
Project Name Ocean Protocol

Description

Platform Ethereum; Solidity

Codebase GitHub Repository

Commits 1.
274e21c4c2792515bd631a673b7564ddf22abfe0
2.
17ad71aa78ad9f4bab2f4fd46fa8e3b28ce06f93

Ocean Protocol

Security Assessment

October 8th, 2020

For :
@ Ocean Protocol

 Overview

Project Summary

Delivery Date Oct. 8, 2020

Method of Audit Static Analysis, Manual Review

Consultants Engaged 1

Timeline Aug. 11, 2020 - Oct. 8, 2020

Total Issues 60

Total Critical 0

Total Major 1

Total Minor 7

Total Informational 52

Type Severity Location

Optimization Informational DTFactory.sol L78

Audit Summary

Vulnerability Summary

 Executive Summary

TODO: An overview of the process of the audit and any overarcing concerns or outstanding issues

 DTF-01: Inefficient Greater-Than Comparisons w/ Zero

Description:

The linked code statements conduct a greater-than comparison between zero and an unsigned
integer.

Recommendation:

As unsigned integers are restricted to the non-negative range, it is possible to instead conduct an
inequality comparison with zero optimizing the gas cost necessary.

Alleviation:

The team opted to consider our references and changed to inequality comparison.

Type Severity Location

Optimization Informational DTFactory.sol L36

Type Severity Location

Optimization Informational DTFactory.sol L74

Type Severity Location

Optimization Informational DTFactory.sol L22, L113-L119, L20, L121-L127

 DTF-02: Redundant Event Variable

Description:

The linked TokenRegistered event includes the block.number within the variables it emits.

Recommendation:

As this variable is included indirectly along with the event's emittence, it is instead possible to
derive it from metadata and thus can be considered redundant. As such, we advise its removal.

Alleviation:

The team opted to consider our references and removed the redundant variable registeredAt
from the event.

 DTF-03: Necessity of Function Visibility

Description:

The createToken function is declared as public yet remains unused by any of the contracts
within the project.

Recommendation:

If it is envisioned to only be externally called, it is advisable to instead set its visibility to external
and convert its string type variables from memory to calldata thus optimizing the overall gas
cost of the function.

Alleviation:

The case was a situational and no alleviations were applied.

 DTF-04: User Defined Getter

Type Severity Location

Coding Style Informational DTFactory.sol L113-L116

Type Severity Location

Optimization Informational DTFactory.sol L1

Description:

In general, it is a good practise to avoid user-defined getters and instead rely on compiler-
generated ones via the public keyword as they are far more maintainable and aid in the
legibility of the codebase.

Recommendation:

As the getCurrentTokenIndex and getTokenTemplate getters conduct no special operations on
the variables they are meant to return, we advise that the variables themselves are declared as
public and the getters are omitted.

Alleviation:

The case was a situational and no alleviations were applied.

 DTF-05: Invalid Documentation

Description:

The getCurrentTokenIndex function, as its comments dictate, should return the index of the
current token. However, the variable returned is actually initialized at 1 and is named
currentTokenCount .

Recommendation:

As this appears to not be a conventional zero-based index, we advise that the naming convention
as well as comments utilized are rephrased to accurately represent what the function does.

Alleviation:

The case was a situational and no alleviations were applied.

 DTF-06: Unlocked Compiler Version

Description:

The compiler version utilized in this file uses the “^” prefix specifier, denoting that a compiler at or
above the version included after the specifier should be used to compile the contracts.

It is a general practise to instead lock the compiler at a specific version rather than allow a range
of compiler versions to be utilized to avoid compiler-specific bugs and be able to identify ones
more easily.

Type Severity Location

Coding Style & Optimization Informational BConst.sol

Type Severity Location

Coding Style Informational BFactory.sol L40, L52

Recommendation:

We recommend locking the compiler at the lowest possible version that supports all the
capabilities wished by the codebase. This will ensure that the project utilizes a compiler version
that has been in use for the longest time and as such is less likely to contain yet-undiscovered
bugs.

