
Stafi Protocol
Security Assessment

November 13th, 2020

For :

Stafi Bridge Solidity Contracts

Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team.
These reports are not, nor should be considered, an indication of the economics or value of any “product” or “asset”
created by any team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal
compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any particular
project. These reports in no way provide investment advice, nor should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their
code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each
company and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help
reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing
technologies, and in no way claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?
A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK
by a Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation
and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the intention to increase
the quality of the company/product's IT infrastructure and or source code.

Project Name Stafi Protocol

Description Solidity smart contracts to enable transfers to and from EVM compatible chains.
These contracts consist of a core bridge contract (Bridge.sol) and a set of handler
contracts (ERC20Handler.sol, and GenericHandler.sol). The bridge contract is
responsible for initiating, voting on, and executing proposed transfers. The handlers
are used by the bridge contract to interact with other existing contracts.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. 169f826708b8cb9abf387f761f5456e7f5e33dd1
2. 357d641f944a0251517206b6ca5f1ccab6eb391f

Delivery Date Nov. 13, 2020

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline Nov. 03, 2020 - Nov. 08 2020

Total Issues 13 (13 Resolved)

Total Critical -

Total Major 1 (1 Resolved)

Total Minor 1 (1 Resolved)

Total Informational 11 (11 Resolved)

Overview

Project Summary

Audit Summary

Vulnerability Summary

Executive Summary

No deployment or development configuration or documentation was included in repository, and OpenZeppelin
contracts were explicitly included in the codebase.

The codebase was found to contain multiple contracts named Pausable . While no deployment or
development configuration was supplied in the repository to suggest the compilation scheme, if all contracts in
the codebase were compiled in a single pass, there would have been name collisions for the Pausable
contract. Compilation may have succeed, but only the Pausable contract which was compiled first was
chosen for the placement of both contracts, which could have resulted in undefined behavior or crashing.

Access control was found to be properly implemented on all public and externally-visible functions within the
Bridge , ERC20Handler and HandlerHelper contracts.

Calling private implementation functions for a modifier is inefficient, so we recommended placing the code
within each modifier directly.

We pointed out that when iterating over an array, it is more performant to store the length of the array in a local
variable than to retrieve the length over each iteration.

The fundERC20 function in the ERC20Safe contract did not implement access restriction and takes an
arbitrary owner address parameter instead of referencing msg.sender .

We noticed that proposal identifiers may have the potential to collide, as they are calculated from
depositNonce and chainID uint64 parameters which are packed into a uint72 , but the
depositNonce value is only shifted left by 8 bits and the chainID value is not clamped before performing

the bitwise-OR, which makes determining a difference between the proposal identifiers impossible for
(depositNonce: 1, chainID: 512) , (depositNonce: 2, chainID: 256) and (depositNonce: 3,
chainID: 0) , among many other possible collisions. After communicating with the Stafi team about the issue,
they responded with the following points:

1. Only relayers added by admin can call the functions related to the proposal.
2. There won't be too many chains, may be only a dozen at most.
3. In addition to nonceAndID, there is datahash, which consists of recipientAddress and amount.
4. A proposal has an expiration time too.

All of the issues were resolved with commit 357d641f944a0251517206b6ca5f1ccab6eb391f.

85%

8%
8%

Informational (11)
Major (1)
Minor (1)

Prefix File

STB General

BRI contracts/Bridge.sol

ERS contracts/ERC20Safe.sol

ERH contracts/handlers/ERC20Handler.sol

ID Title Type Severity Resolved

STB-01 Lack of deployment or development configuration Implementation Informational

STB-02 Multiple Pausable contract implementations Implementation Minor

BRI-01 Unnecessary private function _onlyAdmin Implementation Informational

BRI-02 Unnecessary private function _onlyAdminOrRelayer Implementation Informational

BRI-03 Unnecessary private function _onlyRelayers Implementation Informational

BRI-04 Inefficient loop over initialRelayers memory array Performance Informational

BRI-05 Potential proposal ID collisions in getProposal Implementation Informational

BRI-06 Potential proposal ID collisions in voteProposal Implementation Informational

BRI-07 Potential proposal ID collisions in cancelProposal Implementation Informational

BRI-08 Potential proposal ID collisions in executeProposal Implementation Informational

BRI-09 Inefficient loop over addrs memory array Performance Informational

ERS-01 Arbitrary owner address in unrestricted fundERC20 Implementation Major

ERH-01 Inefficient loop over memory arrays Performance Informational

Findings

Recommendation:
We recommended utilizing npm and truffle or buidler , as well as importing the official
@openzeppelin/contracts npm module over including the contracts directly.

