
CertiK Audit Report
For ThunderCore

Request Date: 2019-05-01
Revision Date: 2019-05-05

Platform Name:

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Contents

Disclaimer 1

Exective Summary 2

Vulnerability Classification 2

Testing Summary 3
Audit Score . 3
Type of Issues . 3
Vulnerability Details . 4

Formal Verification Results 5
How to read . 5

Static Analysis Results 13

Manual Review Notes 14

Source Code with CertiK Labels 16

page i

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Disclaimer

This Report is subject to the terms and conditions (including without limitation, de-
scription of services, confidentiality, disclaimer and limitation of liability) set forth in the
Verification Services Agreement between CertiK and ThunderCore(the “Company”), or
the scope of services/verification, and terms and conditions provided to the Company in
connection with the verification (collectively, the “Agreement”). This Report provided
in connection with the Services set forth in the Agreement shall be used by the Company
only to the extent permitted under the terms and conditions set forth in the Agreement.
This Report may not be transmitted, disclosed, referred to or relied upon by any person
for any purposes without CertiK’s prior written consent.

page 1

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Exective Summary

This report has been prepared as product of the Smart Contract Audit request by Thun-
derCore. This audit was conducted to discover issues and vulnerabilities in the source
code of ThunderCore’s Smart Contracts. Utilizing CertiK’s Formal Verification Platform,
Static Analysis and Manual Review, a comprehensive examination has been performed.
The auditing process pays special attention to the following considerations.

• Testing the smart contracts against both common and uncommon attack vectors.

• Assessment of the codebase for best practice and industry standards.

• Ensuring contract logic meets the specifications and intentions of the client.

• Cross referencing contract structure and implementation against similar smart con-
tracts produced by industry leaders.

• Thorough line by line manual review of the entire codebase by industry experts.

Vulnerability Classification

For every issues found, CertiK categorizes them into 3 buckets based on its risk level:

• Critical: The code implementation does not match the specification, or it could
result in loss of funds for contract owner or users.

• Medium: The code implementation does not match the specification at certain
condition, or it could affect the security standard by lost of access control.

• Low: The code implementation is not a best practice, or use a suboptimal design
pattern, which may lead to security vulnerability, but no concern found yet.

page 2

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Testing Summary

Type of Issues

CertiK smart label engine applied 100% coveraged formal verification labels on the source
code, and scanned the code using our proprietary static analysis and formal verification
engine to detect the follow type of issues.

Title Description Issues SWC ID

Integer Overflow
and Underflow

An overflow/underflow happens when an arithmetic
operation reaches the maximum or minimum size of
a type.

0 SWC-101

Function incor-
rectness

Function implementation does not meet the specifi-
cation, leading to intentional or unintentional vul-
nerabilities.

0

Buffer Overflow An attacker is able to write to arbitrary storage lo-
cations of a contract if array of out bound happens

0 SWC-124

Reentrancy A malicious contract can call back into the calling
contract before the first invocation of the function is
finished.

0 SWC-107

Transaction Or-
der Dependence

A race condition vulnerability occurs when code de-
pends on the order of the transactions submitted to
it.

0 SWC-114

Timestamp De-
pendence

Timestamp can be influenced by minors to some de-
gree.

0 SWC-116

Insecure Com-
piler Version

Using an fixed outdated compiler version or float-
ing pragma can be problematic, if there are publicly
disclosed bugs and issues that affect the current com-
piler version used.

0 SWC-102
SWC-103

Insecure Ran-
domness

Block attributes are insecure to generate random
numbers, as they can be influenced by minors to
some degree.

0 SWC-120

page 3

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

“tx.origin” for
authorization

tx.origin should not be used for authorization. Use
msg.sender instead.

0 SWC-115

Delegatecall to
Untrusted Callee

Calling into untrusted contracts is very dangerous,
the target and arguments provided must be sani-
tized.

0 SWC-112

State Variable
Default Visibility

Labeling the visibility explicitly makes it easier to
catch incorrect assumptions about who can access
the variable.

0 SWC-108

Function Default
Visibility

Functions are public by default. A malicious user
is able to make unauthorized or unintended state
changes if a developer forgot to set the visibility.

0 SWC-100

Uninitialized
variables

Uninitialized local storage variables can point to
other unexpected storage variables in the contract.

0 SWC-109

Assertion Failure The assert() function is meant to assert invariants.
Properly functioning code should never reach a fail-
ing assert statement.

0 SWC-110

Deprecated
Solidity Features

Several functions and operators in Solidity are dep-
recated and should not be used as best practice.

0 SWC-111

Unused variables Unused variables reduce code quality 0

Vulnerability Details

Vulnerability Details

Critical

No issue found.

Medium

No issue found.

