

0

Contents

Contents 1

Disclaimer 3

About CertiK 3

Executive Summary 4

Testing Summary 5
SECURITY LEVEL 5

Review Notes 6
Overview 6
Scope of Work 6
Audit Summary 8
Audit Revisions 8

Audit Findings 9

Exhibit 1 9

Exhibit 2 11

Exhibit 3 12

Exhibit 4 13

Exhibit 5 14

Exhibit 6 15

Exhibit 7 16

Exhibit 8 17

Exhibit 9 18

Exhibit 10 19

Exhibit 11 20

Exhibit 12 21

Exhibit 13 22

Exhibit 14 23

1

Exhibit 15 24

2

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of

services, confidentiality, disclaimer and limitation of liability) set forth in the Verification

Services Agreement between CertiK and ​Matic​ (the “Company”), or the scope of

services/verification, and terms and conditions provided to the Company in connection with the

verification (collectively, the “Agreement”).

About CertiK

CertiK is a technology-led blockchain security company founded by Computer Science

professors from Yale University and Columbia University built to prove the security and

correctness of smart contracts and blockchain protocols.

CertiK’s mission of every audit is to apply different approaches and detection methods, ranging

from manual, static, and dynamic analysis, to ensure that the project is checked against known

attacks and potential vulnerabilities. CertiK leverages a team of seasoned engineers and

security auditors to apply testing methodologies and verifications on the project, in turn creating

a more secure and robust software system.

CertiK has served more than 100 clients with high quality auditing and consulting services,

ranging from stablecoins such as Binance’s BGBP and Paxos Gold to decentralized oracles

such as Band Protocol and Tellor.

3

Executive Summary

Matic Network​ is a Layer 2 scaling solution that achieves scale by utilizing sidechains

for off-chain computation while ensuring asset security using the Plasma framework

and a decentralized network of Proof-of-Stake (PoS) validators. Matic strives to solve

the scalability and usability issues while not compromising on decentralization and

leveraging the existing developer community and ecosystem.​ A series of thorough

security assessments have been carried out, the goal of which is to help Matic protect

their users by finding and fixing known vulnerabilities that could cause unauthorized

access, loss of funds, cascading failure, and/or other vulnerabilities. Alongside each

security finding, recommendations on fixes and best practices have also been given.

4

https://matic.network/

Testing Summary

SECURITY LEVEL

Smart contracts Audit

This report has been prepared as a product of the
smart contract audit request by Matic.

This audit was conducted to discover issues and
vulnerabilities in the source code of smart
contract implementation.

TYPE Smart contracts

SOURCE CODE https://github.com/maticnetw
ork/pos-portal/

 LANGUAGE Solidity

REQUEST
DATE July 24, 2020

REVISION
DATE Aug 19, 2020

METHODS

A comprehensive examination
has been performed using
Whitebox Analysis. In detail,
Dynamic Analysis, Static
Analysis, and Manual Review
were utilized.

5

https://github.com/maticnetwork/pos-portal/
https://github.com/maticnetwork/pos-portal/

Review Notes

Overview

A primary focus for the audit is to have a thorough look at the ​smart contracts that

power the PoS (proof-of-stake) based bridge mechanism for ​Matic Network​.​ Specifically

we want to make sure that the exit mechanism is correctly implemented and cannot be

exploited to withdraw the tokens deposited on the sidechain more than once per

transfer.

Scope of Work

● The audit work was scoped to a specific commit

c810a2400e54f61014943544719246f0c8b66401​ of the source code per the

agreement

● The codebase are divided into modules of smart contracts based on their

functionalities:

Child

Smart
contracts Description PASS

ChildChainManag

er

● Operates on child chain

● Keeps a mapping for corresponding token

addresses between the root chain and child chain

● Syncs deposit transactions

6

https://matic.network/

 ChildToken

● Smart contract to add functionalities to deposit

from and withdraw to the root chain on top of

ERC20, ERC721, ERC1155, Mintable721 and

MaticWETH tokens.

