
Security Assessment

MetaHero
Jul 12th, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
GLOBAL-01 : Missing emit events

HEO-01 : Privileged ownership

HEO-02 : Logic issue on reward fee

HEO-03 : Missing logic in function `_transferFromExcludedAccount`

HEP-01 : Issue in receive functions

HEP-02 : Privileged ownership

HER-01 : External dependencies risk

HER-02 : Issue in receive functions

HER-03 : Code redundancy

HER-04 : Potential sandwich attack

Appendix

Disclaimer

About

MetaHero Security Assessment

Summary
This report has been prepared for MetaHero to discover issues and vulnerabilities in the source code of the

MetaHero project as well as any contract dependencies that were not part of an officially recognized

library. A comprehensive examination has been performed, utilizing Static Analysis and Manual Review

techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices.
We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in public;

Provide more transparency on privileged activities once the protocol is live.

MetaHero Security Assessment

Overview

Project Summary

Project Name MetaHero

Platform BSC

Language Solidity

Codebase
https://github.com/metahero-token/metahero-
contracts/tree/7b843bd8965d01f36373dfc5dfc292fa4e495fb0

Commit 7b843bd8965d01f36373dfc5dfc292fa4e495fb0

Audit Summary

Delivery Date Jul 12, 2021

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Vulnerability Level Total Pending Partially Resolved Resolved Acknowledged Declined

Critical 0 0 0 0 0 0

Major 2 0 0 0 2 0

Medium 0 0 0 0 0 0

Minor 6 0 0 1 5 0

Informational 2 0 0 1 1 0

Discussion 0 0 0 0 0 0

MetaHero Security Assessment

https://github.com/metahero-token/metahero-contracts/tree/7b843bd8965d01f36373dfc5dfc292fa4e495fb0

Audit Scope

ID file SHA256 Checksum

CCK common/access/Controlled.sol 5303a14ccdd33123b54d2c02cb73934cdab9d11cf1dd431cc3782597504c41a2

LCK common/access/Lockable.sol 000e12ade538b0ba64fc3fea0b9168227c9a4360b0ad5e4f82a8b98d6c4d87d9

OCK common/access/Owned.sol 650e7f258b479536a1da72f4ec32fe92b8328e3ce81afd1c980e73c3bc38fb07

ERC common/erc20/ERC20.sol ccce5c3b585eb171b848be9192382ef99e12acf831dedf3415e1c68cd8cef5f3

ICK common/lifecycle/Initializable.sol c676a1222f60736d327ad287a721f19ef1d47425f750aef71aedcd4deeab28ca

MLC common/math/MathLib.sol c731f2ad102e1d66681909eaf765ea0e155cabe9620b54bbfff43a293a9d1516

SML common/math/SafeMathLib.sol 09675f7f288f08ee0a81e10c3ed16852072b1f6de1ae8655f5c56bb7dafddaa3

HER lpManager/HEROLPManager.sol e38bf0beac6116cac316ab22a4159c9a632cc2307478ffb8d94bb7a6fc3d150b

HEO
lpManager/HEROLPManagerForUniswapV2.
sol

5d55e209d0ce4f3b996fb21c99e81af50fb8575c019ccd6d5a1b2e9e13d5e491

HEP presale/HEROPresale.sol 51a66fbf9fc0847cc6fb9d46ced8c7639f67cb1cd4d41ba43340eac746cfe728

HET token/HEROToken.sol e7927ff5a6745a239c995c9ded52cf4b1917b42796ae958ad7b26028118b0977

MetaHero Security Assessment

Centralized Risks

The owner of contract HEROToken has the permission to:

1. exclude/include addresses from rewards/fees, hence holding accounts cannot get minted

tokens/burn tokens. Holding account cannot transfer tokens in presale period,

2. mint any amount of tokens to any excluded accounts,

3. set taxFee , liquidityFee , _maxTxAmount and presaleFinished ,

4. enable swapAndLiquifyEnabled

without obtaining the consensus of the community.