Low

No issue found.

page 4

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Formal Verification Results

How to read

page 5

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Formal Verification Request 1

endow

05, May 2019
48.75 ms

Line 32-35 in File Hodl.sol

32 /*@CTK endow

33 @tag assume_completion

34 @post __post.endowment == endowment + msg.value

35 */

Line 36-40 in File Hodl.sol

36 function endow() public payable {

37 // allow anyone to transfer funds to this contract

38 endowment = endowment.add(msg.value);

39 emit Endowed(msg.sender, msg.value);

40 }

The code meets the specification

Formal Verification Request 2

withdrawEndowment

05, May 2019
179.04 ms

Line 42-46 in File Hodl.sol

42 /*@CTK withdrawEndowment

43 @tag assume_completion

44 @post _owner == msg.sender

45 @post __post.endowment == endowment - amount

46 */

Line 47-52 in File Hodl.sol

47 function withdrawEndowment(uint256 amount) public onlyOwner {

48 require(amount <= endowment, ’Withdrawing amount is larger than endowment.’);

49 Ownable.owner().transfer(amount);

50 endowment = endowment.sub(amount);

51 emit WithdrawnEndowment(msg.sender, amount);

52 }

The code meets the specification

Formal Verification Request 3

getTime

05, May 2019
5.48 ms

Line 80-82 in File Hodl.sol

page 6

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

80 /*@CTK getTime

81 @post __return == now

82 */

Line 83-85 in File Hodl.sol

83 function getTime() public view returns(uint256) {

84 return now; // solium-disable-line security/no-block-members

85 }

The code meets the specification

Formal Verification Request 4

interestRate

05, May 2019
56.6 ms

Line 106-113 in File Hodl.sol

106 /*@CTK interestRate

107 @post duration == Duration.OneDay -> (__return == 1 && __return1 == 10000)

108 @post duration == Duration.OneWeek -> (__return == 1 && __return1 == 1000)

109 @post duration == Duration.OneMonth -> (__return == 7 && __return1 == 1000)

110 @post duration == Duration.OneQuarter -> (__return == 25 && __return1 == 1000)

111 @post duration == Duration.HalfYear -> (__return == 1 && __return1 == 10)

112 @post duration == Duration.OneYear -> (__return == 3 && __return1 == 10)

113 */

Line 114-131 in File Hodl.sol

114 function interestRate(Duration duration) private pure returns(uint256, uint256) {

115 if (duration == Duration.OneDay) {

116 return (1, 10000);

117 } else if (duration == Duration.OneWeek) {

118 return (1, 1000);

119 } else if (duration == Duration.OneMonth) {

120 return (7, 1000);

121 } else if (duration == Duration.OneQuarter) {

122 return (25, 1000);

123 } else if (duration == Duration.HalfYear) {

124 return (1, 10);

125 } else if (duration == Duration.OneYear) {

126 return (3, 10);

127 }

128
129 revert(’Invalid duration’);

130 }

The code meets the specification

Formal Verification Request 5

toDays

05, May 2019
50.98 ms

page 7

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Line 133-140 in File Hodl.sol

133 /*@CTK toDays

134 @post duration == Duration.OneDay -> __return == 1

135 @post duration == Duration.OneWeek -> __return == 7

136 @post duration == Duration.OneMonth -> __return == 30

137 @post duration == Duration.OneQuarter -> __return == 90

138 @post duration == Duration.HalfYear -> __return == 180

139 @post duration == Duration.OneYear -> __return == 365

140 */

Line 141-158 in File Hodl.sol

141 function toDays(Duration duration) private pure returns(uint256) {

142 if (duration == Duration.OneDay) {

143 return 1;

144 } else if (duration == Duration.OneWeek) {

145 return 7;

146 } else if (duration == Duration.OneMonth) {

147 return 30;

148 } else if (duration == Duration.OneQuarter) {

149 return 90;

150 } else if (duration == Duration.HalfYear) {

151 return 180;

152 } else if (duration == Duration.OneYear) {

153 return 365;

154 }

155
156 revert(’Invalid duration’);

157 }

The code meets the specification

Formal Verification Request 6

getDeposits Generated

05, May 2019
123.85 ms

(Loop) Line 206-213 in File Hodl.sol

206 /*@CTK getDeposits

207 @inv i <= len

208 @inv i >= 1 -> packed[i - 1][0] == depositRecords[target][i - 1].startTime

209 @inv i >= 1 -> packed[i - 1][1] == depositRecords[target][i - 1].principal

210 @inv i >= 1 -> packed[i - 1][3] == depositRecords[target][i - 1].collected

211 @post i == len

212 @post !__should_return

213 */

(Loop) Line 206-220 in File Hodl.sol

206 /*@CTK getDeposits

207 @inv i <= len

208 @inv i >= 1 -> packed[i - 1][0] == depositRecords[target][i - 1].startTime

209 @inv i >= 1 -> packed[i - 1][1] == depositRecords[target][i - 1].principal

210 @inv i >= 1 -> packed[i - 1][3] == depositRecords[target][i - 1].collected

page 8

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

211 @post i == len

212 @post !__should_return

213 */

214 for (uint256 i = 0; i < len; i++) {

215 DepositRecord memory certificate = depositRecords[target][i];

216 packed[i][0] = certificate.startTime;

217 packed[i][1] = certificate.principal;

218 packed[i][2] = uint256(certificate.duration);

219 packed[i][3] = certificate.collected;