Root

Smart contracts Description PASS

RootChainManager

● Deposits tokens from the root chain to the child

chain

● Implements the general exit mechanism

RootToken
● Implementation of ERC20, ERC721, ERC1155,

Mintable721 tokens on root chain

StateSender ● Sends data to the child chain

TokenPredicates

● Locks tokens after deposit from the root chain

to the child chain

● Implements specific exit mechanism for each

token

Lib
Contains implementation of the RLP encoding, Merkle tree proof verification, Merkle Patricia Tree proof

verification.

Common

Contains standard solidity libraries for smart contract upgradability and access control.

7

Audit Summary

The codebase of the project was identified to be carefully designed and detailed, as well

as properly documented. In total we found​ ​one critical issue​ ​in the exit mechanism

(Exhibit 1) that enables malicious attackers repeated withdrawal from the childchain. All

other issues were of negligible importance and mostly referred to coding standards and

inefficiencies.

In the second round we have found one major issue that enables replay attacks, one

between the child chain and main chain, second between different contracts on the

child chain.

Audit Revisions

On 11th August 2020 the pull request​ ​preliminary-audit-fixes​ ​with commit

f33407cbecfd0dbbd3da2da849efbc60e6018c7d ​was submitted. This pull request

fixed almost all listed issues except 5, 11, 15. The changes were approved by the Certik

audit team on the same day.

On 19th August 2020 the pull request​ ​feature/meta-transaction ​ ​with commit

8dcc8b4b6476bfdfaa10eff76e1eeed178f252ee ​ ​was submitted. The pull request has

fixed all the remaining issues. The changes were approved by the Certik audit team on the same

day.

8

On 20th August 2020 the Matic team discovered some issues in the library contracts through

extra testing. The Certik audit team has verified and approved the fixes in commit

165acf14f70ff272883600ce1a233c129c584398.

9

Audit Findings

Exhibit 1

TITLE TYPE SEVERITY LOCATION

Repeated exit Security Critical
MerklePatriciaProof.sol

Lines 150-153

Description:

RootChainManager.sol lines 250-255 the ​exitHash ​ is determined by three factors, one of

which is ​inputDataRLPList[8] ​, the branch mask, i.e. the path in the receipt merkle patricia

trie from the root to the corresponding burning transaction receipt.

The path is in bytes and translated to hex by ​_getNibbleArray() ​ in

MerklePatriciaProof.sol ​. There are 2 cases depending whether the path in hex has odd

or even length. In case on line 150 we accept every beginning nibble except 1,3 and erase the

first two nibble in the hex array, which means two arrays 2055 and 4055 would produce the

same ​_getNibbleArray() ​ to bypass `verify`, but they produce different ​exitHash ​ so one

can exit more than once.

Recommendations:

One needs to check in the ​else ​ case that the first two nibbles are 20 (we don't allow paths

ending in extension nodes here).

10

Alleviation:

In commit ​f33407c ​the computation of exitHash the component inputDataRLPList[8] is

changed to

MerklePatriciaProof._getNibbleArray(inputDataRLPList[8].toBytes()) ​,

which makes the branchMask unique.

11

Exhibit 2

TITLE TYPE SEVERITY LOCATION

Redundant return statement
Code

optimization
Informational

MerklePatriciaProof.sol

Lines 102, 107

Description:

The default return value is ​false ​ so the return statements on lines 107 and 102 are not needed

and the ​else ​ case on line 101 can be omitted.

Recommendations:

Omit the unnecessary code.

Alleviation:

The recommendation has been assimilated in commit ​f33407c.

12

Exhibit 3

TITLE TYPE SEVERITY LOCATION

Integer underflow Arithmetic Informational
RootChainManager.sol

Line 342

Description:

The subtraction ​blockNumber - startBlock ​ is unsafe and can cause integer underflow,

but we believe this cannot be exploited in any way as it would certainly cause the Merkle proof

verification to fail.

Recommendations:

Use SafeMath for arithmetic operations.

Alleviation:

SafeMath usage has been added in commit ​f33407c.

