
For :
Paid Networks

By :
Alex Papageorgiou @ CertiK
alex.papageorgiou@certik.org

Angelos Apostolidis @ CertiK
angelos.apostolidis@certik.org

Paid Networks

Security Assessment

January 24th, 2021

mailto:alex.papageorgiou@certik.org
mailto:angelos.apostolidis@certik.org

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that contracts
CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor do they provide any indication of the technologies proprietors,
business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice, nor
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code
provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure,
implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the
intention to increase the quality of the company/product's IT infrastructure and or source
code.

af://n7
af://n16

Project Name Paid Networks

Description An upgradeable ERC20 implementation with enhanced
features.

Platform Ethereum; Solidity, Yul

Codebase Previous Repository
Current Repository

Commits Phase1: 427ef8f47d1a68c062b0719aa68de4370e09e8b6
Phase2: eb960293f187b95ba1789a0fffc10fca5ffc3d8c
Phase3: c375960a834a061b4f5a2e79231c22073f2f4fd9
Phase4: 55570b9c989b9c7d652c6eaa38dc89bbedb22587

Delivery Date January 24th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline January 13th, 2021 - January 24th, 2021

Total Issues 17

Total Critical 0

Total Major 1

Total Medium 3

Total Minor 4

Total Informational 9

 Overview

Project Summary

Audit Summary

Vulnerability Summary

https://github.com/extrawatts/paid-erc20-upgradeable
https://github.com/extrawatts/paid-erc20-vesting
https://github.com/extrawatts/paid-erc20-upgradeable/commit/427ef8f47d1a68c062b0719aa68de4370e09e8b6
https://github.com/extrawatts/paid-erc20-upgradeable/commit/eb960293f187b95ba1789a0fffc10fca5ffc3d8c
https://github.com/extrawatts/paid-erc20-vesting/commit/c375960a834a061b4f5a2e79231c22073f2f4fd9
https://github.com/extrawatts/paid-erc20-vesting/commit/55570b9c989b9c7d652c6eaa38dc89bbedb22587
af://n26
af://n28
af://n46
af://n61

ID Contract Location

PTNO PaidToken.sol (Old Version) contracts/PaidToken.sol

PTN PaidToken.sol contracts/PaidToken.sol

 Executive Summary

This report represents the results of CertiK's engagement with Paid Networks on their
implementation of the Paid Networks token smart contract.

The audit consists of four phases, with the first two referring to the previous codebase the Paid
Networks team had implemented, while the remaining reference to the current one.

Phase1 consisted of analyzing the previous repository and proposing our findings to the team.
Phase2 reviewed the fixes applied to the team's codebase, based on our exhibits. After Phase2,
the team opted to make some changes to the smart contract's implementation, which led to
Phase3. Phase3 was essentially going back to Phase1, yet targeting the new repository. Lastly,
Phase4 ended the cycle by reviewing the fixes applied to the codebase altogether.

Our findings mainly refer to optimizations and Solidity coding standards. Hence, the issues
identified pose no threat to the contract deployment's safety.

 Files In Scope

 Findings

https://github.com/extrawatts/paid-erc20-upgradeable/blob/eb960293f187b95ba1789a0fffc10fca5ffc3d8c/contracts/PaidToken.sol
https://github.com/extrawatts/paid-erc20-vesting/blob/55570b9c989b9c7d652c6eaa38dc89bbedb22587/contracts/PaidToken.sol
af://n83
https://github.com/extrawatts/paid-erc20-upgradeable
https://github.com/extrawatts/paid-erc20-vesting
af://n90
af://n105

6%

18%

24%

53%

Finding Summary

Major
Medium
Minor
Informational

ID Title Type Severity Resolved

PTNO-01 Recommended
Compiler Version

Language Specific Informational

PTNO-02 Ambiguous Variable Gas Optimization Minor

PTNO-03 Redundant Type
Casting

Gas Optimization Informational

PTNO-04 Conditionals Merge Gas Optimization Informational

PTNO-05 Absence of the
SafeMath Library

Mathematical
Operations

Major

PTNO-06 Ambiguous
Functionality

Volatile Code Minor

Findings Table (Previous Repository)

af://n108

ID Title Type Severity Resolved

PTN-01 Ambiguous
Comment

Inconsistency Informational

PTN-02 Division Before
Multiplication

Mathematical
Operations

Medium

PTN-03 Ambiguous
Conditional

Logical Issue Informational

PTN-04 Inexistent Input
Sanitization

Volatile Code Minor

PTN-05 Redundant Array
Look-Up

Gas Optimization Informational

PTN-06 Redundant
Variable Cast

Gas Optimization Informational

PTN-07 external Over
public

Gas Optimization Informational

PTN-08 Potential Ether
Lock

Volatile Code Medium

PTN-09 struct

Optimization
Gas Optimization Informational

PTN-10 Ambiguous
Functionality

Volatile Code Medium

PTN-11 Ambiguous
Functionality

Logical Issue Minor

Findings Table (Current Repository)

af://n153

Type Severity Location

Language Specific Informational PaidToken.sol L2

 PTNO-01: Recommended Compiler Version

Description:

The latest versions of Solidity fixed some the known security-relevant bugs.

