
ParaSwap
ParaSwap

Security Assessment

May 6th, 2021

 Disclaimer

CertiK reports are not, nor should be considered, an "endorsement" or "disapproval" of any
particular project or team. These reports are not, nor should be considered, an indication of the
economics or value of any "product" or "asset" created by any team or project that contracts
CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor do they provide any indication of the technologies proprietors,
business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice, nor
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK's
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK's goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code
provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure,
implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has completed a round of auditing with the intention to
increase the quality of the company/product's IT infrastructure and or source code.

Project Name ParaSwap-ParaSwap

Description ParaSwap aggregates decentralized exchanges and other DeFi
services in one comprehensive interface to streamline and
facilitate users' interactions with Ethereum's decentralized
finance.

Platform Ethereum; Solidity, Yul

Codebase GitLab Repository

Commits 1. e5cbed367619eae60d174a5c60770f2bf305a42e

Delivery Date May 6th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 1

Timeline March 25th, 2021 - April 7th, 2021

 Total Issues 17

 Total Critical 0

 Total Major 0

 Total Medium 3

 Total Minor 3

 Total Informational 11

 Overview

Project Summary

Audit Summary

Vulnerability Summary

https://gitlab.com/paraswap/paraswap-contracts
https://gitlab.com/paraswap/paraswap-contracts/commit/e5cbed367619eae60d174a5c60770f2bf305a42e

 Executive Summary

We were tasked with auditing the ParaSwap contracts for AugustusSwapper. Contract allows for
multi-path orders across different exchanges. We also were tasked with checking the
UniswapV2.sol implementation and ParaSwap’s Gas Token, ReduxToken.
We haven’t found any critical or major issues with the contracts. Code itself is very well written
and optimized for gas savings. Functions are well documented, and more essential contracts, like
AugustusSwapper.sol have it’s own md file with documentation.
The team also took its time to rewrite UniswapV2 Router and UniswapV2Lib, to a more optimized
version. We haven’t found any issues with those implementations, but few functions are missing
some basic checks present in the original implementation.

AugustusSwapper has many publicly available functions that can be re-enter and cause
misbehavior of the contract's logic due to events emitted out of order and amounts returned out
of order.

Another potential issue is the amount of arbitrary external calls happening within the contract that
can cause many misbehavior, i.e. airdrops being claimed by other users on behalf of the contract.
We would recommend, in this regard having a whitelist of addresses that can be called externally.

When team got back to us with remediations, the contracts were already deployed onto the
mainnet and not many issues were fixed. Contract can be found under this address
0x1bd435f3c054b6e901b7b108a0ab7617c808677b.

https://etherscan.io/address/0x1bd435f3c054b6e901b7b108a0ab7617c808677b#code

 System Analysis

We have found many usages of onlyOwner modifier usage in the AugustusSwapper. Many
contract parameters can be changed by the owner at will. The initializeAdapter function
can be quite dangerous if a malicious actor gets access to the owner's keys.

In case of lost access to an account's private key or mishandling security of private keys, an
attacker could benefit from that and replace key parameters. We advise that a governance
system or multi-signature wallet is utilized instead of a single account in this case.

ID Contract Location

ASE AdapterStorage.sol original_contracts/AdapterStorage.sol

ASR AugustusSwapper.sol original_contracts/AugustusSwapper.sol

IAS IAugustusSwapper.sol original_contracts/IAugustusSwapper.sol

IPR IPartner.sol original_contracts/IPartner.sol

ORI IPartnerRegistry.sol original_contracts/IPartnerRegistry.sol

IRT IReduxToken.sol original_contracts/IReduxToken.sol

ITT ITokenTransferProxy.sol original_contracts/ITokenTransferProxy.sol

IUP IUniswapProxy.sol original_contracts/IUniswapProxy.sol

PAR Partner.sol original_contracts/Partner.sol

TTP TokenTransferProxy.sol original_contracts/TokenTransferProxy.sol

UPY UniswapProxy.sol original_contracts/UniswapProxy.sol

IEE IExchange.sol original_contracts/lib/IExchange.sol

RTN ReduxToken.sol original_contracts/lib/ReduxToken.sol

TFA TokenFetcherAugustus.sol original_contracts/lib/TokenFetcherAugustus.sol

UVL UniswapV3Lib.sol original_contracts/lib/UniswapV3Lib.sol

UTI Utils.sol original_contracts/lib/Utils.sol

UV2 UniswapV2.sol original_contracts/lib/uniswapv2/UniswapV2.sol

 Files In Scope

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AdapterStorage.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/IAugustusSwapper.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/IPartner.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/IPartnerRegistry.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/IReduxToken.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/ITokenTransferProxy.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/IUniswapProxy.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/Partner.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/TokenTransferProxy.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/UniswapProxy.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/IExchange.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/ReduxToken.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/TokenFetcherAugustus.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/UniswapV3Lib.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/Utils.sol
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/uniswapv2/UniswapV2.sol