The owner of contract HEROPresale has the permission to:

1. change the presale period(deadline) via updateDeadline() ,

2. exclude/include addresses from whitelist , hence only addresses in whitelist can buy

HEROToken,

3. set tokensAmountPerNative , maxPurchasePrice

without obtaining the consensus of the community.

Financial Models

Financial models of Metahero protocols need to be resilient to attacks. It needs to pass simulations and

verifications to guarantee the security of the overall protocol.

As per the white paper, the HEROToken contract is a deflationary token, and 1% of each transaction

amount is proportionally distributed among all holders as a passive reward. However, we are unable to find

the reward distribution logic. The mechanism is just to move 1% of transaction amount from holding

accounts to total rewards, and user's balance is keep shrinking. Thus, the reward fee is also acting like

burning fee.

The scope of this audit is not including tokenomics, hence we strongly recommend the team to take

serious considerations.

MetaHero Security Assessment

Findings

ID Title Category Severity Status

GLOBAL-01 Missing emit events Logical Issue Minor Resolved

HEO-01 Privileged ownership
Centralization /
Privilege

Minor Acknowledged

HEO-02 Logic issue on reward fee Logical Issue Major Acknowledged

HEO-03
Missing logic in function
_transferFromExcludedAccount

Logical Issue Major Acknowledged

HEP-01 Issue in receive functions Logical Issue Minor Acknowledged

HEP-02 Privileged ownership
Centralization /
Privilege

Minor Acknowledged

HER-01 External dependencies risk Control Flow Informational Acknowledged

HER-02 Issue in receive functions Logical Issue Minor Acknowledged

HER-03 Code redundancy
Coding Style, Gas
Optimization

Informational Resolved

HER-04 Potential sandwich attack Logical Issue Minor Acknowledged

MetaHero Security Assessment

10
Total Issues

Critical 0 (0.00%)

Major 2 (20.00%)

Medium 0 (0.00%)

Minor 6 (60.00%)

Informational 2 (20.00%)

Discussion 0 (0.00%)

GLOBAL-01 | Missing emit events

Category Severity Location Status

Logical Issue Minor Global Resolved

Description

Function initialize in contract HEROToken affects the value of sensitive variables including settings

and lpManager , should be able to emit events as notifications to customers.

Function initialize in contract HEROLPManagerForUniswapV2 affects the value of sensitive variables

including uniswapRouter , wrappedNative and uniswapPair , should be able to emit events as

notifications to customers.

Function initialize in contract HEROPresale should also be able to emit events as notifications to

customers.

Recommendation

Consider adding events for sensitive actions, and emit it in the function.

Alleviation

The team heeded our advice addressed the issue and reflected in commit

63b63d16d52fa1da6f5bb3bc7a23ac4c283ea8a5.

MetaHero Security Assessment

HEO-01 | Privileged ownership

Category Severity Location Status

Centralization / Privilege Minor contracts/metahero/token/HEROToken.sol Acknowledged

Description

The owner of contract HEROToken has the permission to:

1. exclude/include addresses from rewards/fees, hence holding accounts cannot get minted

tokens/burn tokens. Holding account cannot transfer tokens in presale period,

2. mint any amount of tokens to any excluded accounts,

3. set taxFee , liquidityFee , _maxTxAmount and presaleFinished ,

without obtaining the consensus of the community.

Recommendation

Renounce ownership when it is the right timing, or gradually migrate to a timelock plus multisig governing

procedure and let the community monitor in respect of transparency considerations.

Alleviation

The development team replied that

1. The presale is finished. The owner can still exclude fresh (without balance) accounts - this is required

for future integrations.

2. The controller was turned off during the initialization process (there is no possibility of mining new

tokens)

3. Only DAO can manipulate fees.

They are planning to migrate to DAO in the future - DAO will take ownership of the contract.