Alleviation:
The issue was resolved with commit 357d641f944a0251517206b6ca5f1ccab6eb391f.

Type Severity Location

Implementation Informational General

STB-01: Lack of deployment or development configuration

Description:
No deployment or development configuration or documentation was included in the repository, and OpenZeppelin
contracts were explicitly included in the codebase.

STB-02: Multiple Pausable contract implementations

Type Severity Location

Implementation Minor General

Description:
There were multiple implementations of contracts named Pausable in the project. When all of the contracts were
compiled in a single pass, compilation may have succeeded, but only the Pausable contract which was compiled
first would be chosen for the placement of both contracts, which could have resulted in undefined behavior or
crashing.

Recommendation:
We recommended removing the utils/Pausable.sol file in favor of the openzeppelin/Pausable.sol file, or
renaming the Pausable contract in the utils/Pausable.sol file to something unique.

Alleviation:
The issue was resolved with commit 357d641f944a0251517206b6ca5f1ccab6eb391f.

BRI-01: Unnecessary private function _onlyAdmin

Type Severity Location

Implementation Informational Bridge.sol L71, L90-L92

Description:
The onlyAdmin modifier in the Bridge contract made a call to the private _onlyAdmin function at line 71:

But the private _onlyAdmin function was not utilized anywhere else from within the Bridge contract:

Recommendation:
We recommended removing the private _onlyAdmin function at lines 90-92 and moving the requirement from its
implementation directly into the onlyAdmin modifier:

Alleviation:
The issue was resolved with commit 357d641f944a0251517206b6ca5f1ccab6eb391f.

_onlyAdmin();

function _onlyAdmin() private view {
 require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "sender doesn't have admin role");
}

modifier onlyAdmin() {
 require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "sender doesn't have admin role");
 _;
}

BRI-02: Unnecessary private function _onlyAdminOrRelayer

Type Severity Location

Implementation Informational Bridge.sol L76, L85-L88

Description:
The onlyAdminOrRelayer modifier in the Bridge contract made a call to the private _onlyAdminOrRelayer
function at line 76:

But the private _onlyAdminOrRelayer function was not utilized anywhere else from within the Bridge contract:

Recommendation:
We recommended removing the private _onlyAdminOrRelayer function at lines 85-88 and moving the requirement
from its implementation directly into the onlyAdminOrRelayer modifier:

Alleviation:
The issue was resolved with commit 357d641f944a0251517206b6ca5f1ccab6eb391f.

_onlyAdminOrRelayer();

function _onlyAdminOrRelayer() private view {
 require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender) || hasRole(RELAYER_ROLE, msg.sender),
 "sender is not relayer or admin");
}

modifier onlyAdminOrRelayer() {
 require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender) || hasRole(RELAYER_ROLE, msg.sender),
 "sender is not relayer or admin");
 _;
}

BRI-03: Unnecessary private function _onlyRelayers

Type Severity Location

Implementation Informational Bridge.sol L81, L94-L96

Description:
The onlyRelayers modifier in the Bridge contract made a call to the private _onlyRelayers function at line 81:

But the private _onlyRelayers function was not utilized anywhere else from within the Bridge contract:

Recommendation:
We recommended removing the private _onlyRelayers function at lines 94-96 and moving the requirement from its
implementation directly into the onlyRelayers modifier:

Alleviation:
The issue was resolved with commit 357d641f944a0251517206b6ca5f1ccab6eb391f.

_onlyRelayers();

function _onlyRelayers() private view {
 require(hasRole(RELAYER_ROLE, msg.sender), "sender doesn't have relayer role");
}

modifier onlyRelayers() {
 require(hasRole(RELAYER_ROLE, msg.sender), "sender doesn't have relayer role");
 _;
}

BRI-04: Inefficient loop over initialRelayers memory array

Type Severity Location

Performance Informational Bridge.sol L113

Description:
The constructor of the Bridge contract performed a loop over its supplied initialRelayers memory array
while retrieving the length of the array over each iteration, which was inefficient:

Recommendation:
We recommended storing the length of the initialRelayers array in a local variable in order to save on the overall
cost of gas:

Alleviation:
The issue was resolved with commit 357d641f944a0251517206b6ca5f1ccab6eb391f.