13

Exhibit 4

TITLE TYPE SEVERITY LOCATION

Unlocked compiler version
Compiler

version
Informational All smart contracts headers

Description:

An unlocked compiler version in the source code of the contract permits the user to compile it

at or above a particular version. This, in turn, leads to differences in the generated bytecode

between compilations due to differing compiler version numbers.

This can lead to an ambiguity when debugging as compiler specific bugs may occur in the

codebase that would be hard to identify over a span of multiple compiler versions rather than a

specific one.

Recommendations:

We advise that the compiler version is instead locked at a specific version possible that the full

project can be compiled at.

Alleviation:

Compiler version has been locked in commit ​f33407c.

14

Exhibit 5

TITLE TYPE SEVERITY LOCATION

Interface structure Coding style Informational IChildToken.sol

Description:

The IChildToken interface contains only the deposit function and is inherited in every Child

Token contract. Every Child Token contains an additional withdraw function which is essential

because it enables token withdrawal from the child chain to the main chain so we believe this

function belongs to the general pattern as well, i.e. IChildToken interface.

Recommendations:

Add withdraw to the IChildToken interface.

Alleviation:

All child tokens are not expected to have the same interface for withdraw. For eg. ERC20

tokens will have single param for amount and ERC1155 will have 2 params for amount and

tokenId. Due to this reason, not adding withdraw function to ​IChildToken​ interface.

15

Exhibit 6

TITLE TYPE SEVERITY LOCATION

Multiple lookups from storage
Gas

optimization
Informational

RootChainManager.sol

Lines 275, 281

Description:

The value in storage ​childToRootToken[childToken] ​ is looked up twice in exit function.

Each lookup costs 200 gas each. It would be better to assign this value to a memory variable,

because both memory assignment and look up cost 3 gas each.

Recommendations:

Use memory assignment to avoid multiple storage lookups.

Alleviation:

The recommendation has been assimilated in commit ​f33407c.

16

Exhibit 7

TITLE TYPE SEVERITY LOCATION

Depositor role
Function

logics
Informational All Child Token contracts

Description:

In the constructors of ​ChildToken ​ contracts the depositor role is assigned to the contract’s

creator. The depositor is an important role as it is the only address that is authorized to deposit

the tokens from root contract to child contract. From the natspec it is evident that only the

ChildChainManager ​ contract should possess this role and this contract does not deploy the

ChildToken ​ contracts so one would needs some transactions to pass over the depositor

rights.

Recommendations:

Assign the depositor role directly to the ChildChainManager in the constructor.

Alleviation:

In commit ​f33407c ​the depositor role has been initiated to​ childChainManager ​.

17

Exhibit 8

TITLE TYPE SEVERITY LOCATION

require​ error message Coding style Informational
RLPReader.sol Line 104, 168,

208,

Description:

require ​ can be used to check for conditions and throw an exception if the condition is not

met, in which case the error message provided by the developer will appear. This is why a very

descriptive error message is needed.

Recommendations:

Adding an error message describing the failed condition.

Alleviation:

In commit ​f33407c ​error messages have been added.

18

Exhibit 9

TITLE TYPE SEVERITY LOCATION

isList()​ verification Logics Informational RLPReader.sol Line 165-183

Description:

The function ​numItems() ​ calculates the number of elements in an ​RLPItem ​ representing a

list, so it should check whether the input indeed represents a list. For example it would return

the length of a string. On the other hand adding a ​require ​ check is not necessary and would

only cost more gas, since the only place this function is used is in ​toList() ​ and the

aforementioned condition is already checked. The exhibit is here just for completeness in case

the ​RLPReader.sol ​ library is expanded and the function ​numItems() ​ is used in additional

functions.

Recommendations:

Add ​require ​ check if necessary.