Recommendation:

We advise to either use v0.6.8 or v0.6.11 .

Alleviation:

The development team opted to consider our references and used the v0.6.11 Solidity compiler.

https://github.com/extrawatts/paid-erc20-upgradeable/blob/427ef8f47d1a68c062b0719aa68de4370e09e8b6/contracts/PaidToken.sol#L2
af://n228
af://n240
https://docs.soliditylang.org/en/v0.7.0/bugs.html
af://n243
af://n246

Type Severity Location

Gas Optimization Minor PaidToken.sol L27

 PTNO-02: Ambiguous Variable

Description:

The amount of the tokens minted upon initialization does not match the value of the totalToken
variable. Also, the ERC20Upgradeable contract already introduces the totalSupply variable,
hence rendering its existance redundant.

Recommendation:

We advise to remove the totalToken variable.

Alleviation:

The development team opted to consider our references and removed the linked variable.

https://github.com/extrawatts/paid-erc20-upgradeable/blob/427ef8f47d1a68c062b0719aa68de4370e09e8b6/contracts/PaidToken.sol#L27
af://n249
af://n261
af://n264
af://n267

Type Severity Location

Gas Optimization Informational PaidToken.sol L151

 PTNO-03: Redundant Type Casting

Description:

The diff variable is already declared as a uint256 variable in L150.

Recommendation:

We advise to remove the variable type cast and directly use the diff variable in the linked
statement.

Alleviation:

The development team opted to consider our references and removed the reundant type cast.

https://github.com/extrawatts/paid-erc20-upgradeable/blob/427ef8f47d1a68c062b0719aa68de4370e09e8b6/contracts/PaidToken.sol#L151
af://n270
af://n282
af://n285
af://n288

Type Severity Location

Gas Optimization Informational PaidToken.sol L157-L163

 PTNO-04: Conditionals Merge

Description:

The linked conditionals could be merged into a single one separated with the OR operator, as
both return the same value.

Recommendation:

We advise to merge the two conditionals into one via the OR operator.

Alleviation:

The development team opted to consider our references and merged the two conditionals into
one if statement.

https://github.com/extrawatts/paid-erc20-upgradeable/blob/427ef8f47d1a68c062b0719aa68de4370e09e8b6/contracts/PaidToken.sol#L157-L163
af://n291
af://n303
af://n306
af://n309

Type Severity Location

Mathematical Operations Major PaidToken.sol General

 PTNO-05: Absence of the SafeMath Library

Description:

The contact introduces raw arithmetical operations, which could result in overflows/underflows
for Solidity versions lower than 0.8.0 .

Recommendation:

We advise to change the arithmetical operations with SafeMath 's function invocations
throughout the codebase to prevent potential overflows/underflows.

Alleviation:

The development team opted to consider our references and used the SafeMath library for the
arithmetical operations throughout the codebase.

https://github.com/extrawatts/paid-erc20-upgradeable/blob/427ef8f47d1a68c062b0719aa68de4370e09e8b6/contracts/PaidToken.sol#General
af://n312
af://n324
af://n327
af://n330

Type Severity Location

Volatile Code Minor PaidToken.sol L217-L220

 PTNO-06: Ambiguous Functionality

Description:

The function transferFrom() overrides the respective ERC-20 function to check whether a
FrozenWallet can complete the transaction. Yet, the said wallet will still be able to use the
transfer() function nontheless.

Recommendation:

We advise to override the _beforeTokenTransfer() function instead.

Alleviation:

The development team opted to consider our references and implemented the
_beforeTokenTransfer() function to override the one from the ERC-20 standard.

https://github.com/extrawatts/paid-erc20-upgradeable/blob/427ef8f47d1a68c062b0719aa68de4370e09e8b6/contracts/PaidToken.sol#L217-L220
af://n333
af://n345
af://n348
af://n351

Type Severity Location

Inconsistency Informational PaidToken.sol L40, L41

 PTN-01: Ambiguous Comment

Description:

The in-line comment does not match the monthlyRate member of the VestingType introduced.

Recommendation:

We advise to either change the integer pushed into the vesting schedule or update the comment.