Alleviation:

The team opted to consider our references and locked the compiler version to 0.5.7 .

 BCO: General Comment

Description:

No findings were identified at this stage of the audit.

Recommendation:

However, we advise that comments are introduced at each declaration to properly represent
what they are meant to depict. Additionally, while the shorthand uint is acceptable by the
compiler we advise that its full format uint256 is used instead to aid in the legibility of the
codebase.

Alleviation:

The case was a situational and no alleviations were applied.

 BFA-01: Inconsistent Error Handling

Description:

Throughout the contracts of the project proper sanitization of input variables during construction
is conducted whereby the addresses of contracts are ensured to be different than zero. However,
the error message provided is of a completely different convention than DTFactory.sol for
instance.

Type Severity Location

Optimization Informational BFactory.sol L22, L69-L77

Type Severity Location

Optimization Informational BFactory.sol L32

Recommendation:

We advise that error handling is streamlined across the codebase.

Alleviation:

The team opted to consider our references and changed the error messages in DTFactory.sol
to match the codebase's pattern.

 BFA-02: User Defined Getters

Description:

In general, it is a good practise to avoid user-defined getters and instead rely on compiler-
generated ones via the public keyword as they are far more maintainable and aid in the
legibility of the codebase.

Recommendation:

As the getBPool getter conduct no special operations on the variables it is meant to return, we
advise that the variable is declared as public and the getter is omitted.

Alleviation:

The team opted to consider our references and changed visibility specifier of the variable
bpoolTemplate and removed the custom getter function getBPool .

 BFA-03: Redundant Event Variable

Description:

The linked BPoolRegistered event includes the block.number within the variables it emits
indexed as well.

Recommendation:

As this variable is included indirectly along with the event's emittence, it is instead possible to
derive it from metadata and thus can be considered redundant. As such, we advise its removal.

Type Severity Location

Optimization Informational BFactory.sol L1

Type Severity Location

Optimization Informational BMath.sol L42, L73, L104, L143, L181, L229, L279

Alleviation:

The team opted to consider our references and removed the redundant variable registeredAt
from the event.

 BFA-04: Unlocked Compiler Version

Description:

The compiler version utilized in this file uses the “^” prefix specifier, denoting that a compiler at or
above the version included after the specifier should be used to compile the contracts.

It is a general practise to instead lock the compiler at a specific version rather than allow a range
of compiler versions to be utilized to avoid compiler-specific bugs and be able to identify ones
more easily.

Recommendation:

We recommend locking the compiler at the lowest possible version that supports all the
capabilities wished by the codebase. This will ensure that the project utilizes a compiler version
that has been in use for the longest time and as such is less likely to contain yet-undiscovered
bugs.

Alleviation:

The team opted to consider our references and locked the compiler version to 0.5.7 .

 BMA-01: Explicit return of Named Return Variable

Description:

The spotPrice is a named return variable, meaning that whatever value it holds will be
automatically returned at the end of the function's execution. On the last statement of
calcSpotPrice , the final value the function is meant to return is assigned to the return variable
as well as returned explicitly.

Recommendation:

We advise that either the explicit return statement is removed or that the assignment as well as
the explicitly named return variable are omitted, the latter of which we advise.

Type Severity Location

Contract Design Minor BMath.sol L180

Type Severity Location

Coding Style Informational BMath.sol

Alleviation:

The case was a situational and no alleviations were applied.

 BMA-02: Inconsistent Specification

Description:

The specification of the calcSingleInGivenPoolOut function states that the denominator of the
division is equal to 1, denoted by the constant BONE , subtracted by the normalized weight (weight
in divided by total weight) and finally multiplied by the swap fee.

This is not aligned with the actual calculations carried within the function as a final additional
subtraction occurs between the final result of the above equation and once again the value of 1
denoted by BONE , the value being subtracted from BONE .

Recommendation:

We advise that either the code statements or the documentation are updated to reflect this.

Alleviation:

No alleviations were applied despite the severity of the exhibit.

