Certik Report For Nervos

Contents

Contents
Disclaimer

About CertiK
Executive Summary
Review Summary

Manual Review Notes
Introduction
Documentation
Summary
Findings
Recommendations

Nervos Specs Implementation Analysis
Wallet Account Model
Consensus
Incentive Model
Economic Model

Test Cases and Coverage

Dependencies

—

N ooy o1 g~ WNDN

O

11
11
11
12
12

13
14

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of
services, confidentiality, disclaimer and limitation of liability) set forth in the Verification
Services Agreement between CertiK and Nervos Network (the “Company”), or the scope of
services/verification, and terms and conditions provided to the Company in connection with the
verification (collectively, the “Agreement”). This report provided in connection with the Services
set forth in the Agreement shall be used by the Company only to the extent permitted under the
terms and conditions set forth in the Agreement. This report may not be transmitted, disclosed,

referred to or relied upon by any person for any purposes without CertiK's prior written consent.

About CertiK

CertiK is a technology-led blockchain security company founded by Computer Science
professors from Yale University and Columbia University built to prove the security and

correctness of smart contracts and blockchain protocols.

CertiK’'s mission of every audit is to apply different approaches and detection methods, ranging
from manual, static, and dynamic analysis, to ensure that the project is checked against known
attacks and potential vulnerabilities. CertiK leverages a team of seasoned engineers and
security auditors to apply testing methodologies and verifications on the project, in turn creating

a more secure and robust software system.

CertiK has served more than 100 clients with high quality auditing and consulting services,
ranging from stablecoins such as Binance's BGBP and Paxos Gold to decentralized oracles
such as Band Protocol and Tellor. CertiK customizes its engineering tool kits, while applying
cutting-edge research on smart contracts, for each client on its project to offer a high quality
delivery. As it utilizes technologies from blockchain and smart contracts, CertiK team will

continue to support the project as a service provider and collaborator.

Executive Summary

This report has been prepared for Nervos Network to review the implementation, security and
soundness of their Nervos Network system. A comprehensive examination has been

performed, utilizing Dynamic Analysis, Static Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

e Review the implementation and security of the consensus mechanism.
e Review the implementation and security of the transaction mechanism.
e Review the implementation and security of the utxo model.

e Review the incentive model.

e Review the economic model.

e Review the implementation of the Eaglesong Pow algorithm.

Review Summary

SECURITY LEVEL
This report has been prepared as a product of the
\\\o“"” W, ., Code Audit request by Nervos Network.
5‘: R P v "»,1 This audit was conducted to discover issues and
vulnerabilities in the source code of Nervos
— — Network.
T N

TYPE Network

https://github.com/nervosnet

SOURCE CODE

work
PLATFORM Custom
LANGUAGE Rust

REQUEST DATE March 12.2020

DELIVERY DATE April 7,2020

Dynamic Analysis, Static
METHODS Analysis, and Manual Review,

has been performed.

Manual Review Notes

Introduction

CertiK team has been engaged by the Nervos team to audit the design and implementations of

its system. The audited source code links:

https://qgithub.com/nervosnetwork/ckb

https://qithub.com/nervosnetwork/ckb-vm

https://qithub.com/nervosnetwork/neuron/tree/develop/packages/neuron-wallet/src/m

odels/keys

https://qithub.com/nervosnetwork/ckb-system-scripts/blob/master/c/secp256k1_blake
160_sighash_all.c

https://qithub.com/nervosnetwork/ckb/tree/develop/pow/src

The goal of this audit is to review Nervos implementation of its core mechanisms general

design and architecture, study potential security vulnerabilities, and uncover bugs that could

compromise the software in production.