for (uint i; i < initialRelayers.length; i++) {

uint256 initialRelayerCount = initialRelayers.length;

for (uint256 i; i < initialRelayerCount; i++) {

BRI-05: Potential proposal ID collisions in getProposal

Type Severity Location

Implementation Informational Bridge.sol L248

Description:
The getProposal function in the Bridge contract has the potential for proposal identifiers to collide, as they are
calculated from depositNonce and originChainID uint64 parameters which are packed into a uint72 , but
the depositNonce value is only shifted left by 8 bits and the originChainID value is not clamped before
performing the bitwise-OR, which makes determining a difference between the proposal identifiers impossible for
(depositNonce: 1, originChainID: 512) , (depositNonce: 2, originChainID: 256) and
(depositNonce: 3, originChainID: 0) , among many other possible collisions:

Recommendation:
We recommended either clamping the value of the originChainID parameter to the maximum value of a uint8 or
refactoring the proposal identifier structure to utilize a uint128 instead of a uint72 , then shift the depositNonce
left by 64 in order to protect against collisions.

Alleviation:
The issue was dropped from major to informational and is considered resolved after communicating with the client to
come to the following conclusions:

1. Only relayers added by admin can call the functions related to the proposal.
2. There won't be too many chains, may be only a dozen at most.
3. In addition to nonceAndID, there is datahash, which consists of recipientAddress and amount.
4. A proposal has an expiration time too.

uint72 nonceAndID = (uint72(depositNonce) << 8) | uint72(originChainID);

BRI-06: Potential proposal ID collisions in voteProposal

Type Severity Location

Implementation Informational Bridge.sol L333

Description:
The voteProposal function in the Bridge contract has the potential for proposal identifiers to collide, as they are
calculated from depositNonce and chainID uint64 parameters which are packed into a uint72 , but the
depositNonce value is only shifted left by 8 bits and the chainID value is not clamped before performing the

bitwise-OR, which makes determining a difference between the proposal identifiers impossible for (depositNonce:
1, chainID: 512) , (depositNonce: 2, chainID: 256) and (depositNonce: 3, chainID: 0) , among
many other possible collisions:

Recommendation:
We recommended either clamping the value of the chainID parameter to the maximum value of a uint8 or
refactoring the proposal identifier structure to utilize a uint128 instead of a uint72 , then shift the depositNonce
left by 64 in order to protect against collisions.

Alleviation:
The issue was dropped from major to informational and is considered resolved after communicating with the client to
come to the following conclusions:

1. Only relayers added by admin can call the functions related to the proposal.
2. There won't be too many chains, may be only a dozen at most.
3. In addition to nonceAndID, there is datahash, which consists of recipientAddress and amount.
4. A proposal has an expiration time too.

uint72 nonceAndID = (uint72(depositNonce) << 8) | uint72(chainID);

BRI-07: Potential proposal ID collisions in cancelProposal

Type Severity Location

Implementation Informational Bridge.sol L391

Description:
The cancelProposal function in the Bridge contract has the potential for proposal identifiers to collide, as they
are calculated from depositNonce and chainID uint64 parameters which are packed into a uint72 , but the
depositNonce value is only shifted left by 8 bits and the chainID value is not clamped before performing the

bitwise-OR, which makes determining a difference between the proposal identifiers impossible for (depositNonce:
1, chainID: 512) , (depositNonce: 2, chainID: 256) and (depositNonce: 3, chainID: 0) , among
many other possible collisions:

Recommendation:
We recommended either clamping the value of the chainID parameter to the maximum value of a uint8 or
refactoring the proposal identifier structure to utilize a uint128 instead of a uint72 , then shift the depositNonce
left by 64 in order to protect against collisions.

Alleviation:
The issue was dropped from major to informational and is considered resolved after communicating with the client to
come to the following conclusions:

1. Only relayers added by admin can call the functions related to the proposal.
2. There won't be too many chains, may be only a dozen at most.
3. In addition to nonceAndID, there is datahash, which consists of recipientAddress and amount.
4. A proposal has an expiration time too.

uint72 nonceAndID = (uint72(depositNonce) << 8) | uint72(chainID);

BRI-08: Potential proposal ID collisions in executeProposal

Type Severity Location

Implementation Informational Bridge.sol L416

Description:
The executeProposal function in the Bridge contract has the potential for proposal identifiers to collide, as they
are calculated from depositNonce and chainID uint64 parameters which are packed into a uint72 , but the
depositNonce value is only shifted left by 8 bits and the chainID value is not clamped before performing the

bitwise-OR, which makes determining a difference between the proposal identifiers impossible for (depositNonce:
1, chainID: 512) , (depositNonce: 2, chainID: 256) and (depositNonce: 3, chainID: 0) , among
many other possible collisions:

Recommendation:
We recommended either clamping the value of the chainID parameter to the maximum value of a uint8 or
refactoring the proposal identifier structure to utilize a uint128 instead of a uint72 , then shift the depositNonce
left by 64 in order to protect against collisions.