MetaHero Security Assessment

HEO-02 | Logic issue on reward fee

Category Severity Location Status

Logical Issue Major contracts/metahero/token/HEROToken.sol Acknowledged

Description

As per the white paper said, 1% of each transaction is proportionally distributed among all holders as a

passive reward. However, there is no reward distribution logic.

 ifif ((summarysummary..totalRewards totalRewards !=!= 00)) {{

 uint256uint256 totalHoldingWithRewards totalHoldingWithRewards == summary summary..totalHoldingtotalHolding..addadd((summarysummary..totalRewardstotalRewards));;

 senderAmount senderAmount == senderAmount senderAmount..mulmul((summarysummary..totalHoldingtotalHolding))..divdiv((totalHoldingWithRewardstotalHoldingWithRewards));;

 recipientAmount recipientAmount ==
recipientAmountrecipientAmount..mulmul((summarysummary..totalHoldingtotalHolding))..divdiv((totalHoldingWithRewardstotalHoldingWithRewards));;

 totalFee totalFee == totalFee totalFee..mulmul((summarysummary..totalHoldingtotalHolding))..divdiv((totalHoldingWithRewardstotalHoldingWithRewards));;

 }}

The above code is the only usage of the totalRewards, but it only reduces the transfer amount and fee (the

reduced fee is matching the reduced transfer amount, so cannot be considered as rewards). The total

rewards have never been distributed among all holders. Thus, the rewardFee is not actually a reward, it

acts like a transaction fee.

Recommendation

Consider to implement the reward distribution logic.

Or just remove the reward fee and update the white paper, because it seems not a helpful incentive to

motivate people to buy Hero token. The reward fee is indicating that when user want to transfer his/her

money to someone else, or receive money from others, he/she has to pay every one in the market a small

portion of his money. This is not reasonable.

Alleviation

[MetaHero]:

According to our whitepaper, 1% of each transaction is proportionally distributed among all holders as a

passive reward.

[CertiK Response]:

MetaHero Security Assessment

We noticed the above-mentioned statement in the white paper, here we are asking the distribution logic.

According to the code snippet in our finding, the transfer amount and fee will be multiplied by same rate

calculated by reward fee. This is not a proper way of reward distribution. The reduced fee is only due to the

reduced transfer amount, so both the sender and receiver do not get the reward. Reward fee keep

accumulating, and never get distributed.

[MetaHero]:

1. We can not distribute rewards to all holder accounts each time rewards are updated - it would

require a loop.

Instead of this all holders related variables are multiple by TH / (TH + TR) multiplier, where:

TH = total balance of all holders

TR = total accumulated rewards

https://github.com/metahero-io/metahero-contracts/blob/master/src/MetaheroToken.sol#L872

https://github.com/metahero-io/metahero-contracts/blob/master/src/MetaheroToken.sol#L875

https://github.com/metahero-io/metahero-contracts/blob/master/src/MetaheroToken.sol#L878

In the end, the holder can spend more than owns in the current account balance (proportionally to owned

rewards)

2. Holder rewards are added to balance in the "balanceOf" method.

3. To be more transparent for holders, we created the "getBalanceSummary" method, which returns all

balance components.

MetaHero Security Assessment

https://github.com/metahero-io/metahero-contracts/blob/master/src/MetaheroToken.sol#L872
https://github.com/metahero-io/metahero-contracts/blob/master/src/MetaheroToken.sol#L875
https://github.com/metahero-io/metahero-contracts/blob/master/src/MetaheroToken.sol#L878

HEO-03 | Missing logic in function _transferFromExcludedAccount

Category Severity Location Status

Logical Issue Major contracts/metahero/token/HEROToken.sol: 654 Acknowledged

Description

As _transferBetweenHolderAccounts and _transferToExcludedAccount , there are some logics

recalculate the transfer/receive amount for holding accounts based on the totalHolding and

totalRewards . However, the function _transferFromExcludedAccount seems lack of these logics.

Recommendation

Consider to add the missing logic, since in function _transferFromExcludedAccount , the recipient is a

holding account.