Documentation

We used the following sources in respect to our work:

1. Website: https://www.nervos.org/

2. Whitepaper: https://github.com/nervosnetwork/rfcs/tree/master/rfcs

3. Specs : https://qithub.com/nervosnetwork/rfcs/tree/master/rfcs

https://github.com/nervosnetwork/ckb
https://github.com/nervosnetwork/ckb-vm
https://github.com/nervosnetwork/neuron/tree/develop/packages/neuron-wallet/src/models/keys
https://github.com/nervosnetwork/neuron/tree/develop/packages/neuron-wallet/src/models/keys
https://github.com/nervosnetwork/ckb-system-scripts/blob/master/c/secp256k1_blake160_sighash_all.c
https://github.com/nervosnetwork/ckb-system-scripts/blob/master/c/secp256k1_blake160_sighash_all.c
https://github.com/nervosnetwork/ckb/tree/develop/pow/src
https://www.nervos.org/
https://github.com/nervosnetwork/rfcs/tree/master/rfcs
https://github.com/nervosnetwork/rfcs/tree/master/rfcs

Summary

The results of the review and automated tools along the manual examination of the code bases
provided with a number of relevant findings regarding the application reviewed. The codebase in
scope was mainly in Rust language, as the project's chain, proof of work algorithm and vm, and

a small part in TypeScript(JS) regarding the account layer and functionality.

Starting off with the Rust codebase and the nervosnetwork/ckb repository, the audit has found
the code base to be in a very high level of code design and implementation and findings are

language related with no severity.

Moving forward to the eaglesong proof of work algorithm, the audit has examined the codebase

on the ckb/pow folder and the eaglesong own crate under nervosnetwork/eaglesong.

Alongside with the documentation provided by the team under
rfcs/0010-eaglesong/0010-eaglesong.md the audit has checked the implementation manually

and found it to be accurate to the specifications given.

Finally the audit examined the vm folder and the RISC-V implementation of the vm engine for
design and implementation correctness and found it to be very well treated.Due to the
complexity of the mechanism the audit was not able to summarize in depth about the security
of the implementation as it was not possible to be addressed within the timeline of the scope.
To conclude on the vm implementation, the automated tools and manual review did not raise

any issues.

To summarize, the audit has come to the conclusion that the coding team has done stellar work
regarding the Rust implementation of the chain (ckb) , the proof of work(Eaglesong) and vm,

using the language best practices and implementing the designs at a very high level.

https://github.com/nervosnetwork/eaglesong
https://github.com/nervosnetwork/rfcs/blob/master/rfcs/0010-eaglesong/0010-eaglesong.md

Findings
TITLE TYPE SEVERITY LOCATION
1.Integer type suffix should
File : genesis_verification.rs
be separated by an Semantic None
underscore. Line: 77
inf N File: block_verifiers.rs
nfo one
2.Unused self argument Line: 74
3.Called
map(f).unwrap_or(a)on an
Option value. This can be - N File: block_verifiers.rs
i nfo one
don.e m‘ore directly b‘y Line: 78
calling “‘map_or(a, f)
instead
4.This expression borrows
a reference that is File: contextual_block_verifier.rs
immediately dereferenced | Info None .
. Line: 141
by the compiler
5.It is more concise to loop
File: contextual_block_verifier.rs
over rgferepces to ‘ Info None .
containers instead of using Line: 223
explicit iteration methods
6.Casting usize to u32 may
File: contextual_block_verifier.rs
truncate the value on Info None

targets with 64-bit wide
pointers

Line: 428

Recommendations

Since the findings are all language related and are repeated in many places on the codebase,
we have included a small sample to avoid repetition and keep the document more easy to read.

Given the exceptional work on the low level primitives and design of the codebase these small
semantic and info issues pose no threat to the complete model and since most of them are not

included in the report(ex not use of Self as return value and so on).

Issue: 1

[Semantic]

File: genesis_verification.rs

Line: 77

Integer type suffix should be separated by an underscore.

R: if block.parent_hash().raw_data()[..] '= [0_u8; 32][..]