 BMA-03: Variable Naming Convention

Description:

While the documentation of the functions was extremely helpful in properly evaluating the
intended purpose of the functions, the variable names utilized within (foo, bar, zaz etc.) are
generally utilized as placeholders and are ill-advised to exist in production-ready code.

Recommendation:

We advise that potentially meaningful names are utilized for these variables as they do not affect
the generated bytecode.

Alleviation:

The case was a situational and no alleviations were applied.

Type Severity Location

Optimization Informational BMath.sol

Type Severity Location

Coding Style Informational BNum.sol L69-L71, L82-L84

 BMA-04: Calculation Optimizations

Description:

The whole contract could be further optimized.

Recommendation:

Firstly, in multiple sections of the functions in-memory variables can be re-assigned and re-used
to avoid declaring a new in-memory variable and thus optimizing the final gas cost of the
functions.

Lastly, it is possible to create internal functions for certain common formulas between the
granded mathematical equations, such as the calculation of 1 - ((1 - (tO / tW)) * sF , w/ tO
/tI being an input variable of the internal function. This would optimize the final bytecode size
of the contract.

Alleviation:

The case was a situational and no alleviations were applied.

 BNU-01: Documentation of Functionality

Description:

The functions bmul and bdiv conducts a ceiling operation on the result which is undocumented.

Recommendation:

We advise that comments preceding the function are added that detail this side-effect of the
function's multiplication in contrast to Solidity's traditional flooring operation. Overall, the
function appears to be a fork of wad and ray based math based on the DSMath library albeit with
a different unitary representation in BONE .

Alleviation:

The case was a situational and no alleviations were applied.

Type Severity Location

Coding Style Informational BNum.sol L142

Type Severity Location

Optimization Informational BPool.sol L27-L28

 BNU-02: Incorrect Comment

Description:

The linked comment contains a discrepancy with the actual implementation that accompanies it.
The comment implementation contains a subtraction with 1 whereby the Solidity implementation
contains an addition.

Recommendation:

We advise that the linked comment is changed to the following:

Alleviation:

The case was a situational and no alleviations were applied.

 BPO-01: Struct Optimization

Description:

The index variable is declared as a uint which is a shorthand of uint256 whilst it is meant to
represent values between 0 and 8 , according to the imposed limit of BConst.sol
(MAX_BOUND_TOKENS being equal to 8).

Since this number will always realistically fit even within a uint8 representation never exceeding
the value of 255 it is possible to adjust its data type to tightly pack it with the preceding bool
variable bound reducing the total storage cost of the struct from 4 slots to 3, significantly
optimizing gas cost.

Recommendation:

As a result, we advise that the data type of index is set to the remainder of subtracting the size
of a bool from a full slot, meaning that it should be set to a uint248 .

Alleviation:

The case was a situational and no alleviations were applied.

// = (product(a - i + 1, i=1-->k) * x^k) / (k!)

Type Severity Location

Coding Style Informational BPool.sol L28

Type Severity Location

Coding Style Informational BPool.sol L59-L77

Type Severity Location

Volatile
Code

Major
BPool.sol L74-L77, L231, L239, L248, L258, L266, L277, L287,
L295, L458, L476

 BPO-02: Misleading Comment

Description:

The comment denotes that the index member of the struct is private , a concept that does not
exist within Solidity in the same terms it exists in other languages. Any contract can arbitrarily
read the storage of another contract regardless of what access control restrictions are imposed,
meaning that this comment can be misleading to an unaware reader.

Recommendation:

We advise that it is either removed or rephrased to better depict what it is meant to represent.

Alleviation:

The case was a situational and no alleviations were applied.

 BPO-03: Unusual Naming Convention

Description:

The naming convention utilized for the linked modifiers does not conform to the Solidity style
guide as it includes the underscore (_) character on both ends of the name declaration.

Recommendation:

We advise that the naming convention is refactored to align with that of the Solidity style guide.
For this purpose, a strict linter may prove helpful.

Alleviation:

The case was a situational and no alleviations were applied.

