
Stafi Protocol
rBridge

Security Assessment

January 15th, 2021

[Final Report]

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of
the economics or value of any “product” or “asset” created by any team or project that
contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free
nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice,
nor should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk.
CertiK’s position is that each company and individual are responsible for their own due
diligence and continuous security. CertiK’s goal is to help reduce the attack vectors and the
high level of variance associated with utilizing new and consistently changing technologies,
and in no way claims any guarantee of security or functionality of the technology we agree
to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source
code provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the
structure, implementation and overall best practices of a particular piece of source
code.
Representation that a Client of CertiK has completed a round of auditing with the
intention to increase the quality of the company/product's IT infrastructure and or
source code.

Project Name Stafi Protocol - rBridge

Description The Stafi rBridge

Platform Substrate; Rust

Codebase GitHub Repository

Commits 1. 1a5344a1a2ef1ad169f89be9ab987ff929040d60

Delivery Date Jan. 12, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline Jan. 12, 2020 - Jan. 15, 2021

Total Issues 2

 Total Critical 0

 Total Major 0

 Total Medium 1

 Total Minor 0

 Total Informational 1

 Overview

Project Summary

Audit Summary

Vulnerability Summary

https://github.com/stafiprotocol/stafi-node
https://github.com/stafiprotocol/stafi-node/tree/1a5344a1a2ef1ad169f89be9ab987ff929040d60

 Executive Summary

Stafi protocol requested for CertiK to perform an audit in their new rBridge swap module
based on Substrate. The auditing team conducted the audit in the timeframe between
January 12, 2020, and January 15, 2021, with 2 engineers.
The auditing process evaluated code implementation against provided specifications,
examining language-specific issues, and ensure proper framework usage.

The system in scope is currently in beta and represents a one-way bridge. The module
introduces privileged functionality for the administrator and the users of the system.

The system store is based on a simple state that handles the chain nonces, a collection of
chain ids that are whitelisted from the system's administrator, and nonce values that are
bumped up after every operation. The systems store also holds proxy accounts that can
modify the chain fees and be added only by the systems administrator.
Finally, the system holds a fees recipient account and functionality to pause the system
that are both controlled by the systems administrator.

The module single user available functionality is the transfer_native function that enables a
user to swap coins from the substrate chain to the ERC20 token on the ethereum chain by
paying a fee on the native chain. The user provides a recipient account on the ethereum
network and the amount that he wants to swap. Currently, the system provides only a
oneway functionality from native chain tokens to ethereum chain ERC20 tokens, and the
arguments are frontend controlled. The checks should be expanded and updated to ensure
security at the node level and not be dependant on the frontend validation. This is more
important as the system will enable more chain swaps where conflicting conditions may
arise due to structural similarities on inputs.

The code examined had no panicking macros usage, one unwrap_or default that is
completely safe, and no redundant allocations or out-of-bounds indexing—no unhandled
errors, and finally, no arithmetic problems.

To summarize, the system implementation is well constructed regarding the language and
framework usage concerning best practices with no critical or major findings. The code is
well written with documentation and commenting on code that helps the readability of the
codebase, and the testing is extensive with sufficient edge cases provided.

ID File

CMN node/pallets/bridge/common/src/lib.rs

SWP node/pallets/bridge/swap/src/lib.rs

 Files In Scope

https://github.com/stafiprotocol/stafi-node/blob/1a5344a1a2ef1ad169f89be9ab987ff929040d60/node/pallets/bridge/common/src/lib.rs
https://github.com/stafiprotocol/stafi-node/blob/1a5344a1a2ef1ad169f89be9ab987ff929040d60/node/pallets/bridge/swap/src/lib.rs

25%

0%

25%

50%

Informational
Major
Minor
Medium

ID Title Type Severity Resolved

CMN-01 No Remove Whitelist
Functionality

Implementation Informational

SWP-01 Inefficient Check Logical Issue Medium

 Findings

Type Severity Location

Implementation Informational node/pallets/bridge/common/src/lib.rs L119

 CMN-01: No Remove Whitelist Functionality.

Description:

The code contains functionality to whitelist chain ids but does not contain functionality to
remove from the whitelisting list.

Recommendation:

Introduce a new one function to remove whitelisted chain ids.

Alleviation:

The team has intruduced a remove whitelisted chain in commit
b495b5c4e746a89e2420a477c00ebcde1e5d27a9 .

/// Enables a chain ID as a source or destination for a bridge transfer.
///
/// # <weight>
/// - O(1) lookup and insert
/// # </weight>
#[weight = 195_000_000]
pub fn whitelist_chain(origin, id: ChainId) -> DispatchResult {
 Self::ensure_admin(origin)?;
 Self::whitelist(id)
}

https://github.com/stafiprotocol/stafi-node/blob/1a5344a1a2ef1ad169f89be9ab987ff929040d60/node/pallets/bridge/common/src/lib.rs#L119

Type Severity Location

Volatile Code Medium node/pallets/bridge/swap/src/lib.rs L65

 SWP-01: Ineffiecient Check.

Description:

The code checks if the request is for the ethereum chain and performs a check against the
validity of the address.

The validity check just checks if the vector of bytes is of length 20.

Recommendation:

We do believe that the validation can also include a checksum check for the address.

if dest_id == ETH_CHAIN_ID {
 Self::check_eth_recipient(recipient.clone())?;
}

...

impl<T: Trait> Module<T> {
 pub fn check_eth_recipient(recipient: Vec<u8>) -> DispatchResult {
 ensure!(recipient.len() == 20, Error::
<T>::InvalidEthereumAddress);

 Ok(())
 }
}

https://github.com/stafiprotocol/stafi-node/blob/1a5344a1a2ef1ad169f89be9ab987ff929040d60/node/pallets/bridge/swap/src/lib.rs#L65

Alleviation:

The team has acknowledged the issue and has already planned a fix.

 Appendix

Finding Categories

Arithmetic

Arithmetic exhibits entail findings that relate to mishandling of math formulas, such as
overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as
an incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-
only functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge
cases that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such
as the result of a struct assignment operation affecting an in-memory struct rather
than an in-storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect
usage of private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how
to make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require
statements on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their
raw format and should otherwise be specified as constant contract variables aiding in
their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it
impossible to compile using the specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely
omitted.

	 Disclaimer
	What is a CertiK report?
	 Overview
	Project Summary
	Audit Summary
	Vulnerability Summary

	 Executive Summary
	 Files In Scope
	 Findings
	 CMN-01: No Remove Whitelist Functionality.
	Description:
	Recommendation:
	Alleviation:

	 SWP-01: Ineffiecient Check.
	Description:
	Recommendation:
	Alleviation:

	 Appendix
	Finding Categories
	Arithmetic
	Logical Issue
	Control Flow
	Volatile Code
	Data Flow
	Language Specific
	Coding Style
	Inconsistency
	Magic Numbers
	Compiler Error
	Dead Code

