CERTIK

Terra

Security Assessment
Sep 4, 2020

For:
Daniel Hong @ Terra
sh@terra.money

Yun Yeo @ Terra
yun@terra.money

Table Of Contents

Executive Summary
Intro
Engagement
Findings
Overview

Project Overview
Engagement Goals
Coverage

Recommendations Summary

Findings Summary
1. Integer Underflow
2. Pointer Usage
. Code Structure
. Validity Check
. Interface Implementation
. Typo
. Validation
. Redundant Code
. String Usage

© 00 N O O b~ W

© o o g A~ DM DM OW

N) A2 A a2 A 22 m
O © N o b WOWN = O

Executive Summary

Intro

Terra has developed a smart contract solution based on CosmWasm, which is a
WebAssembly smart contract system based on the Cosmos SDK and Tendermint BFT
consensus.

The main goal of CosmWasm is to provide functionality for creating smart contracts that
can be deployed and interact with other smart contracts on different blockchain platforms.
For the moment, contracts can be only written in Rust, but more programming languages
are currently being looked into for future integration. CosmWasm takes advantage of the
Actor model to communicate through messages, which has the advantage of fully
encapsulating state and removes classes of bugs such as the infamous Solidity re-entrancy
attack.

Terra’'s CosmWasm integration in the Terra Core repository mostly falls in line with the
reference implementation from CosmWasm, which is called Wasmd. Using the Wasmd
repository’s issues as a source of investigation for existing WebAssembly integration bugs
proved to turn up positive and nothing was found in either the Wasmd or Terra Core
codebases that presents itself as a direct compromise to the proper functioning of the
WebAssembly in the CosmWasm virtual machine or the functionality of standard
interactions between smart contracts and the system.

Engagement

CertiK auditing team reviewed the code base of Terra from 10.08.2020 through 28.08.2020.
The team conducted a 15 days assessment with 3 engineers working on the repository
https://github.com/terra-project/core and more specifically in releases/tag/v0.4.0-rc.2.

The team launched the audit by analyzing the specifications of the project and the key
areas of interest, went through the unit testing of the code, and launched fuzzing against
targets in the codebase identified in the process, and on cosmo wasm and Terra wasm
endpoints.

Fuzzing was conducted in parallel with the manual review and had a 10 day lifespan.
Moving on, the team passed the code through automated tooling, gathered all the output
and manually reviewed each one of the issues that were returned from the tooling.

The main process of the audit was the manual review of the key areas of interest and was
divided into 3 parts, the language-specific, SDK, and WASM examination of the codebase
and target in scope.

The team manually reviewed the codebase written in golang and rust for language-specific
problems and proper use of the language itself. In parallel, the team also examined the
usage and proper implementation of the Cosmos SDK. Finally, the team reviewed the
WASM implementation and targets generated by the codebase in local testnet and latest
testnet.

Findings

There have been no major or critical issues related to the codebase and all findings listed
here are minor and informational.

The most prominent among our findings were a uint64 underflow that gets wrapped
around due to the nature of the type in golang(ring) and the usage of pointers in the
codebase that would need a more secure approach to ensure maintainability and code
health in the future.

Overview

Overall, the audit has found that the Terra team has done a good job implementing the
specifications of the project into code. The usage of language is of a very high standard
with good code coverage on unit testing. The SDK specifics are also well-implemented
concerning the requirements of the framework and the same applies to the Cosmos WASM
implementation. Finally, the audit did all the necessary recommendations to the Terra
team, and issues were discussed and addressed.

Project Overview

Project Summary

Terra

v0.4.0-rc.2

Security Audit

Cosmos SDK/WASM

Audit Summary

01.09.2020

Automated and Manual Review

3

15 days

Vulnerability Summary

Engagement Goals

The engagement was to provide a security review of the Terra updates on the codebase in
the core 0.4 rc2 repository for the transition to the new testnet with smart contract
implementation based on CosmWASM.

More specifically, the audit was focused on the following areas of interest :

- Msg Authentication.

- Burn Address.

- Msg Swap Send.

- CosmWasm Implementation.

- Wasm Bindings.

- WASM target security evaluation.