 BPO-04: Invalid Assumption

Type Severity Location

Optimization Informational BPool.sol L79-L96

Type Severity Location

Optimization Informational BPool.sol L79-L96

Description:

The _viewlock_ modifier and the way it is utilized infer that the functions it guards will be
uninvokable when the reentrancy mutex has been placed on the contract. While this is true, they
will not be "unviewable" as it would still be possible for an attacker to gain access to the
underlying data the function's protect via low level assembly calls.

As such, its usefulness can be disputed as it can ultimately be bypassed.

Recommendation:

We advise that its intended purpose is evaluated and that the concerns that led to its
implementation are shared with us so we can provide better insight as to how this can be tackled.

Alleviation:

No alleviations were applied despite the severity of the exhibit.

 BPO-05: Variable Ordering

Description:

Within Solidity, the order of variable declaration is important within a contract as it dictates how
the compiler will tightly-pack the variables it is provided with. While the layout of the contract
does not appear to follow a particular convention, it has tightly packed most slots possible except
one.

Recommendation:

We advise that the L88 declaration of _finalized is relocated past the L96 declaration of
initialized to have those two bool data types tight packed into the same slot.

Alleviation:

The case was a situational and no alleviations were applied.

 BPO-06: Redundant Value Assignment

Type Severity Location

Optimization Informational BPool.sol L119-L120

Type Severity Location

Optimization Informational BPool.sol L202-L214, L256-L262, L285-L299,

Description:

The linked initialized variable is a bool data type. In Solidity, all data types are automatically
assigned their default value, in the case of a bool being false , meaning that the explicit
assignment of false to the variable is redundant.

Recommendation:

We advise that the variable assignment is removed and only the variable declaration remains in
place.

Alleviation:

The case was a situational and no alleviations were applied.

 BPO-07: Variable Usefulness

Description:

Throughout the codebase, these two input variables appear to be hard-coded as false when
passed to the function call.

Recommendation:

We advise that their purpose is evaluated and if deemed unnecessary proper adjustments are
made to the initializer to avoid gas-costly unnecessary assignments.

Alleviation:

The case was a situational and no alleviations were applied.

 BPO-08: User Defined Getters

Description:

In general, it is a good practise to avoid user-defined getters and instead rely on compiler-
generated ones via the public keyword as they are far more maintainable and aid in the
legibility of the codebase.

Type Severity Location

Optimization Informational BPool.sol L230-L244

Type Severity Location

Optimization Informational BPool.sol L242, L252, L306, L307

Recommendation:

As the linked getters conduct no special operations on the variables they are meant to return, we
advise that the variables themselves are declared as public and the getters are omitted.

Alleviation:

The case was a situational and no alleviations were applied.

 BPO-09: Functionally Equivalent Getters

Description:

The two linked getters return the exact same variables albeit the latter of the two imposes a
require check prior to fulfilling the getter request.

Recommendation:

As these getters are identical, they redundantly increase the bytecode of the contract and thus
one of the two can be omitted as the latter can be replaced by a combination of isFinalized
and getCurrentTokens .

Alleviation:

The case was a situational and no alleviations were applied.

 BPO-10: require to modifier

Description:

The linked require statements are replicated multiple times across the contact and can instead
be set as re-usable modifiers .

Recommendation:

We advise that they are indeed done so to increase the legibility and maintainability of the
codebase.

Type Severity Location

Coding Style Informational BPool.sol L313-L324

Type Severity Location

Volatile Code Minor BPool.sol L313-L324

Alleviation:

The case was a situational and no alleviations were applied.

 BPO-11: Incorrect Variable Labels

Description:

The function setController is meant to replace the existing controller address with a new one,
however the new one is labelled as manager and its accompanying error message also states
ERR_INVALID_MANAGER_ADDRESS which is not the case as we are handling a controller at this
point.

Recommendation:

We advise that a proper naming convention is utilized for this variable and error.

Alleviation:

The case was a situational and no alleviations were applied.

