

0

Contents

Contents 1

Disclaimer 2

About CertiK 2

Executive Summary 3

Testing Summary 4

Review Notes 5
Introduction 5
Documentation 6
Summary 6
Recommendations 6

Findings 8

Exhibit 1 8

Exhibit 2 9

Exhibit 3 10

Exhibit 4 11

Exhibit 5 12

Exhibit 6 13

Exhibit 7 14

1

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of

services, confidentiality, disclaimer and limitation of liability) set forth in the Verification

Services Agreement between CertiK and Sandbox (the “Company”), or the scope of

services/verification, and terms and conditions provided to the Company in connection with the

verification (collectively, the “Agreement”). This report provided in connection with the Services

set forth in the Agreement shall be used by the Company only to the extent permitted under the

terms and conditions set forth in the Agreement. This report may not be transmitted, disclosed,

referred to or relied upon by any person for any purposes without CertiK’s prior written consent.

About CertiK

CertiK is a technology-led blockchain security company founded by Computer Science

professors from Yale University and Columbia University built to prove the security and

correctness of smart contracts and blockchain protocols.

CertiK, in partnership with grants from IBM and the Ethereum Foundation, CertiK’s mission of

every audit is to apply different approaches and detection methods, ranging from manual, static,

and dynamic analysis, to ensure that projects are checked against known attacks and potential

vulnerabilities. CertiK leverages a team of seasoned engineers and security auditors to apply

testing methodologies and assessments to each project, in turn creating a more secure and

robust software system.

For more information: https://certik.org.

2

https://certik.org/

Executive Summary

This report has been prepared for Sandbox to examine issues and vulnerabilities in the source

code of their smart contracts in scope. A comprehensive examination has been performed,

utilizing CertiK’s Static Analysis, Manual and Dynamic Review techniques.

The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.

● Assessing the codebase to ensure compliance with current best practices and industry

standards.

● Ensuring contract logic meets the specifications and intentions of the client.

● Cross referencing contract structure and implementation against similar smart

contracts produced by industry leaders.

● Thorough line-by-line manual review of the entire codebase by industry experts.

3

Testing Summary

SECURITY LEVEL

Smart Contract Audit

This report has been prepared as a product of the

Smart Contract Audit request by The Sandbox.

This audit was conducted to discover issues and

vulnerabilities in the source code of The

Sandbox’s Estate and updated LandSale (now

called EstateSale) contracts.

TYPE Smart Contracts & Token

SOURCE CODE

https://github.com/pixowl/sa

ndbox-private-contracts/tree/

audit_estate_20200416/src

PLATFORM EVM

 LANGUAGE Solidity

REQUEST DATE May 12, 2020

DELIVERY DATE May 18, 2020

METHODS

A comprehensive examination

has been performed using

Dynamic Analysis, Static

Analysis, and Manual Review.

4

Review Notes

Introduction

CertiK team was contracted by the Sandbox team to audit the design and implementations of

the to be released ERC721 based smart contracts. The audited files:

● Estate.sol

● EstateSale/EstateSale.sol

● Estate/EstateBaseToken.sol

● BaseWithStorage/ERC721BaseToken.sol

● contracts_common/src/Interfaces/ERC721Events.sol

● contracts_common/src/BaseWithStorage/SuperOperators.sol

● contracts_common/src/BaseWithStorage/MetaTransactionReceiver.sol

● ReferralValidator/ReferralValidator.sol

● contracts_common/src/BaseWithStorage/Admin.sol

In the repository:

● https://github.com/pixowl/sandbox-private-contracts/tree/audit_estate_20200416/src

The goal of this audit is to review Sandbox implementation for its business model, study

potential security vulnerabilities, its general design and architecture, and uncover bugs that

could compromise the software in production.

5

Documentation

Even though the code is clear and very well written the documentation is somewhat lacking and

is something we would advise to be expanded. To help aid our understanding of each contract’s

functionality we referred to in-line comments and naming conventions.

Summary

The codebase of the project, especially with regards to the ERC721 estate tokens and its sale

contract, was aimed to minimize gas usage by compact information encoding. Even the

complex geometric nature of the game, the land positions and their mutual adjacency

verification were cleverly coded.

While some of the issues pinpointed were of negligible importance and referred to coding

standards and inefficiencies, major and critical flaws were identified that should be remediated

as soon as possible to ensure the contracts of the Sandbox team are of the highest standard

and quality.

These inefficiencies and flaws can be swiftly dealt by the development team behind the

Sandbox project. We will create and maintain a direct communication channel between us and

the Sandbox team to aid in amending the issues identified in the report.

Update on 21.05.2020: The Sandbox development team has responded and adequately

addressed the issues in this audit report. No new bugs or security issues occurred from these

changes. The natspec has also been updated for better code readability.

6

Recommendations

With regards to the codebase, the main recommendation we can make is the expansion of the

documentation to address the functionalities of the contracts from an external perspective

rather than an on-code perspective. Additionally, we advise that all our findings are carefully

considered and assimilated in the codebase of the project to ensure the highest code standard

is achieved.

