that allows the
proposed owner to accept his invitation, thus ensuring that the new owner is capable of interacting with the contract.

Alleviation:
A new pattern was implemented whereby a new owner is suggested via proposeOwnership and they subsequently
accept via acceptOwnership in a pull-pattern.

Type Severity Location

Coding Style Informational RVW.sol L451-L456

 RVW-07: Redundant Variable Initialization

Description:
All variable types within Solidity are initialized to their default "empty" value, which is usually their zeroed out
representation. Particularly:

uint / int : All uint and int variable types are initialized at 0
address : All address types are initialized to address(0)
byte : All byte types are initialized to their byte(0) representation
bool : All bool types are initialized to false
ContractType : All contract types (i.e. for a given contract ERC20 {} its contract type is ERC20) are

initialized to their zeroed out address (i.e. for a given contract ERC20 {} its default value is
ERC20(address(0)))
struct : All struct types are initialized with all their members zeroed out according to this table

Recommendation:
We advise that the linked initialization statements are removed from the codebase to increase legibility.

Alleviation:
The linked constructor was omitted from the contract thus reducing the generated bytecode and associated
deployment cost of the contract.

Type Severity Location

Gas Optimization Informational RVW.sol L449, L458-L463

 RVW-08: User-Defined Getters

Description:
The linked variables contain user-defined getter functions that are equivalent to their name barring for an underscore
(_) prefix / suffix.

Recommendation:
We advise that the linked variables are instead declared as public and that they are renamed to their respective
getter's name as compiler-generated getter functions are less prone to error and much more maintainable than
manually written ones.

Alleviation:
The LCX development team has acknowledged this exhibit but decided to not apply its remediation in the current
version of the codebase for strategic reasons.

Type Severity Location

Gas Optimization Informational RVW.sol L489-L511

 RVW-09: Setter Functions to Toggle Mechanic

Description:
The linked functions set a value literal to the underlying variable _paused in two separate function implementations.

Recommendation:
We advise that a toggle or single setter function with an input variable is set to decrease the total bytecode of the
contract.

Alleviation:
The LCX development team has acknowledged this exhibit but decided to not apply its remediation in the current
version of the codebase for strategic reasons.

Type Severity Location

Gas Optimization Informational RVW.sol L609-L615

 RVW-10: ERC20 Variable Shadowing

Description:
The linked variables are already declared in the ERC20 interface and as such do not need to be redeclared.

Recommendation:
We advise that they are instead passed as literals to the ERC20 constructor via L630.

Alleviation:
The LCX development team has resolved the issue entirely.

Type Severity Location

Coding Style Informational RVW.sol L655

 RVW-11: Redundant Casting

Description:
The linked require check casts IERC1404 to an address variable before comparing.

Recommendation:
We advise that the comparison is instead set to restrictedTransfer != IERC1404(0) .

Alleviation:
The LCX development team has acknowledged this exhibit but decided to not apply its remediation in the current
version of the codebase for strategic reasons.

Type Severity Location

Logical Issue Informational RVW.sol L710-L712

 RVW-12: Early End of Execution

Description:
The linked for loop can end abruptly early if one of the _issueTokenAndWhitelist invocations fail.

Recommendation:
We advise that a try-catch clause is utilized as it is supported in Solidity version 0.7.0 , and the loop ends early
by returning the index up to which the transactions were successful.

Alleviation:
After discussing with the LCX team, we concluded that they will not apply the recommendation of this exhibit as they
will handle it off chain.

Type Severity Location

Gas Optimization Informational RVW.sol L706

 RVW-13: Function Visibility Optimization

Description:
The linked function is declared as public , contains array function arguments and is not invoked in any of the
contract's contained within the project's scope.

Recommendation:
We advise that the functions' visibility specifiers are set to public and the array-based arguments change their data
location from memory to calldata , optimizing the gas cost of the function.

Alleviation:
The LCX development team has completely applied the recommendations.

Type Severity Location

Gas Optimization Informational RVW.sol L684

 RVW-14: Return Variable Utilization

Description:
The linked function declarations contain explicitly named return variables that are not utilized within the function's
code block.

Recommendation:
We advise that the linked variables are either utilized or omitted from the declaration.

Alleviation:
The LCX development team has completely applied the recommendations.

Appendix

Finding Categories

Gas Optimization
Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate different, more
optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations
Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as overflows,
incorrect operations etc.

Logical Issue
Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect notion on how
block.timestamp works.

Control Flow
Control Flow findings concern the access control imposed on functions, such as owner-only functions being invoke-
able by anyone under certain circumstances.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in a
vulnerability.

Data Flow
Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a struct
assignment operation affecting an in-memory struct rather than an in-storage one.

Language Specific
Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or
delete .

Coding Style
Coding Style findings usually do not affect the generated byte-code and comment on how to make the codebase
more legible and as a result easily maintainable.

Inconsistency
Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a
constructor assignment imposing different require statements on the input variables than a setter function.

Magic Numbers
Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and should
otherwise be specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error
Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile using the
specified version of the project.

Dead Code
Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team.
These reports are not, nor should be considered, an indication of the economics or value of any “product” or “asset”
created by any team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal
compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any
particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice
of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their
code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each
company and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help
reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing
technologies, and in no way claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?
A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK
by a Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation
and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the intention to increase
the quality of the company/product's IT infrastructure and or source code.