 BPO-12: Pull-over-Push Pattern

Description:

Directly replacing the managerial address of a contract is dangerous as a single misinputed
character can freeze the administrative functions of the contract indefinitely.

Recommendation:

We advise that the pull-over-push pattern is applied here whereby a new controller would be
proposed that would subsequently need to accept the proposal, signifying that access to the
private key of the address does indeed exist.

Alleviation:

No alleviations were applied despite the severity of the exhibit.

Type Severity Location

Optimization Informational BPool.sol L435-L440

Type Severity Location

Volatile Code Minor BPool.sol L879-L891

Type Severity Location

Optimization Informational BPool.sol L565-L566, L639-L640

 BPO-13: delete Instead of Empty Assignment

Description:

The linked statement assigns a zeroed out struct to the mapping location of the unbound token.

Recommendation:

A delete operation would be equivalent and would properly refund the gas occupied by the
storage block instead of an instantiation and assignment which is more gas costly.

Alleviation:

The case was a situational and no alleviations were applied.

 BPO-14: ERC-20 Compatibility Notice

Description:

The linked function implementations are correct in evaluating whether the transfers were
successful or not, however certain ERC20 tokens incorrectly implement the specification by
ultimately not returning any variable.

Recommendation:

For maximum token support, we advise a SafeERC20 wrapper from OpenZeppelin is utilized
instead.

Alleviation:

No alleviations were applied despite the severity of the exhibit.

 BPO-15: Redundant Type Casting

Type Severity Location

Optimization Informational BToken.sol L52-L55, L62, L144

Type Severity Location

Optimization Informational BToken.sol L79-L81

Description:

The variables utilized are already of type address and are redundantly casted to that data type.

Recommendation:

We advise these unnecessary casts are omitted.

Alleviation:

The case was a situational and no alleviations were applied.

 BTO-01: Redundant require Checks

Description:

The linked require checks are redundant as they are checked by the underlying implementation
of bsub .

Recommendation:

We advise to remove the unnecessary checks. Also, if a custom error message is instead desired,
the BNum.sol implementation should be expanded to support those.

Alleviation:

The case was a situational and no alleviations were applied.

 BTO-02: Variable Mutability Specifiers

Description:

The linked variables are only assigned to once in their actual declaration.

Recommendation:

We advise to set them to constant to significantly reduce the gas cost involved in utilizing them.

Type Severity Location

Optimization Informational BToken.sol L40, L103-L105

Type Severity Location

Volatile Code Minor OPFCommunityFeeCollector.sol L73-L79

Alleviation:

The case was a situational and no alleviations were applied.

 BTO-03: User Defined Getters

Description:

In general, it is a good practise to avoid user-defined getters and instead rely on compiler-
generated ones via the public keyword as they are far more maintainable and aid in the
legibility of the codebase.

Recommendation:

As the linked getters conduct no special operations on the variables they are meant to return, we
advise that the variables themselves are declared as public and the getters are omitted.

Alleviation:

The case was a situational and no alleviations were applied.

 OPF-01: ERC-20 Compatibility Notice

Description:

The linked function implementations are correct in evaluating whether the transfers were
successful or not, however certain ERC20 tokens incorrectly implement the specification by
ultimately not returning any variable.

Recommendation:

For maximum token support, we advise a SafeERC20 wrapper from OpenZeppelin is utilized
instead.

Alleviation:

No alleviations were applied despite the severity of the exhibit.

Type Severity Location

Optimization Informational FixedRateExchange.sol L19-L25

Type Severity Location

Coding Style Informational FixedRateExchange.sol L28-L29

Type Severity Location

Optimization Informational FixedRateExchange.sol L88

 FRE-01: Struct Optimization

Description:

The Exchange struct can be further optimized.

Recommendation:

We advise to reorder the variable declaration of bool active before the uint256 fixedRate ,
thus tight packing the bool variable with one of the address variables reducing the number of
slots necessary by the struct from 5 to 4.

Alleviation:

The team opted to consider our references and changed the order members of the Exchange
struct are packed.