AugustusSwapper.sol

IWhitelisted.sol

TokenTransferProxy.sol

IPartnerRegistry.sol

TokenFetcherAugustus.sol

IUniswapProxy.sol

Partner.sol

SafeMath.sol

Ownable.sol

IPartner.sol

ReduxToken.sol IReduxToken.sol

UniswapV2.sol
IERC20.solIExchange.sol

Utils.sol SafeERC20.sol

UniswapProxy.sol

ITokenTransferProxy.sol

UniswapV3Lib.sol
IUniswapV2Pair.sol

 File Dependency Graph

IWETH.sol

AdapterStorage.sol

18%

18%

65%

Finding Summary

Medium
Minor
Informational

ID Title Type Severity Resolve
d

ASR-01 Front-running on
`withdrawAllWETH()`

Volatile Code Medium

ASR-02 Artificially inflating gas
refund.

Volatile Code Medium

ASR-03 Centralization concern Control Flow Medium

ASR-04 Possibility of Re-entrancy
attack

Volatile Code Minor

ASR-05 Typo in a function name Coding Style Informational

PAR-01 Immutable variables Control Flow Informational

UPY-01 Packing of local variables Gas Optimization Informational

UPY-02 Unlocked Compiler
Version

Language Specific Informational

UPY-03 Unnecessary type casting Gas Optimization Informational

RTN-01 Hardcoded address is
different then the one in
the comments

Inconsistency Informational

RTN-02 Pre-compute hash for gas
saving.

Gas Optimization Informational

UVL-01 Unlocked Compiler
Version

Language Specific Informational

UTI-01 Should only approve
passed amount

Volatile Code Minor

UTI-02 Variable tigth-packing Gas Optimization Informational

UV2-01 Lack of token verification Volatile Code Minor

UV2-02 Packing of local variables Gas Optimization Informational

UV2-03 Unnecessary type casting Gas Optimization Informational

 Manual Review Findings

Type Severity Location

Volatile Code Medium AugustusSwapper.sol L438-L441

 ASR-01: Front-running on withdrawAllWETH()withdrawAllWETH()

Description:

As withdrawAllWETH function can be callable by anyone, a front-running attack can occur.

Recommendation:

We would advise to always send remaining amount after a swap/buy/sell to the user thus
eliminating need for this function.

Alleviation:

The ParaSwap development team has acknowledged this exhibit but decided to not apply its
remediation in the current version of the codebase.

Client's comment:
"this is not an issue, also withdrawAllWET was made onlySelf"

Side effect of making this decision is ETH being locked in the contract without a way of
withdrawing it as ETH will be sent to contract itself.

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol#L438-441

Type Severity Location

Volatile
Code Medium

AugustusSwapper.sol L419-L429, L499-L509, L586-L596, L647-
L662, L678

 ASR-02: Artificially inflating gas refund.

Description:

Gas refund can be inflated artificially. This can have an impact in case user is making a trade for
another beneficiary and that beneficiary is a contract. Malicious beneficiary can run a arbitrary
operations ramping up the gas usage and deplete redux token as the user is taking up the gas
cost.

Recommendation:

Calculation within the refund of redux tokens uses gasleft() plus the gasleft() calculated at the
beginning of the function call. The delta between the two can artificially be inflated by the
beneficiary.
We would recommend checking if benefiiciary is one of whitelisted addresses or is not a contract.
Another solution would be to ask up front user how much redux tokens he is willing to spend
maximally during function execution and use that value if delta between initial gasLeft() and
deltaLeft() after all operations is higher then maximum amount user is willing to spent.

Alleviation:

Issue partially resolved. The team added a gas limit of 4000 on ETH transfers.

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol#L419-429
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol#L499-509
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol#L586-596
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol#L647-662
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol#L678

Type Severity Location

Control Flow Medium AugustusSwapper.sol L88, L119-L137

 ASR-03: Centralization concern

Description:

Owner has too much power over most important addresses used in the contract. In case of lost
access to the private key of an account or mishandling security of private keys, an attacker could
benefit from that and exploit ParaSwap users.

Recommendation:

Mentioned functions should be called by governance or be handled by multi-sig wallet.

Alleviation:

The ParaSwap development team has acknowledged this exhibit but decided to not apply its
remediation in the current version of the codebase due to time constraints.

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol#L88
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol#L119-137

Type Severity Location

Volatile Code Minor AugustusSwapper.sol L236, L300, L447, L529, L616

 ASR-04: Possibility of Re-entrancy attack

Description:

All linked functions have calls inside them that can send ether to an arbitrary address or make an
external call using externalCall . This could lead to re-entrancy and cause events being
emitted out of order and amount returned out of order as well.
This would cause issues to contracts potentially based on the swap implementation.

