
PancakeSwap

Security Assessment

October 13th, 2020

For:
PancakeSwap

Project
Name

PancakeSwap

Description
A SushiSwap fork that attempts to differentiate itself by integrating YAM's /
Compound's Governance mechanism.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits
1. 05e7fbdd16a94b7e18b51811eda411fb4a1b4b41
2. daf8da084170ec8fe7ff705a7c0489dc8f730e50

Delivery Date October 13th, 2020

Method of Audit Static Analysis, Manual Review

Consultants Engaged 1

Timeline October 5th, 2020 - October 13th, 2020

Total Issues 9

Total Critical 0

Total Major 2

Total Medium 1

Total Minor 1

Total Informational 5

 Overview

Project Summary

Audit Summary

Vulnerability Summary

ID Contract Location

MCF MasterChef.sol contracts/MasterChef.sol

SCF SousChef.sol contracts/SousChef.sol

SBR SyrupBar.sol contracts/SyrupBar.sol

ID Title Type Severity Resolved

MCF-
01

Variable Naming Convention Coding Style Informational

MCF-
02

Comment Typo Coding Style Informational

MCF-
03

Centralized Control of Bonus
Multiplier

Logical Issue Informational

MCF-
04

Assignment Optimization
Gas
Optimization

Informational

SBR-
01

Incorrect Delegation Flow Logical Issue Major

SBR-
02

Inexistent Delegate Transfer Logical Issue Medium

SCF-
01

addressList Inaccuracy Logical Issue Minor

SCF-
02

Contract Purpose Unclear Logical Issue Informational

SCF-
03

Incorrect Reset Mechanism Logical Issue Major

 Executive Summary

The PancakeSwap implementation is a fork of the SushiSwap implementation that introduces a
new pool reserved in the first position of the pool array yielding rewards proportionate to the rest
of the liquidity in the contract. We identified some major and medium severity flaws that were
dealt with by the PancakeSwap team, however a new vulnerability emerged due to the fix for the
addressList inaccuracy finding that should be tended to as soon as possible.

 Files In Scope

 Findings

Type Severity Location

Coding Style Informational MasterChef.sol L71

Type Severity Location

Coding Style Informational MasterChef.sol L79

Type Severity Location

Logical Issue Informational MasterChef.sol L113-L115

 MCF-01: Variable Naming Convention

Description:

The linked variables do not conform to the standard naming convention of Solidity whereby
functions and variable names utilize the camelCase format, unless variables are declared as
constant in which case they utilize the UPPER_CASE format.

Recommendation:

We advise that the naming conventions utilized by the linked statements are adjusted to reflect
the correct type of declaration according to the Solidity style guide.

Alleviation:

The PancakeSwap development team has acknowledged this exhibit but decided to not apply its
remediation in the current version of the codebase due to time constraints.

 MCF-02: Comment Typo

Description:

The linked comment statement contains a typo in its body, namely poitns .

Recommendation:

We advise that the comment text is corrected.

Alleviation:

The comment typo was properly fixed.

 MCF-03: Centralized Control of Bonus Multiplier

Type Severity Location

Gas Optimization Informational MasterChef.sol L143

Type Severity Location

Logical Issue Major SyrupBar.sol L17

Description:

The function updateMultiplier can alter the BONUS_MULTIPLIER variable and consequently the
output of getMultiplier which is directly utilized for the minting of new cake tokens.

Recommendation:

This is intended functionality of the protocol, however users should be aware of this functionality.

Alleviation:

The PancakeSwap team informed us that there is a 6 hour timelock on the MasterChef contract
with regards to all pool reward changes which are also first voted on by SYRUP holders through
their voting portal using a Snapshot mechanism. This decentralizes the aspect of changing the
multipliers via governance by SYRUP holders.

 MCF-04: Assignment Optimization

Description:

The linked statement will only yield a different output stored to totalAllocPoint only if the
condition of L146 yields true .

Recommendation:

As a result of the above, it is more optimal to move the assignment of L143 to the if block of
L146.

Alleviation:

The assignment was properly moved to the linked if block, optimizing the code segment.