Alleviation

[MetaHero]:

That's correct because the excluded account is excluded from both fees and rewards.
Please check the

transfers scenario

at:https://docs.google.com/spreadsheets/d/1YrzJ9mWM5QDxjdGkeYvy6baH2GgLIN_k_-wcCRFI8n0/edit?

usp=sharing

[CertiK Response]:

_transferFromExcludedAccount is to transfer token from an excluded account to a holding account, so

there is holding account involved. Thus, the logic mentioned in the finding is needed. Consider to add the

similar code like the one in function _transferToExcludedAccount :

if (summary.totalRewards != 0) {if (summary.totalRewards != 0) {

 uint256 totalHoldingWithRewards = summary.totalHolding.add(uint256 totalHoldingWithRewards = summary.totalHolding.add(

 summary.totalRewards summary.totalRewards

););

 senderAmount = senderAmount.mul(summary.totalHolding).div(senderAmount = senderAmount.mul(summary.totalHolding).div(

 totalHoldingWithRewards totalHoldingWithRewards

););

}}

MetaHero Security Assessment

https://docs.google.com/spreadsheets/d/1YrzJ9mWM5QDxjdGkeYvy6baH2GgLIN_k_-wcCRFI8n0/edit?usp=sharing

[MetaHero]:

This is a part of our model from google sheets.
Please check the transfers scenario

at:https://docs.google.com/spreadsheets/d/1YrzJ9mWM5QDxjdGkeYvy6baH2GgLIN_k_-wcCRFI8n0/edit?

usp=sharing

MetaHero Security Assessment

https://docs.google.com/spreadsheets/d/1YrzJ9mWM5QDxjdGkeYvy6baH2GgLIN_k_-wcCRFI8n0/edit?usp=sharing

HEP-01 | Issue in receive functions

Category Severity Location Status

Logical Issue Minor contracts/metahero/presale/HEROPresale.sol Acknowledged

Description

In the Ethereum, send/transfer/call can be used for ETH transferrings. In the worst case, the receive

function can only rely on 2300 gas being available (for example when send or transfer is used), leaving

little room to perform other operations except basic logging.
Therefore, the callback function of the current

contract is not suitable for doing much. Contract HEROPresale and HEROLPManagerForUniswapV2 have the

same issue.

6262 receivereceive(()) externalexternal payablepayable {{

6363 requirerequire((

6464 block block..timestamp timestamp << deadline deadline,, // solhint-disable-line not-rely-on-time// solhint-disable-line not-rely-on-time
6565 'HEROPresale#1''HEROPresale#1'

6666));;

6767
6868 requirerequire((whitelistwhitelist[[msgmsg..sendersender]],, 'HEROPresale#2''HEROPresale#2'));;

6969
7070 requirerequire((msgmsg..value value !=!= 00,, 'HEROPresale#3''HEROPresale#3'));;

7171
7272 requirerequire((msgmsg..value value <=<= settings settings..maxPurchasePricemaxPurchasePrice,, 'HEROPresale#4''HEROPresale#4'));;

7373
7474 uint256uint256 tokensAmount tokensAmount == msg msg..valuevalue..mulmul((settingssettings..tokensAmountPerNativetokensAmountPerNative));;

7575 // bnb amount * x = token amount// bnb amount * x = token amount

7676
7777 requirerequire((tokensAmount tokensAmount <=<= summary summary..totalTokenstotalTokens,, 'HEROPresale#5''HEROPresale#5'));;

7878
7979 whitelist whitelist[[msgmsg..sendersender]] == falsefalse;;

8080
8181 summary summary..totalAccounts totalAccounts == summary summary..totalAccountstotalAccounts..subsub((11));;// meimaide ren // meimaide ren

8282 summary summary..totalTokens totalTokens == summary summary..totalTokenstotalTokens..subsub((tokensAmounttokensAmount));;

8383
8484 token token..transfertransfer((msgmsg..sendersender,, tokensAmount tokensAmount));;

8585
8686 emitemit TokensPurchasedTokensPurchased((msgmsg..sendersender,, msg msg..valuevalue,, tokensAmount tokensAmount));;

8787 }}

The same parameter is used for Binance Smart Chain.
Refer to:
https://github.com/binance-

chain/bsc/blob/46d185b4cfed54436f526b24c47b15ed58a5e1bb/params/protocol_params.go#L38

Recommendation

MetaHero Security Assessment

https://github.com/binance-chain/bsc/blob/46d185b4cfed54436f526b24c47b15ed58a5e1bb/params/protocol_params.go#L38

Consider to test the gas consumption of above-mentioned codes.