Recommendation:

We would recommend using nonReentrant modifier from OpenZeppelin.

Alleviation:

The ParaSwap development team has acknowledged this exhibit but decided to not apply its
remediation in the current version of the codebase.

Client's comment:
"we don’t want to use reentrancy flag in storage because of gas, I think this issue stands though"

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol#L236
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol#L300
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol#L447
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol#L529
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol#L616

Type Severity Location

Coding Style Informational AugustusSwapper.sol L236

 ASR-05: Typo in a function name

Description:

Function simplBuy has a typo in it's name.

Recommendation:

Change function name from simplBuy to simpleBuy and all instances of the simplBuy to
simpleBuy .

Alleviation:

The client won't fix as the contract is already deployed.

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/AugustusSwapper.sol#L236

Type Severity Location

Control Flow Informational Partner.sol L38, L40

 PAR-01: Immutable variables

Description:

Linked variables as they are only assigned once during constructor call of the contract should be
defined as immutable.

Recommendation:

We would advise to make linked variables immutable.

Alleviation:

The ParaSwap development team has acknowledged this exhibit but decided to not apply its
remediation in the current version of the codebase due to time constraints.

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/Partner.sol#L38
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/Partner.sol#L40

Type Severity Location

Gas Optimization Informational UniswapProxy.sol L126, L199, L211

 UPY-01: Packing of local variables

Description:

Linked for loops are packing local variables which is inefficient and costs more gas than using
uint256.

Recommendation:

We would advise to use uint256 for i variable inside for loop.

Alleviation:

The ParaSwap development team has acknowledged this exhibit but decided to not apply its
remediation in the current version of the codebase due to time constraints.

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/UniswapProxy.sol#L126
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/UniswapProxy.sol#L199
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/UniswapProxy.sol#L211

Type Severity Location

Language Specific Informational UniswapProxy.sol L1

 UPY-02: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.2 the contract should contain the
following line:

Alleviation:

Issue has been fixed as of commit 956d4ab0e30e03f0083704d6ede9299aab82b48d on Github
repository

pragma solidity 0.6.2;

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/UniswapProxy.sol#L1
https://github.com/paraswap/paraswap-contracts/blob/956d4ab0e30e03f0083704d6ede9299aab82b48d/original_contracts/

Type Severity Location

Gas Optimization Informational UniswapProxy.sol L170, L250

 UPY-03: Unnecessary type casting

Description:

uint256(0) is unneded. Literal 0 can be used directly.

Recommendation:

We would advise to directly use literal 0 for gas saving.

Alleviation:

Issue isn't fixed. Client's comment: "I doubt this makes any difference at all on gas"

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/UniswapProxy.sol#L170
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/UniswapProxy.sol#L250

Type Severity Location

Inconsistency Informational ReduxToken.sol L41, L67

 RTN-01: Hardcoded address is different than the one in the comments

Description:

Encoded address inside mstore is different than the one used in the pseudocode.

Recommendation:

We recommend changing the comment or the encoded address to be consistent throughtout the
example <> code.

Alleviation:

Issue no longer valid. The value on mstore is the same address but XOR'ed with 0x12 (the
address of the JUMPDEST).

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/ReduxToken.sol#L41
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/ReduxToken.sol#L67

Type Severity Location

Gas Optimization Informational ReduxToken.sol L26

 RTN-02: Pre-compute hash for gas saving.

Description:

PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256
value,uint256 nonce,uint256 deadline)"); can be pre-computed to save gas.

Recommendation:

We would recommend to pre-compute the PERMIT-TYPEHASH and have a comment above
explaining what is being hashed.

Alleviation:

Issue no longer valid. Using literal will mean an extra conversion to byte32 which will in fact cost
more gas than using keccak256.

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/ReduxToken.sol#L26

Type Severity Location

Language Specific Informational UniswapV3Lib.sol L1

 UVL-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.2 the contract should contain the
following line:

Alleviation:

Issue is not fixed as of commit 956d4ab0e30e03f0083704d6ede9299aab82b48d on Github
repository. UniswapV3Lib.sol is using pragma solidity >=0.5.0; .

pragma solidity 0.6.2;

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/UniswapV3Lib.sol#L1
https://github.com/paraswap/paraswap-contracts/blob/956d4ab0e30e03f0083704d6ede9299aab82b48d/original_contracts/

Type Severity Location

Volatile Code Minor Utils.sol L103-L118

 UTI-01: Should only approve passed amount

Description:

approve should only approve required amount, not MAX_UINT as in case of exchange
mulfunctioning it could lead to potential loss of funds for a user.

Recommendation:

We would advise to only approve required amount sent in function param.