Coverage

The audit has focused on the following components of the implementation:

Steps Taken:

e Investigated the official Terra Docs for smart contract composition and interaction:
o https://docs.terra.money/dapps/tutorial/implementation.html

o https://docs.terra.money/dapps/tutorial/interacting.html

e Decompiled supplied testing WASM smart contract modules using wabt and
wasmdec.
e Verified all imported functions in WASM smart contract modules are only ever valid
CosmWasm/Terra functions:
o db_read

db_write

db_remove

db_scan

db_next
canonicalize_address
humanize_address
query_chain

o O 0O O O O O

e Verified all required CosmWasm/Terra functions were exported from all WASM
smart contract modules:

o init
o handle
o query

e Instrumented supplied testing WASM smart contract modules with instruction
hooks via wasabi and attempted to submit to the network, which were accepted but
failed to execute correctly.

e Simulated contract interactions based on core unit testing using modified versions
of WASM virtual machines wasmer, wasmi and rust-wasm for further inspection of
contract message data and changes to internal state.

e Ran code coverage and data flow on supplied testing WASM smart contract modules
using twiggy to determine overall memory usage and possibility of sensitive data.

e Built custom WASM smart contract modules in Rust following the official Terra Docs,
which were then deployed to instances of localterra and tequila-0002 and tested for
valid interaction functionality:

o Instantiation

Initialization

Message Handling

Querying

o

o

o

Additionally the team performed the following checks:

General

e What are the extensions made on top of the core CosmWasm features.
e Can any possible contract interactions crash or deadlock the system in any way.
e Can malformed contracts be removed or resolved without affecting the running
system in any way.
Code Coverage

When a function is executed, i.e: init, how many other functions execute.
How many instructions in those functions execute.
What are the possible code paths and how many of those paths execute for a given
input.
e How much code is never executed at all.
Data Flow

What's the total amount of linear memory allocated.

How much of that linear memory is statically initialized with a data instruction.
Where are the spans of those data instructions initializing (offset, length).

When a function is executed, how much linear memory is accessed from within that
function.

e Which instructions in an executed function access which parts of linear memory.

For all memory initialized with a data expression, how much never gets touched by
any executed instruction.

Is any secure information located in any of the statically allocated linear memory.

Is any secure information stored in linear memory after executing an instruction
without clearing the sensitive data out of memory afterwards.

Recommendations Summary

=Recommendations

The recommendations expressed by the audit were mostly regarding the usage of pointers
within the codebase. More specifically we recommended that when assigning a pointer to a
variable is always a good idea to check if that pointer is nil within the functionality that the
variable lives and not somewhere else outside the functionality where something can
change in the future and we get introduced a nasty bug out of nowhere.

Findings Summary

All issues have been addressed by the Terra team.

1. Integer Underflow

Severity: Minor

Type: Arithmetic

File: x/wasm/internal/keeper/api.go
Finding ID: TR-001

Description

In any case that meter.Limit() < of meter.GasConsumed() the value will be a negative
number resulting in an integer underflow as the target var is a uint64. The go compiler here
will wrap around the value as the uint64 type is a ring type resulting to the max value of a
uint64 (18446744073709551615) minus the second of the two numbers (in this case
meter.GasConsumed()).

GoPlayground Example

// return remaining gas in wasm gas unit
func (k Keeper) getGasRemaining(ctx sdk.Context) uinté64 {

meter := ctx.GasMeter ()
remaining := (meter.Limit() - meter.GasConsumed())
if maxGas := k.MaxContractGas (ctx); remaining > maxGas {

remaining = maxGas

}

return remaining * types.GasMultiplier

Exploit Scenario
N/A

Recommendation
N/A

2. Pointer Usage

Severity: Minor

Type: Memory Access

File: x/bank/wasm/interface.go
Finding ID: TR-002

Description

The code assigns a pointer to a variable without checking if the pointer is nil.
Exploit Scenario

N/A

Recommendation

Even if we are 100% percent sure that the pointer will never be nil it is highly recommended
that we always check against that inside the assignment of the variable for maintainability
and code health issues.

3. Code Structure

Severity: Informational

Type: SDK Usage

File: x/msgauth/client/rest/tx.go
Finding ID: TR-003

Description
As outlined in the Cosmos SDK documentation, it is recommended to have the request
types implemented in x/module/client/rest/rest.go. The request types currently reside in
x/msgauth/client/rest/tx.go, mixed in with the request handlers.
// GrantRequest defines the properties of a grant request's body.
type GrantRequest struct {

BaseReqg rest.BaseReqg “json:"base reg" yaml:"base req"’

Period time.Duration “json:"period"®

Limit sdk.Coins “Json:"limit,omitempty""

// RevokeRequest defines the properties of a revoke request's body.
type RevokeRequest struct {
BaseReqg rest.BaseReqg " Json:"base req" yaml:"base req"®

// ExecuteRequest defines the properties of a execute request's body.
type ExecuteRequest struct {

BaseReqg rest.BaseReqg " Jjson:"base req" yaml:"base req"®

Msgs [1sdk.Msg "json:"msgs" yaml:"msgs"®

Exploit Scenario
N/A

Recommendation
Move the structs to the proper location.