Alleviation:

In commit ​f33407c ​the check and issue description have been added to the comments of

numItems() ​ function

19

Exhibit 10

TITLE TYPE SEVERITY LOCATION

Unnecessary ​if​ clause Logics Informational RLPReader.sol Line 229

Description:

Checking in the function ​numItems() ​ whether ​item.len == 0 ​ to return zero is not needed

since if ​item.len == 0 ​ then it does not encode a list, because the RLP encoding of an empty

list is ​0xC0 ​. Moreover the function ​numItems() ​ is only used in ​toList() ​ and right before

calling ​numItems() ​ the condition ​isList() ​ is checked which excludes the possibility of an

empty item.

Recommendations:

Omit the ​if ​ clause.

Alleviation:

In commit ​f33407c ​the recommendation has been assimilated.

20

Exhibit 11

TITLE TYPE SEVERITY LOCATION

Inefficient comparison Logics Informational RLPReader.sol Line 234

Description:

In function ​numItems() ​ by the definition of ​RLPItem ​ it is clear the the value of ​currPtr ​ can

never exceed ​endPtr ​ and the while loop on line 234 would stop when ​currPtr ​ and ​endPtr

are equal, hence instead of ​currPtr < endPtr ​ we can use ​CurrPtr != endPtr ​ as each

not equal comparison costs 3 less gas (negligible for short ​RLPItem ​, this exhibit is just here for

completeness) than less than comparison.

Recommendations:

Use not equal instead of less than.

Alleviation:

The improvement is negligible so the Exhibit was not applied.

21

Exhibit 12

TITLE TYPE SEVERITY LOCATION

Exclusion of empty bytes input
Implementat

ion
Informational RLPReader.sol Lines 53-64

Description:

In several functions of ​RLPReader ​ library we check that ​item.len ​ is not zero. Indeed any RLP

encoding (even of empty string or empty array) is non-empty, this means we should check this

condition in the function ​toRlpItem() ​ to exclude this case before hand.

Recommendations:

Check that the input bytes are not empty in the function ​toRlpItem() ​.

Alleviation:

In commit ​f33407c ​the length check has been added.

22

Exhibit 13

TITLE TYPE SEVERITY LOCATION

Non unique uint encoding
Implementat

ion
Minor RLPReader.sol Lines 173-205

Description:

The functions ​toUint() ​ and ​toUintStrict() ​ only take ​RLPItem ​ representing ​uint ​ as

input. To get the data bytes only the length of the payload offset is calculated, whereas the

content of this prefix is not considered, which means invalid ​RLPItem ​ with prefixes of incorrect

length or short list would still get through.

Recommendations:

Check the payload offset content in ​toUint() ​ and ​toUintStrict() ​.

Alleviation:

In commit ​f33407c ​the prefix check has been added.

23

Exhibit 14

TITLE TYPE SEVERITY LOCATION

Incorrect encoding of value “false”
Implementat

ion
Minor RLPReader.sol Lines 155-164

Description:

According to RLP encoding specification the special value “false” is encoded as “0x80”, whereas

in current implementation of the function “toBoolean” it is “0x00”.

Recommendations:

Change the implementation to follow the specification.

Alleviation:

toBoolean() is not being used anywhere in the system, the function is removed completely.

24

Exhibit 15

TITLE TYPE SEVERITY LOCATION

Replay attack between child chain

and root chain

Implementat

ion
Major NetworkAgnostic.sol 37-87

Description:

Matic wants to enable users to send transactions to matic network without changing the

network in their wallet so the chainId is the same for both child chain and main chain. This

opens an attack vector when a user wants to send a transaction only to the child chain, then the

attacker can submit the signed transaction to the other chain against that user’s will. The

requires the same nonce, which can happen, and the same contract address on both chains to

have an exploitable function, for example when the two contracts are deployed from the same

address.

Recommendations:

Change the chainID and check the chainID before transaction execution.

Alleviation:

Using same chainId for child token contracts is exploitable. Changed NetworkAgnostic feature

to native meta transaction in commit ​8dcc8b4 ​. The opcode ​chainid​ is used so it is always the

native chain id. This chain id is used as salt in EIP712 domain separator so that metamask

allows signing tx with different chain id than currently selected network.

25