Alleviation:

Issue not fixed.
Client's comment: "we do MAX_UINT approve so that you don’t need to approve in future (saves
gas) so this is intentional"

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/Utils.sol#L103-118

Type Severity Location

Gas
Optimization Informational

Utils.sol L35-L45, L47-L56, L58-L67, L69-L75, L82-L86,
L88-L95

 UTI-02: Variable tigth-packing

Description:

Variables in linked structs can be tight-packed.

Recommendation:

bool variable can be tightpacked with any address variable as address is 160bytes and
bool is 8bytes so two of them can be put into the same EVM slot.

Alleviation:

Issue not revelant. Structs defined in Utils.sol are used strictly to memory and variable tight-
packing is not applicable in this scenario.

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/Utils.sol#L35-45
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/Utils.sol#L47-56
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/Utils.sol#L58-67
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/Utils.sol#L69-75
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/Utils.sol#L82-86
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/Utils.sol#L88-95

Type Severity Location

Volatile Code Minor UniswapV2.sol L37, L58

 UV2-01: Lack of token verification

Description:

Functions swap and buy lack of validation for tokens in a path.

Recommendation:

Functions buy and swap should validate fromToken == data.path[0] and toToken ==
data.path[data.path.length - 1]. We advise to add such validation to the code.

Alleviation:

Issue not resolved. Client's comment "this is a fair criticism, but in general we can’t validate the
payload to our adapters (and it would cost gas)"

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/uniswapv2/UniswapV2.sol#L37
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/uniswapv2/UniswapV2.sol#L58

Type Severity Location

Gas Optimization Informational UniswapV2.sol L139

 UV2-02: Packing of local variables

Description:

Linked for loops are packing local variables which is inefficient and costs more gas than using
uint256.

Recommendation:

We would advise to use uint256 for i variable inside for loop.

Alleviation:

The ParaSwap development team has acknowledged this exhibit but decided to not apply its
remediation in the current version of the codebase due to time constraints.

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/uniswapv2/UniswapV2.sol#L139

Type Severity Location

Gas Optimization Informational UniswapV2.sol L187, L250

 UV2-03: Unnecessary type casting

Description:

uint256(0) is unneded. Literal 0 can be used directly.

Recommendation:

We would advise to directly use literal 0 for gas saving.

Alleviation:

Issue not resolved. Client's comment: "I doubt this makes any difference at all on gas"

https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/uniswapv2/UniswapV2.sol#L187
https://gitlab.com/paraswap/paraswap-contracts/-/blob/e5cbed367619eae60d174a5c60770f2bf305a42e/original_contracts/lib/uniswapv2/UniswapV2.sol#L250

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a
transaction.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only
functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases
that may result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of
private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements on
the input variables than a setter function.

	 Disclaimer
	What is a CertiK report?
	 Overview
	Project Summary
	Audit Summary
	Vulnerability Summary

	 Executive Summary
	 System Analysis

	 Files In Scope
	 File Dependency Graph
	 Manual Review Findings
	 ASR-01: Front-running on withdrawAllWETH()
	Description:
	Recommendation:
	Alleviation:

	 ASR-02: Artificially inflating gas refund.
	Description:
	Recommendation:
	Alleviation:

	 ASR-03: Centralization concern
	Description:
	Recommendation:
	Alleviation:

	 ASR-04: Possibility of Re-entrancy attack
	Description:
	Recommendation:
	Alleviation:

	 ASR-05: Typo in a function name
	Description:
	Recommendation:
	Alleviation:

	 PAR-01: Immutable variables
	Description:
	Recommendation:
	Alleviation:

	 UPY-01: Packing of local variables
	Description:
	Recommendation:
	Alleviation:

	 UPY-02: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 UPY-03: Unnecessary type casting
	Description:
	Recommendation:
	Alleviation:

	 RTN-01: Hardcoded address is different than the one in the comments
	Description:
	Recommendation:
	Alleviation:

	 RTN-02: Pre-compute hash for gas saving.
	Description:
	Recommendation:
	Alleviation:

	 UVL-01: Unlocked Compiler Version
	Description:
	Recommendation:
	Alleviation:

	 UTI-01: Should only approve passed amount
	Description:
	Recommendation:
	Alleviation:

	 UTI-02: Variable tigth-packing
	Description:
	Recommendation:
	Alleviation:

	 UV2-01: Lack of token verification
	Description:
	Recommendation:
	Alleviation:

	 UV2-02: Packing of local variables
	Description:
	Recommendation:
	Alleviation:

	 UV2-03: Unnecessary type casting
	Description:
	Recommendation:
	Alleviation:

	Appendix
	Finding Categories
	Gas Optimization
	Control Flow
	Volatile Code
	Language Specific
	Coding Style
	Inconsistency