 FRE-02: Visibility Specifiers Missing

Description:

The visibility specifiers for the linked variables should be explicitly set as it is standard security
practise and aids in the readability of the codebase.

Recommendation:

We advise to set the visibility specifiers for the linked variables.

Alleviation:

The team opted to consider our references and declared both of the linked variables as private .

 FRE-03: Empty Constructor

Type Severity Location

Optimization Informational FixedRateExchange.sol L118, L122-L123, L221, L277

Type Severity Location

Coding Style Informational FixedRateExchange.sol L71, L155, L310, L77, L335

Description:

Empty constructors are redundant as they are directly implied even if not provided.

Recommendation:

We advise that the linked constructor is removed.

Alleviation:

The team opted to consider our references and removed the empty constructor.

 FRE-04: Inefficient Greater-Than Comparisons w/ Zero

Description:

The linked code statements conduct a greater-than comparison between zero and an unsigned
integer.

Recommendation:

As unsigned integers are restricted to the non-negative range, it is possible to instead conduct an
inequality comparison with zero optimizing the gas cost necessary.

Alleviation:

The team opted to consider our references and changed to inequality comparisons for the linked
statements.

 FRE-05: Misleading Event Variable Names

Description:

The event declarations state that a timestamp type variable is emitted along the event whereas a
block.number is provided instead of a block.timestamp wherever the events are emitted.

Recommendation:

We advise that either the variable is completely omitted from the event if representing a
block.number , or that a timestamp is properly emitted by the event.

Type Severity Location

Optimization Informational FixedRateExchange.sol L176-L180

Type Severity Location

Optimization Informational FixedRateExchange.sol L289-L337

Alleviation:

The team opted to consider our references and removed the redundant variables from the
events.

 FRE-06: Redundant Utilization of abi.encodePacked

Description:

The abi.encodePacked function solely makes sense when the variables it operates on can be
tightly packed.

Recommendation:

As the current input variables are of type address which is equivalent to 160-bits, none of the
input variables can be tightly packed and thus the usage of abi.encode is more optimal.
Additionally, when generating identifiers it is ill-advised to use packing mechanisms as they can
lead to identifier collissions.

Alleviation:

The team opted to consider our references and used the abi.encode function.

 FRE-07: Activate / Deactivate to Toggle Function

Description:

The linked functions contain identical statements with the core differentiator being the boolean
literal they utilize.

Recommendation:

We advise that they are merged into a single function that toggles the variable to reduce the total
bytecode of the contract.

Alleviation:

The team opted to consider our references and implemented a single toggleExchangeState
function.

Type Severity Location

Optimization Informational FixedRateExchange.sol L404-L408

Type Severity Location

Optimization Informational FixedRateExchange.sol L1

 FRE-08: Duplicate Mapping Lookups

Description:

All members of the Exchange struct are accessed and each mapping lookup operation as well as
data retrieval costs significant gas.

Recommendation:

As all members of the struct are accessed, it is possible to instead assign the result of the lookup
operation to a memory declaration of the Exchange struct that is subsequently accessed for the
return variables.

Alleviation:

The team opted to consider our references and stored the instance of the Exchange struct to
memory before accessing the struct members.

 FRE-09: Unlocked Compiler Version

Description:

The compiler version utilized in this file uses the “^” prefix specifier, denoting that a compiler at or
above the version included after the specifier should be used to compile the contracts.

It is a general practise to instead lock the compiler at a specific version rather than allow a range
of compiler versions to be utilized to avoid compiler-specific bugs and be able to identify ones
more easily.

Recommendation:

We recommend locking the compiler at the lowest possible version that supports all the
capabilities wished by the codebase. This will ensure that the project utilizes a compiler version
that has been in use for the longest time and as such is less likely to contain yet-undiscovered
bugs.

Alleviation:

The team opted to consider our references and locked the compiler version to 0.5.7 .