Each opcode supported by the EVM has an associated gas cost. Pay attention the gas costs aren’t

arbitrary. Gas costs can and will change.

Alleviation

For Presale contract, the development team replied that the presale contract has been removed from

the audit scope.

For MetaheroLPMForUniswapV2 (HEROLPManagerForUniswapV2) contract, the development team replied that

the contract should be connected with HEO, not HER contract.
This function is only used for testing

purposes (converting BNB to WBNB).

MetaHero Security Assessment

HEP-02 | Privileged ownership

Category Severity Location Status

Centralization / Privilege Minor contracts/metahero/presale/HEROPresale.sol Acknowledged

Description

The owner of contract HEROPresale has the permission to:

1. changes the presale period(deadline) via updateDeadline() ,

2. exclude/include addresses from whitelist , hence only addresses in whitelist can buy

HEROToken,

3. set tokensAmountPerNative , maxPurchasePrice

without obtaining the consensus of the community.

Recommendation

Renounce ownership when it is the right timing, or gradually migrate to a timelock plus multisig governing

procedure and let the community monitor in respect of transparency considerations.

Alleviation

The development team replied that the presale contract has been removed from the audit scope.

MetaHero Security Assessment

HER-01 | External dependencies risk

Category Severity Location Status

Control
Flow

Informational
contracts/metahero/lpManager/HEROLPManagerForUniswapV2.
sol

Acknowledged

Description

The contract is serving as the underlying entity to interact with third party PancakeSwap protocols. These

external contracts are initialized by passing their contract addresses without emitting events, so they are

unknown implementations for us. The scope of the audit would treat those external dependencies entities

as black boxes and assume the functional correctness. In fact, any external dependencies might be

compromised that led to assets lost or stolen.

Recommendation

We understand that the business logic of the HERO protocol requires the interaction PancakeSwap

protocol for adding liquidity to HERO-BNB pool and swap tokens. We encourage the team to constantly

monitor the statuses of those 3rd parties to mitigate the side effects when unexpected activities are

observed.

Make sure the external addresses are correct, and those contracts are credible, and the third-party

implementations and the way these functions are called can meet the requirements.

Alleviation

The development team understand the risks, but stated that there is no (gas-efficient) way to verify external

calls to PancakeSwap contracts.

MetaHero Security Assessment

HER-02 | Issue in receive functions

Category Severity Location Status

Logical Issue Minor contracts/metahero/lpManager/HEROLPManagerForUniswapV2.sol Acknowledged

Description

In the Ethereum, send/transfer/call can be used for ETH transferrings. In the worst case, the receive

function can only rely on 2300 gas being available (for example when send or transfer is used), leaving

little room to perform other operations except basic logging.
Therefore, the callback function of the current

contract is not suitable for doing much. Contract HEROPresale and HEROLPManagerForUniswapV2 have the

same issue.

6262 receivereceive(()) externalexternal payablepayable {{

6363 requirerequire((

6464 block block..timestamp timestamp << deadline deadline,, // solhint-disable-line not-rely-on-time// solhint-disable-line not-rely-on-time
6565 'HEROPresale#1''HEROPresale#1'

6666));;

6767
6868 requirerequire((whitelistwhitelist[[msgmsg..sendersender]],, 'HEROPresale#2''HEROPresale#2'));;

6969
7070 requirerequire((msgmsg..value value !=!= 00,, 'HEROPresale#3''HEROPresale#3'));;

7171
7272 requirerequire((msgmsg..value value <=<= settings settings..maxPurchasePricemaxPurchasePrice,, 'HEROPresale#4''HEROPresale#4'));;