 SBR-01: Incorrect Delegation Flow

Description:

Whenever new SYRUP tokens are minted, new delegates are moved from the zero address to the
recipient of the minting process. However, whenever tokens are burned, new delegates are once
again moved from the zero address to the recipient whereas delegates should be moved on the
opposite way.

Type Severity Location

Logical Issue Medium SyrupBar.sol L1

Type Severity Location

Logical Issue Minor SousChef.sol L120-L122, L148-L154

Recommendation:

We advise that the address(0) and _from variable orders are swapped on L17 to alleviate this
issue. At its current state, it breaks the delegate mechanism and can also lead to a user being
unable to mint / burn tokens in case the upper limit of a uint256 is reached due to the
SafeMath utilization on L233.

Alleviation:

The delegation flow was fixed in the source code of the GitHub repository, however the issue still
persists in the deployed version of PancakeSwap. However, the SYRUP token will not be utilized
for the DAO governance by the PancakeSwap team.

 SBR-02: Inexistent Delegate Transfer

Description:

The transfer and transferFrom functions of the YAM project transfer delegates as well via
overridence. The PancakeSwap implementation does not, leading to an inconsistency in the
delegates of each address .

Recommendation:

We advise that the transfer and transferFrom functions are properly overriden to also
transfer delegates on each invocation from the sender of the funds to the recipient.

Alleviation:

After evaluating with PancakeSwap, we came to the conclusion that this functionality is
unnecessary as delegates are not and will not be utilized in any form of DAO governance
mechanism.

 SCF-01: addressList Inaccuracy

Description:

The first linked if block pushes a new address to the addressList array in the case the
userInfo mapping lookup yields 0 on the amount member. This case is possible even after the
user has already been added to the array, either by invoking emergencyWithdraw or withdrawing
the full amount held by the user.

Type Severity Location

Logical Issue Informational SousChef.sol L1-L156

Type Severity Location

Logical Issue Major SousChef.sol L148-L154

Recommendation:

We advise that the push mechanism is revised to ensure that the user does not already exist in
the array.

Alleviation:

The PancakeSwap team altered the condition for pushing new items to the addressList array,
however duplicates can still exist. After conversing with the team, we were informed that the
array is not utilized on-chain and is meant to aid off-chain processes in an airdrop mechanism
which will eliminate duplicate addresses. As such, this issue can be safely ignored. We would like
to note that this is not an optimal mechanism to conduct this, as it would be better to instead rely
on emitted event s and blockchain analysis rather than contract storage.

 SCF-02: Contract Purpose Unclear

Description:

The SousChef contract tracks a reward schedule based on the deposited SYRUP tokens, however
the variables of the UserInfo struct are never actually utilized to provide any reward.

Recommendation:

We advise that further documentation is produced that details the purpose of the contract, as it
should seemingly interoperate with another contract that reads data from it.

Alleviation:

The purpose of the contract is for SYRUP holders to stake their tokens and accumulate rewards
on paper rather than on-chain which will be then distributed by the PancakeSwap team. As such,
we believe that the purpose of the contract has been sufficiently described. We would like to note
that this type of distribution of rewards purely relies on the honesty of PancakeSwap and does
not utilize any on-chain or decentralized mechanisms.

 SCF-03: Incorrect Reset Mechanism

Description:

The emergencyWithdraw function is meant to "reset" a user's state and withdraw his deposited
tokens. In this case, the rewardPending variable of the user struct is not zeroed out.

Recommendation:

As the rewardPending member is cumulative, it is possible to exploit this behavior and artificially
increase the pending rewards of a user. We advise that either a manual 0 assignment statement
is introduced in the emergencyWithdraw function or a delete operation is conducted on the full
struct located at userInfo[msg.sender] .

Alleviation:

The emergencyWithdraw function was properly fixed to zero out all members of the UserInfo
struct.

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a
transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such
as overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only
functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases
that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the
result of a struct assignment operation affecting an in-memory struct rather than an in-
storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of
private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements on
the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw
format and should otherwise be specified as constant contract variables aiding in their legibility
and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to
compile using the specified version of the project.