Type Severity Location

Optimization Informational DDO.sol L45

Type Severity Location

Optimization Informational DDO.sol L1

Type Severity Location

Optimization Informational DataTokenTemplate.sol L19

 DDO-01: Empty Constructor

Description:

Empty constructors are redundant as they are directly implied even if not provided.

Recommendation:

We advise that the linked constructor is removed.

Alleviation:

The team completely removed the DDO.sol file.

 DDO-02: Unlocked Compiler Version

Description:

The compiler version utilized in this file uses the “^” prefix specifier, denoting that a compiler at or
above the version included after the specifier should be used to compile the contracts.

It is a general practise to instead lock the compiler at a specific version rather than allow a range
of compiler versions to be utilized to avoid compiler-specific bugs and be able to identify ones
more easily.

Recommendation:

We recommend locking the compiler at the lowest possible version that supports all the
capabilities wished by the codebase. This will ensure that the project utilizes a compiler version
that has been in use for the longest time and as such is less likely to contain yet-undiscovered
bugs.

Alleviation:

The team completely removed the DDO.sol file.

 DTT-01: Variable Ordering

Type Severity Location

Optimization Informational DataTokenTemplate.sol L30-L47

Type Severity Location

Optimization Informational DataTokenTemplate.sol L165, L278

Description:

Within Solidity, the order of variable declaration is important within a contract as it dictates how
the compiler will tightly-pack the variables it is provided with. While the layout of the contract
does not appear to follow a particular convention, it has tightly packed most slots possible except
one.

Recommendation:

We advise that the L19 declaration of initialized is relocated past the L25 declaration of
_minter to have the bool and address data types tight packed into the same slot.

Alleviation:

The team opted to consider our references and relocated the linked variable to the correct
position.

 DTT-02: Inexistent Indexing

Description:

The linked event declarations contain no indexed variables.

Recommendation:

We advise that indexed variables are introduced as they greatly optimize the speed of filtering a
specific subset of events from the blockchain.

Alleviation:

The team opted to consider our references and introduced indexed variables to the linked
events.

 DTT-03: Inefficient Greater-Than Comparisons w/ Zero

Description:

The linked code statements conduct a greater-than comparison between zero and an unsigned
integer.

Type Severity Location

Volatile Code Minor DataTokenTemplate.sol L24, L352-L360

Type Severity Location

Optimization Informational DataTokenTemplate.sol L169

Recommendation:

As unsigned integers are restricted to the non-negative range, it is possible to instead conduct an
inequality comparison with zero optimizing the gas cost necessary.

Alleviation:

The team opted to consider our references and changed to inequality comparison.

 DTT-04: ERC20 Specification Incompatibility

Description:

The ERC20 specification denotes that the decimals of a token should be of type uint8 whereas
here both the getter as well as the storage variable are declared as uint256 . This will cause
complete incompatibility with the ERC20 specification as external contracts will not be able to
properly retrieve the decimals of the contract.

Recommendation:

AWe advise that the variable types are properly adjusted to conform to the ERC20 specification.

Alleviation:

The team opted to consider our references and changed to data type of the _decimals variable
to that of uint8 .

 DTT-05: Literal Assignment

Description:

The _decimals variable is being assigned to the literal 18 .

Recommendation:

The variable itself could be converted to a constant greatly optimizing the gas cost involved in
utilizing it.

Type Severity Location

Optimization Informational DataTokenTemplate.sol L294-L312

Type Severity Location

Volatile Code Minor DataTokenTemplate.sol L314-L323

Alleviation:

The team opted to consider our references and added the constant mutability specifier for the
_decimals variable.

 DTT-06: Pause / Unpause to Toggle Function

Description:

The linked functions contain identical statements with the core differentiator being the boolean
literal they utilize.

Recommendation:

We advise that they are merged into a single function that toggles the variable to reduce the total
bytecode of the contract.

Alleviation:

The team completely removed the pausing mechanism.

 DTT-07: Pull-over-Push Pattern

Description:

Directly replacing the minter address of a contract is dangerous as a single misinputed character
can freeze the minting functions of the contract indefinitely.