Alleviation:

The development team opted to consider our references and updated the in-line comments.

https://github.com/extrawatts/paid-erc20-vesting/blob/c375960a834a061b4f5a2e79231c22073f2f4fd9/contracts/PaidToken.sol#L40
https://github.com/extrawatts/paid-erc20-vesting/blob/c375960a834a061b4f5a2e79231c22073f2f4fd9/contracts/PaidToken.sol#L41
af://n355
af://n367
af://n370
af://n373

Type Severity Location

Mathematical Operations Medium PaidToken.sol L64, L65

 PTN-02: Division Before Multiplication

Description:

Solidity integer division might truncate. As a result, performing multiplication before division can
sometimes avoid loss of precision.

Recommendation:

We advise to order multiplication before division.

Alleviation:

The development team opted to consider our references, implemented the mulDiv() function
and applied it to the linked statements.

https://github.com/extrawatts/paid-erc20-vesting/blob/c375960a834a061b4f5a2e79231c22073f2f4fd9/contracts/PaidToken.sol#L64
https://github.com/extrawatts/paid-erc20-vesting/blob/c375960a834a061b4f5a2e79231c22073f2f4fd9/contracts/PaidToken.sol#L65
af://n376
af://n388
af://n391
af://n394

Type Severity Location

Logical Issue Informational PaidToken.sol L77

 PTN-03: Ambiguous Conditional

Description:

The linked conditional will block the edge case where the mint that will cause the total supply to
be equal to the max total supply.

Recommendation:

We advise to include equality on the linked conditional.

Alleviation:

The development team opted to consider our references and included the equality part of the
conditional.

https://github.com/extrawatts/paid-erc20-vesting/blob/c375960a834a061b4f5a2e79231c22073f2f4fd9/contracts/PaidToken.sol#L77
af://n397
af://n409
af://n412
af://n415

Type Severity Location

Volatile Code Minor PaidToken.sol L56-L73

 PTN-04: Inexistent Input Sanitization

Description:

The addAllocations() function does not check that the addresses and totalAmounts input
arrays are of equal length.

Recommendation:

We advise to add a require statement checking that the two arrays are of equal length.

Alleviation:

The development team opted to consider our references and added the proposed require
statement.

https://github.com/extrawatts/paid-erc20-vesting/blob/c375960a834a061b4f5a2e79231c22073f2f4fd9/contracts/PaidToken.sol#L56-L73
af://n418
af://n430
af://n433
af://n436

Type Severity Location

Gas Optimization Informational PaidToken.sol L61

 PTN-05: Redundant Array Look-Up

Description:

The linked loop conditional redundantly performs a query to the length member of the
addresses array at the beginning of each iteration.

Recommendation:

We advise to store the length of the array in a local variable outside of the loop in order to save
on the overall cost of gas.

Alleviation:

The development team opted to consider our references and changed the linked code segment
as proposed.

https://github.com/extrawatts/paid-erc20-vesting/blob/c375960a834a061b4f5a2e79231c22073f2f4fd9/contracts/PaidToken.sol#L61
af://n439
af://n451
af://n454
af://n457

Type Severity Location

Gas Optimization Informational PaidToken.sol L62

 PTN-06: Redundant Variable Cast

Description:

The linked statement redundantly casts the addresses value to type address .

Recommendation:

We advise to remove redundant code.

Alleviation:

The development team opted to consider our references and removed the redundant code.

https://github.com/extrawatts/paid-erc20-vesting/blob/c375960a834a061b4f5a2e79231c22073f2f4fd9/contracts/PaidToken.sol#L62
af://n460
af://n472
af://n475
af://n478

Type Severity Location

Gas Optimization Informational PaidToken.sol L56, L105

 PTN-07: external Over public

Description:

The linked public functions are never used in the contract.

Recommendation:

We advise to change the attribute of the linked functions to external .

Alleviation:

The development team opted to consider our references and changed the visibility of the linked
functions to external .

https://github.com/extrawatts/paid-erc20-vesting/blob/c375960a834a061b4f5a2e79231c22073f2f4fd9/contracts/PaidToken.sol#L56
https://github.com/extrawatts/paid-erc20-vesting/blob/c375960a834a061b4f5a2e79231c22073f2f4fd9/contracts/PaidToken.sol#L105
af://n481
af://n493
af://n496
af://n499

Type Severity Location

Volatile Code Medium PaidToken.sol L56-L73

 PTN-08: Potential Ether Lock

Description:

The amount of Ether sent to the contract via the linked payable function will be lost.

Recommendation:

We advise to either implement a withdraw function or remove the payable attribute.

Alleviation:

The development team opted to consider our references and introduced the withdraw()
function to the codebase.

https://github.com/extrawatts/paid-erc20-vesting/blob/c375960a834a061b4f5a2e79231c22073f2f4fd9/contracts/PaidToken.sol#L56-L73
af://n502
af://n514
af://n517
af://n520

Type Severity Location

Gas Optimization Informational PaidToken.sol L9-L18

 PTN-09: struct Optimization

Description:

The FrozenWallet struct is not tightly packed.