Overall, the codebase of the contracts should be refactored to assimilate the findings of this

report, errors and mistakes that appear throughout the code to achieve a high standard of code

quality and security.

7

Findings

Exhibit 1

TITLE TYPE SEVERITY LOCATION

Function’s visibility Security Critical
ERC721BaseToken.sol

Lines 348 - 357

Description:

The function “_burn” ’s visibility is public. For a certain owner anyone can call this function by

setting the same input for “from” and “owner”, hence burn the estate.

Recommendations:

Recommend setting the visibility to private/internal.

Update from Sandbox:

Fixed in commit “dc8d27da1ff020b0bd0d84c33929ab8c93d82806”.

8

Exhibit 2

TITLE TYPE SEVERITY LOCATION

Unchecked variable state implementation Major
ERC721BaseToken.sol

Lines 60 - 64

[INFORMATIONAL] Description:

The function “_ownerAndOperatorEnabledOf” returns the owner of an estate and whether an

operator for the estate has been set. When an estate is burnt by “_burn” the value “_owners[id]”

is not set to “0” but still tracks the last owner by setting the 161-th digit to “1”. The function

“_ownerAndOperatorEnabledOf” does not consider this and would return the last owner even

though the estate has already been burnt.

Recommendations:

Recommend using “_ownerOf(id)”.

Update from Sandbox:

Not an issue in the current Estate but could be an issue in the future contract that uses the

same code. Fixed in commit “dc8d27da1ff020b0bd0d84c33929ab8c93d82806”.

9

Exhibit 3

TITLE TYPE SEVERITY LOCATION

Unclear requirement Implementation Discussion
ERC721BaseToken.sol

Lines 116-121

[INFORMATIONAL] Description:

The function “approve” cannot be used by “_metaTransactionContracts” even though it is

allowed in “approveFor” and we can just set “sender” to be the owner of the estate in

“approveFor” to have the same effect for “approve”.

Recommendations:

Recommend allowing “_metaTransactionContracts” in “approve” if intended.

Update from Sandbox:

Our meta transaction system uses the first parameter as identifier, so “approve” would have it

as the operator. As such this is not possible.

10

Exhibit 4

TITLE TYPE SEVERITY LOCATION

Unclear requirement Implementation Discussion

EstateBaseToken.sol

Lines 249-257, 269-277,

259-267.

[INFORMATIONAL] Description:

The implementation of “check_burn_authorized” , “check_add_authorized” and

“check_create_authorized” indicates that Meta Transaction Contract, Superoperators, Operators

for all, Operators, or even the owners of the estates are deprived of respective burning, adding,

creating rights whenever a fixed global minter or breaker are set. Is this behaviour intended?

Update from Sandbox:

Yes, we are planning to potentially gate estate creation and breaking with a potential fee. A new

set of contracts would be in charge to check the fees and then do the necessary breaking and

creating.

11

Exhibit 5

TITLE TYPE SEVERITY LOCATION

Unclear code Coding Style Discussion
EstateBaseToken.sol

Line 384

[INFORMATIONAL] Description:

The function `_checkAdjacency` always checks the adjacency of each newly added quad

towards the last quad in the estate. Because of this the respective junction is left out which

makes the junctions and quad lists unequal in length and usage of “_checkAdjacency”

unintuitive.

Recommendations:

Recommend not leaving out these junctions.

Update from Sandbox:

Junctions are only necessary if the selection of quads follows a branching pattern. This means

they only need to be put for shapes that require it. Passing a connecting quad for each

submission would be possible but unnecessary.

12

Exhibit 6

TITLE TYPE SEVERITY LOCATION

Unchecked scenario Coding Style Informational
EstateSale.sol

Line 218

[INFORMATIONAL] Description:

In the function “buyLandWithETH” it can happen that “msg.sender” is a contract, hence

“msg.sender.transfer(msg.sender - ETHRequired)” would trigger the receive or fallback function

and can lead to revert. Nowaday “.transfer” only forwards 2300 gas, hence reentrancy is not a

threat here.

Recommendations:

Keep in mind this possibility and have an error message for this case.

Update from Sandbox:

We would leave that way as the “msg.sender” as a contract is expected to deal with ETH

reception.

13

Exhibit 7

TITLE TYPE SEVERITY LOCATION

Repeated function calls Security Discussion

EstateSale.sol

Lines 199-224, 237-257,

167-185.

[INFORMATIONAL] Description:

The functions “buyLandWithSand”, “buyLandWithETH”, “buyLandWithDAI” don’t check whether

the input referral has been processed hence we need to be sure that an unauthorized user

cannot call these functions more than the intended number of times.

Update from Sandbox:

This is fine. The referral is not per purchase so as long as they buy something the referral is

valid.

14

Exhibit 34

TITLE TYPE SEVERITY LOCATION

Integer overflow Arithmetics Major
FixidityLib.sol Lines 36 -

43

[INFORMATIONAL] Description:

The arithmetic expression on line 42 can overflow, for example if the number of decimal digits is

2 the input of the function “multiply” is 10**50 and 10**50, then the result would be

unexpectedly - 422425...

Recommendations:

Use SafeMath to prevent integer overflow.

15

16

17