Recommendation:

We advise that the pull-over-push pattern is applied here whereby a new minter would be
proposed that would subsequently need to accept the proposal, signifying that access to the
private key of the address does indeed exist.

Alleviation:

The team opted to consider our references and implemented the proposeMinter and
approveMinter function, strictly following the pull-over-push pattern.

Type Severity Location

Volatile Code Informational DataTokenTemplate.sol L202-L256

Type Severity Location

Volatile Code Minor DataTokenTemplate.sol L278-L282

Type Severity Location

Optimization Informational DataTokenTemplate.sol L1

 DTT-08: Unsanitized Variables

Description:

The input variables of the startOrder function are unsanitized, meaning that anyone is capable
of setting a zero feePercentage as well as a custom feeCollector address.

Recommendation:

We advise that proper sanitization of these variables is set here.

Alleviation:

The team opted to consider our references and removed the parameters feePercentage and
feeCollector from the startOrder function while also introducing the
BASE_MARKET_FEE_PERCENTAGE constant variable as a replacement the former one.

 DTT-09: Value Based Refund

Description:

The current implementation utilizes a value-based refund instead of a proportional refund.

Recommendation:

We advise that orders are somehow stored and are subsequently accessed here to enable
proportional refunds instead of value based refunds, as a refund could possibly exceed the
original order's amount due to no sanitization being in place.

Alleviation:

No alleviations were applied despite the severity of the exhibit.

 DTT-10: Unlocked Compiler Version

Type Severity Location

Optimization Informational ERC20Pausable.sol L1

Description:

TThe compiler version utilized in this file uses the “^” prefix specifier, denoting that a compiler at
or above the version included after the specifier should be used to compile the contracts.

It is a general practise to instead lock the compiler at a specific version rather than allow a range
of compiler versions to be utilized to avoid compiler-specific bugs and be able to identify ones
more easily.

Recommendation:

We recommend locking the compiler at the lowest possible version that supports all the
capabilities wished by the codebase. This will ensure that the project utilizes a compiler version
that has been in use for the longest time and as such is less likely to contain yet-undiscovered
bugs.

Alleviation:

The team opted to consider our references and locked the compiler version to 0.5.7 .

 ERP-01: Unlocked Compiler Version

Description:

The compiler version utilized in this file uses the “^” prefix specifier, denoting that a compiler at or
above the version included after the specifier should be used to compile the contracts.

It is a general practise to instead lock the compiler at a specific version rather than allow a range
of compiler versions to be utilized to avoid compiler-specific bugs and be able to identify ones
more easily.

Recommendation:

We recommend locking the compiler at the lowest possible version that supports all the
capabilities wished by the codebase. This will ensure that the project utilizes a compiler version
that has been in use for the longest time and as such is less likely to contain yet-undiscovered
bugs.

Alleviation:

The team completely removed the ERC20Pausable.sol file.

Type Severity Location

Optimization Informational Deployer.sol L35-L41

Type Severity Location

Optimization Informational Deployer.sol L1

 DPL-01: Assembly Block Documentation

Description:

The purpose of the literals within the linked assembly block should be properly documented
before proper evaluation of its functionality is conducted.

Recommendation:

We advise that proper documentation is added regarding the linked assembly code block.

Alleviation:

The team opted to consider our references and added proper documentation for the linked
assebly code block.

 DPL-02: Unlocked Compiler Version

Description:

The compiler version utilized in this file uses the “^” prefix specifier, denoting that a compiler at or
above the version included after the specifier should be used to compile the contracts.

It is a general practise to instead lock the compiler at a specific version rather than allow a range
of compiler versions to be utilized to avoid compiler-specific bugs and be able to identify ones
more easily.

Recommendation:

We recommend locking the compiler at the lowest possible version that supports all the
capabilities wished by the codebase. This will ensure that the project utilizes a compiler version
that has been in use for the longest time and as such is less likely to contain yet-undiscovered
bugs.

Alleviation:

The team opted to consider our references and locked the compiler version to 0.5.7 .