Recommendation:

We advise to change the position of the scheduled member right after the wallet one, hence
striving for a tight 256-bit packing.

Alleviation:

The Paid Networks development team has acknowledged this exhibit but decided to not apply its
remediation in the current version of the codebase due to time constraints.

https://github.com/extrawatts/paid-erc20-vesting/blob/55570b9c989b9c7d652c6eaa38dc89bbedb22587/contracts/PaidToken.sol#L9-L18
af://n523
af://n535
af://n538
af://n541

Type Severity Location

Volatile Code Medium PaidToken.sol L82-L103

 PTN-10: Ambiguous Functionality

Description:

The addFrozenWallet() is implemented in a peculiar way. Also, the same function increases the
centralization of the system by allowing the owner to arbitrarily mint tokens.

Recommendation:

We advise to revise the linked function or add descriptive documentation.

Alleviation:

The development team acknowledged this exhibit while commenting that they intend to mint the
supply right after deployment. Also, the team stated the desire to disable the minting
mechanism on a future contract upgrade.

https://github.com/extrawatts/paid-erc20-vesting/blob/55570b9c989b9c7d652c6eaa38dc89bbedb22587/contracts/PaidToken.sol#L82-L103
af://n544
af://n556
af://n559
af://n562

Type Severity Location

Logical Issue Minor PaidToken.sol L153-L171

 PTN-11: Ambiguous Functionality

Description:

The canTransfer() function returns true for every address that does not have a frozen wallet
(by bypassing the conditionals).

Recommendation:

We advise to adjust the linked function if this is not intended functionality.

Alleviation:

The development team acknowledged this exhibit while commenting that this functionality is
indeed intentional.

https://github.com/extrawatts/paid-erc20-vesting/blob/55570b9c989b9c7d652c6eaa38dc89bbedb22587/contracts/PaidToken.sol#L153-L171
af://n565
af://n577
af://n580
af://n583

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a
transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such
as overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only
functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases
that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the
result of a struct assignment operation affecting an in-memory struct rather than an in-
storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of
private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements on
the input variables than a setter function.

af://n586
af://n588
af://n590
af://n592
af://n594
af://n596
af://n598
af://n600
af://n602
af://n604
af://n606

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw
format and should otherwise be specified as constant contract variables aiding in their legibility
and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to
compile using the specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

af://n608
af://n610
af://n612

	 Disclaimer
	What is a CertiK report?

	 Overview
	Project Summary
	Audit Summary
	Vulnerability Summary

	 Executive Summary
	 Files In Scope
	 Findings
	Findings Table (Previous Repository)
	Findings Table (Current Repository)
	 PTNO-01: Recommended Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 PTNO-02: Ambiguous Variable
	Description:
	Recommendation:
	Alleviation:

	 PTNO-03: Redundant Type Casting
	Description:
	Recommendation:
	Alleviation:

	 PTNO-04: Conditionals Merge
	Description:
	Recommendation:
	Alleviation:

	 PTNO-05: Absence of the SafeMath Library
	Description:
	Recommendation:
	Alleviation:

	 PTNO-06: Ambiguous Functionality
	Description:
	Recommendation:
	Alleviation:

	 PTN-01: Ambiguous Comment
	Description:
	Recommendation:
	Alleviation:

	 PTN-02: Division Before Multiplication
	Description:
	Recommendation:
	Alleviation:

	 PTN-03: Ambiguous Conditional
	Description:
	Recommendation:
	Alleviation:

	 PTN-04: Inexistent Input Sanitization
	Description:
	Recommendation:
	Alleviation:

	 PTN-05: Redundant Array Look-Up
	Description:
	Recommendation:
	Alleviation:

	 PTN-06: Redundant Variable Cast
	Description:
	Recommendation:
	Alleviation:

	 PTN-07: external Over public
	Description:
	Recommendation:
	Alleviation:

	 PTN-08: Potential Ether Lock
	Description:
	Recommendation:
	Alleviation:

	 PTN-09: struct Optimization
	Description:
	Recommendation:
	Alleviation:

	 PTN-10: Ambiguous Functionality
	Description:
	Recommendation:
	Alleviation:

	 PTN-11: Ambiguous Functionality
	Description:
	Recommendation:
	Alleviation:

	Appendix
	Finding Categories
	Gas Optimization
	Mathematical Operations
	Logical Issue
	Control Flow
	Volatile Code
	Data Flow
	Language Specific
	Coding Style
	Inconsistency
	Magic Numbers
	Compiler Error
	Dead Code