7373
7474 uint256uint256 tokensAmount tokensAmount == msg msg..valuevalue..mulmul((settingssettings..tokensAmountPerNativetokensAmountPerNative));;

7575 // bnb amount * x = token amount// bnb amount * x = token amount

7676
7777 requirerequire((tokensAmount tokensAmount <=<= summary summary..totalTokenstotalTokens,, 'HEROPresale#5''HEROPresale#5'));;

7878
7979 whitelist whitelist[[msgmsg..sendersender]] == falsefalse;;

8080
8181 summary summary..totalAccounts totalAccounts == summary summary..totalAccountstotalAccounts..subsub((11));;// meimaide ren // meimaide ren

8282 summary summary..totalTokens totalTokens == summary summary..totalTokenstotalTokens..subsub((tokensAmounttokensAmount));;

8383
8484 token token..transfertransfer((msgmsg..sendersender,, tokensAmount tokensAmount));;

8585
8686 emitemit TokensPurchasedTokensPurchased((msgmsg..sendersender,, msg msg..valuevalue,, tokensAmount tokensAmount));;

8787 }}

The same parameter is used for Binance Smart Chain.
Refer to:
https://github.com/binance-

chain/bsc/blob/46d185b4cfed54436f526b24c47b15ed58a5e1bb/params/protocol_params.go#L38

Recommendation

MetaHero Security Assessment

https://github.com/binance-chain/bsc/blob/46d185b4cfed54436f526b24c47b15ed58a5e1bb/params/protocol_params.go#L38

Consider to test the gas consumption of above-mentioned codes.

Each opcode supported by the EVM has an associated gas cost. Pay attention the gas costs aren’t

arbitrary. Gas costs can and will change.

Alleviation

For Presale contract, the development team replied that the presale contract has been removed from

the audit scope.

For MetaheroLPMForUniswapV2 (HEROLPManagerForUniswapV2) contract, the development team replied that

the contract should be connected with HEO, not HER contract.
This function is only used for testing

purposes (converting BNB to WBNB).

MetaHero Security Assessment

HER-03 | Code redundancy

Category Severity Location Status

Coding Style, Gas
Optimization

Informational
contracts/metahero/lpManager/HEROLPManagerForUniswa
pV2.sol: 28, 239~246, 277~282

Resolved

Description

Function in uniswapRouter.addLiquidity and uniswapRouter.removeLiquidity of Pancakeswap have

already utilize the sortTokens function in the library, to correct the order of the input tokens. Thus, the

state variable correctPairOrder and corresponding logic of sorting the tokens is redundant.

Recommendation

Consider to remove redundant codes, and just pass correct tokens into functions

uniswapRouter.addLiquidity and uniswapRouter.removeLiquidity .

Alleviation

The team heeded our advice addressed the issue and reflected in commit

6b2e7eb6d401023d67a48df2ed73ccfff91dce8d.

MetaHero Security Assessment

HER-04 | Potential sandwich attack

Category Severity Location Status

Logical Issue Minor contracts/metahero/lpManager/HEROLPManagerForUniswapV2.sol Acknowledged

Description

Potential sandwich attacks could happen if calling uniswapV2Router.swapExactTokensForTokens and

uniswapV2Router.addLiquidity without setting restrictions on slippage.

For example, when we want to make a transaction of swapping 100 HERO for 1 BNB, an attacker could

raise the price of BNB by adding HERO into the pool before the transaction so we might only get 0.1 BNB.

After the transaction, the attacker would be able to withdraw more than he deposited because the total

value of the pool increases by 0.9 BNB.

Recommendation

We recommend using Oracle to get an estimation of prices and setting minimum amounts based on the

prices when calling the aforementioned functions.

Alleviation

The development team understand the risks, but stated that there is no (gas-efficient) way to verify external

calls to PancakeSwap contracts, and calling oracle will have an impact on gas usage.

MetaHero Security Assessment

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

MetaHero Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the Company

only to the extent permitted under the terms and conditions set forth in the Agreement. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes without CertiK’s prior

written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

MetaHero Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

MetaHero Security Assessment