4. Validity Check

Severity: Informational

Type: SDK Usage

File: x/msgauth/internal/types/genesis.go
Finding ID: TR-004

Description
Validate Genesis not implemented on module msg auth.
// ValidateGenesis check the given genesis state has no integrity issues
func ValidateGenesis (data GenesisState) error ({
return nil

Exploit Scenario
N/A

Recommendation
Implement the validation.
// ValidateGenesis returns nil because accounts are validated by auth
func ValidateGenesis (data GenesisState) error {
if data.PreviousBlockTime.IsZero () {

return errors.New ("previous block time cannot be zero")
}

return nil

5. Interface Implementation

Severity: Informational
Type: SDK Usage

File: x/msgauth/module.go
Finding ID: TR-005

Description

Incomplete module implementation.
Exploit Scenario

N/A

Recommendation

Fully implement the interface.

// Name module name

func (AppModule) Name () string {
return ModuleName

6. Typo

Severity: Informational

Type: Readability

File: x/msgauth/internal/keeper/keeper.go
Finding ID: TR-006

Description

Typo in variable name.
Exploit Scenario

N/A

Recommendation
Variable ggmParis to ggmPairs.

7. Validation

Severity: Informational

Type: SDK Usage

File: x/market/internal/types/msgs.go
Finding ID: TR-007

Description
Checking the empty address.
// ValidateBasic Implements Msg
func (msg MsgSwapSend) ValidateBasic () error
if len (msg.FromAddress) == 0 {
return sdkerrors.ErrInvalidAddress

if len (msg.ToAddress) == 0 {
return sdkerrors.ErrInvalidAddress

if msg.0OfferCoin.Amount.LTE (sdk.ZeroInt()) ||
msg.OfferCoin.Amount.BigInt () .BitLen () > 100 {
return sdkerrors.Wrap(ErrInvalidOfferCoin,
msg.OfferCoin.Amount.String())
}

if msg.0OfferCoin.Denom == msg.AskDenom {
return sdkerrors.Wrap (ErrRecursiveSwap, msg.AskDenom)

return nil

Exploit Scenario
N/A

Recommendation
Use the SDK Empty() function.
// ValidateBasic Implements Msg
func (msg MsgSwapSend) ValidateBasic () error {
if msg.FromAddress.Empty () {
return sdkerrors.ErrInvalidAddress

if msg.ToAddress.Empty () {
return sdkerrors.ErrInvalidAddress

if msg.0OfferCoin.Amount.LTE (sdk.ZeroInt()) ||
msg.OfferCoin.Amount.BigInt () .BitLen () > 100 {
return sdkerrors.Wrap (ErrInvalidOfferCoin,
msg.O0fferCoin.Amount.String())
}

if msg.0fferCoin.Denom == msg.AskDenom {
return sdkerrors.Wrap (ErrRecursiveSwap, msg.AskDenom)

return nil

8. Redundant Code

Severity: Informational

Type: Language Usage

File: x/wasm/config/client/utils/utils.go
Finding ID: TR-008

Description
Redundant len().
//EncodeKey encode given key with prefix of key's length
func EncodeKey (key string) []Jbyte {
keyBz := make([]lbyte, 2, 2+len (key))

keyLength := uint64 (len(key))
bz := make([]lbyte, 8)
binary.LittleEndian.PutUint64 (bz, keyLength)

keyBz [0] bz [1]
keyBz[1] = bz[0]

keyBz = append(keyBz, []byte(key)...)
return keyBz
}

Exploit Scenario
N/A

Recommendation

Start the function with getting the key length as a variable and pass it on accordingly

//EncodeKey encode given key with prefix of key's length

func EncodeKey (key string) []byte {
keyLength := uint64 (len (key))
keyBz := make ([]byte, 2, 2+keyLength)
bz := make([lbyte, 8)

binary.LittleEndian.PutUint64 (bz, keyLength)
keyBz [0] = bz[1]

keyBz [1] bz [0]

keyBz = append(keyBz, []byte(key)...)

return keyBz

9. String Usage

Severity: Informational

Type: Language Usage

File: terra-cosmwasm-bindings
Finding ID: TR-009

Description

In the interest of optimization, it may be worthwhile to consider refactoring the route string
field in the TerraMsgWrapper and TerraQueryWrapper structures into an enum type, which
could then be converted to a string if/when necessary.

Exploit Scenario

N/A

Recommendation
#[derive (Clone, Copy, Debug, PartialEqg, PartialOrd, Eq, Ord, Hash)]
pub enum TerraRoute {

Market,

Treasury,

// etc...

impl ToString for TerraRoute {
fn to string(&self) -> String ({
match *self ({
Self::Market => "market".into(),
Self::Treasury => "treasury".into(),
// etc...

So we can essentially do :
// from:

pub route: String,

// into:

pub route: TerraRoute,

// from:

route: "market".to string(),
// into:

route: TerraRoute: :Market,

// from:
route: "treasury".to string(),

// into:
route: TerraRoute: :Treasury,