Alleviation:
The issue was dropped from major to informational and is considered resolved after communicating with the client to
come to the following conclusions:

1. Only relayers added by admin can call the functions related to the proposal.
2. There won't be too many chains, may be only a dozen at most.
3. In addition to nonceAndID, there is datahash, which consists of recipientAddress and amount.
4. A proposal has an expiration time too.

uint72 nonceAndID = (uint72(depositNonce) << 8) | uint72(chainID);

BRI-09: Inefficient loop over addrs memory array

Type Severity Location

Performance Informational Bridge.sol L438

Description:
The transferFunds function in the Bridge contract performed a loop over its supplied addrs memory array
while retrieving the length of the array over each iteration, which was inefficient:

Recommendation:
We recommended storing the length of the initialRelayers array in a local variable in order to save on the overall
cost of gas:

Alleviation:
The issue was resolved with commit 357d641f944a0251517206b6ca5f1ccab6eb391f.

for (uint i = 0; i < addrs.length; i++) {

uint256 addrCount = addrs.length;

for (uint256 i; i < addrCount; i++) {

ERS-01: Arbitrary owner address in unrestricted fundERC20

Type Severity Location

Implementation Major ERC20Safe.sol L22-L25

Description:
The fundERC20 function in the ERC20Safe contract did not implement access restriction and took an arbitrary
owner address parameter instead of referencing msg.sender :

Recommendation:
We recommended determining if the fundERC20 function should be unrestricted:

Alleviation:
The issue was resolved with commit 357d641f944a0251517206b6ca5f1ccab6eb391f.

If not, implement proper access restriction for the funcERC20 function.
If so, consider replacing the usage of the arbitrary owner address parameter with msg.sender

function fundERC20(address tokenAddress, address owner, uint256 amount) public {
 IERC20 erc20 = IERC20(tokenAddress);
 _safeTransferFrom(erc20, owner, address(this), amount);
}

ERH-01: Inefficient loop over memory arrays

Type Severity Location

Performance Informational handlers/ERC20Handler.sol L44-L55

Description:
The constructor of the ERC20Handler contract performed a loops over its supplied initialResourceIDs and
burnableContractAddresses memory array parameters while retrieving the length of the arrays over each

iteration, which was inefficient:

Recommendation:
We recommended refactoring the constructor of the ERC20Handler contract to store the length of the
initialResourceIDs and burnableContractAddresses memory array parameters in local variables in order to

save on the overall cost of gas:

for (uint256 i = 0; i < initialResourceIDs.length; i++) {
 _setResource(initialResourceIDs[i], initialContractAddresses[i]);
}

for (uint256 i = 0; i < burnableContractAddresses.length; i++) {
 _setBurnable(burnableContractAddresses[i]);
}

uint256 initialResourceIDsLength = initialResourceIDs.length;
uint256 burnableContractAddressesLength = burnableContractAddresses.length;

require(initialResourceIDsLength == initialContractAddresses.length,
 "initialResourceIDs and initialContractAddresses len mismatch");

_bridgeAddress = bridgeAddress;

for (uint256 i = 0; i < initialResourceIDsLength; i++) {
 _setResource(initialResourceIDs[i], initialContractAddresses[i]);
}

for (uint256 i = 0; i < burnableContractAddressesLength; i++) {
 _setBurnable(burnableContractAddresses[i]);
}

Alleviation:
The issue was resolved with commit 357d641f944a0251517206b6ca5f1ccab6eb391f.

Finding Categories

Gas Optimization
Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate different, more
optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations
Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as overflows,
incorrect operations etc.

Logical Issue
Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect notion on how
block.timestamp works.

Control Flow
Control Flow findings concern the access control imposed on functions, such as owner-only functions being invoke-
able by anyone under certain circumstances.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in a
vulnerability.

Data Flow
Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a struct
assignment operation affecting an in-memory struct rather than an in-storage one.

Language Specific
Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or
delete .

Coding Style
Coding Style findings usually do not affect the generated byte-code and comment on how to make the codebase more
legible and as a result easily maintainable.

Inconsistency
Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a
constructor assignment imposing different require statements on the input variables than a setter function.

Magic Numbers
Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and should
otherwise be specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error
Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile using the
specified version of the project.

Dead Code
Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