AA

Issue: 2

[Info]

File: block_verifiers.rs

Line: 74

Unused “self” argument

R: pub fn verify(block: &BlockView) -> Result<(), Error>
A removed &self

Issue: 3

[Info]
File: block_verifiers.rs
Line: 78
Called "'map(f).unwrap_or(a)” on an Option value. This can be done more directly by calling
‘map_or(a, f)" instead
R: if Icellbase_transaction
.outputs_data()
.get(0)
.map_or(true, |data| data.is_empty())
A use map or here

Issue: 4

[Info]
File: contextual_block_verifier.rs
Line: 141
This expression borrows a reference that is immediately dereferenced by the compiler
S: self.epoch
A remove & (borrow)

Issue: 5

[Info]
File: contextual_block_verifier.rs
Line: 219
It is more concise to loop over references to containers instead of using explicit iteration
methods
R: for committed_id in &committed_ids.iter
M use & here to iter over references

Issue: 6

[Info]

File: contextual_block_verifier.rs

Line: 428

Casting usize to u32 may truncate the value on targets with 64-bit wide pointers

Nervos Specs Implementation Analysis

Wallet Account Model

We have reviewed the account model, the core of which is present in
‘neuron/packages/neuron-wallet/src/models/keys/**/*", and the use of which is throughout

‘neuron/packages/neuron-wallet/**/*".

We have examined the related codebase in Typescript, the modules used and all related
functionality and we haven't found any discrepancies from the specifications of BIP--0032,
0039, 0043 and 0044.

Consensus

The CKB consensus game is a variant of the Nakamoto Consensus. It aims to increase
transaction processing throughput, decrease transaction confirmation latency, and enhance

security by addressing the selfish-mining strategy.

All parts of the specification were found to be present and well translated to the code. We

have found it achieves these goals without introducing any new security issues.

Incentive Model

The Nervos incentive model is derived from its consensus. It shares some properties with the
Nakamoto Consensus - namely miners are incentivized to mine blocks by issuing block rewards.
It also eliminates some undesired incentives though form the Nakamoto Consensus - selfish
mining and purposefully including only recent transactions in a block to increase block
propagation latency - this is described as de facto selfish mining attack in the consensus

specifications. We have not found any game-theoretical issues in the Nervos incentive model.

10

Economic Model

The economic model is a subset of the incentive model of the system. The combination of the
consensus model plus the eaglesong proof of work algorithm creates a strong security

environment around the economic model.

Since the consensus model addresses some key problems found in many blockchains, the
addition of a custom proof of work algorithm like Eaglesong hardens the model to an elevated

security level.

We have not found any issues arising out of the economics of the system.

Test Cases and Coverage

Considering the fact that the team has provided evidence of stellar performance on the code
design and implementation, the small percentage of code coverage does not reflect the overall

performance of the tests.

ckb/chain -> 21.73% coverage, 8406/38681 lines covered
ckb/ckb-bin -> 0.00% coverage, 0/37817 lines covered
ckb/db -> 0.69% coverage, 253/36476 lines covered
ckb/error -> 0.00% coverage, 0/36354 lines covered
ckb/indexer -> 14.57% coverage, 5484/37640 lines covered
ckb/miner -> 0.00% coverage, 0/36715 lines covered
ckb/network -> 8.94% coverage, 3328/37206 lines covered
ckb/notify -> 0.00% coverage, 0/36604 lines covered
ckb/pow -> 0.09% coverage, 32/36589 lines covered
ckb/protocols -> 0.00% coverage on all 3 discovery-identify-ping

11

ckb/resource
ckb/rpc
ckb/script
ckb/shared
ckb/spec
ckb/store
ckb/sync
ckb/test
ckb/traits
ckb/tx-pool
ckb/utils

ckb/verification

->

->

->

->

->

->

->

->

Dependencies

0.23% coverage, 83/36386 lines covered
23.05% coverage, 8691/37706 lines covered
11.90% coverage, 4594/38619 lines covered
0.00% coverage, 0/37045 lines covered
6.13% coverage, 2261/36865 lines covered
7.66% coverage, 2817/36773 lines covered
?

?

0.00% coverage, 0/36354 lines covered
5.28% coverage, 1984/37576 lines covered
0.10% coverage, 37/36370 lines covered

16.90% coverage, 6472/38292 lines covered

Spin 0.5.2 is not actively maintained.

https://qithub.com/mvdnes/spin-rs

12

https://github.com/mvdnes/spin-rs