220 }

The code meets the specification

Formal Verification Request 7

getTime

05, May 2019
6.1 ms

Line 9-11 in File HodlWithFakeTime.sol

9 /*@CTK getTime

10 @post __return == fakeTime

11 */

Line 12-14 in File HodlWithFakeTime.sol

12 function getTime() public view returns(uint256) {

13 return fakeTime;

14 }

The code meets the specification

Formal Verification Request 8

setTime

05, May 2019
6.03 ms

Line 16-18 in File HodlWithFakeTime.sol

16 /*@CTK setTime

17 @post __post.fakeTime == f

18 */

Line 19-21 in File HodlWithFakeTime.sol

19 function setTime(uint256 f) public {

20 fakeTime = f;

21 }

The code meets the specification

page 9

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Formal Verification Request 9

Ownable

05, May 2019
5.84 ms

Line 17-19 in File Ownable.sol

17 /*@CTK Ownable

18 @post __post._owner == msg.sender

19 */

Line 20-23 in File Ownable.sol

20 constructor () internal {

21 _owner = msg.sender;

22 emit OwnershipTransferred(address(0), _owner);

23 }

The code meets the specification

Formal Verification Request 10

owner

05, May 2019
5.69 ms

Line 28-30 in File Ownable.sol

28 /*@CTK owner

29 @post __return == _owner

30 */

Line 31-33 in File Ownable.sol

31 function owner() public view returns (address) {

32 return _owner;

33 }

The code meets the specification

Formal Verification Request 11

isOwner

05, May 2019
6.13 ms

Line 46-48 in File Ownable.sol

46 /*@CTK isOwner

47 @post __return == (msg.sender == _owner)

48 */

Line 49-51 in File Ownable.sol

page 10

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

49 function isOwner() public view returns (bool) {

50 return msg.sender == _owner;

51 }

The code meets the specification

Formal Verification Request 12

renounceOwnership

05, May 2019
26.83 ms

Line 59-63 in File Ownable.sol

59 /*@CTK renounceOwnership

60 @tag assume_completion

61 @post _owner == msg.sender

62 @post __post._owner == address(0)

63 */

Line 64-67 in File Ownable.sol

64 function renounceOwnership() public onlyOwner {

65 emit OwnershipTransferred(_owner, address(0));

66 _owner = address(0);

67 }

The code meets the specification

Formal Verification Request 13

transferOwnership

05, May 2019
61.88 ms

Line 73-76 in File Ownable.sol

73 /*@CTK transferOwnership

74 @tag assume_completion

75 @post _owner == msg.sender

76 */

Line 77-79 in File Ownable.sol

77 function transferOwnership(address newOwner) public onlyOwner {

78 _transferOwnership(newOwner);

79 }

The code meets the specification

page 11

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Formal Verification Request 14

transferOwnership

05, May 2019
1.19 ms

Line 85-89 in File Ownable.sol

85 /*@CTK _transferOwnership

86 @tag assume_completion

87 @post newOwner != address(0)

88 @post __post._owner == newOwner

89 */

Line 90-94 in File Ownable.sol

90 function _transferOwnership(address newOwner) internal {

91 require(newOwner != address(0));

92 emit OwnershipTransferred(_owner, newOwner);

93 _owner = newOwner;

94 }

The code meets the specification

page 12

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Static Analysis Results

INSECURE COMPILER VERSION

Line 1 in File Hodl.sol

1 pragma solidity >=0.4.25 < 0.5.0;

Only these compiler versions are safe to compile your code: 0.4.25

TIMESTAMP DEPENDENCY

Line 84 in File Hodl.sol

84 return now; // solium-disable-line security/no-block-members

”now” can be influenced by minors to some degree

INSECURE COMPILER VERSION

Line 1 in File HodlWithFakeTime.sol

1 pragma solidity >=0.4.25 < 0.5.0;

Only these compiler versions are safe to compile your code: 0.4.25

INSECURE COMPILER VERSION

Line 1 in File Ownable.sol

1 pragma solidity ^0.5.0;

Only these compiler versions are safe to compile your code: 0.5.0, 0.5.1, 0.5.2, 0.5.3,
0.5.4, 0.5.6

page 13

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Manual Review Notes

Review Details

Source Code SHA-256 Checksum

• Hodl.sol 444db6df9a27e28dab7bd84db8eb59b7695f37c3f848d6066e96ec12043ec39f

• HodlWithFakeTime.sol c284afd45ce8dab3aabae52b8a1d3c6736f2120b60780448d7c587f54ca2b2e9

• Migrations.sol 1c4e30fd3aa765cb0ee259a29dead71c1c99888dcc7157c25df3405802cf5b09

Summary

CertiK team is invited by ThunderCore to audit the design and implementations of its
to be released financial product smart contract called hodl, and the source code has
been analyzed under different perspectives and with different tools such as CertiK formal
verification checkings as well as manual reviews by smart contract experts. We have been
actively interacting with ThunderCore engineers when there was any potential loopholes
or recommended design changes during the audit process, and ThunderCore team has
been actively giving us updates for the source code and feedback about the business logic.

In general, the audit process went very effectively, as a result of the high code qual-
ity, and good practices works done by the ThunderCore team. The business logic and
intentions are well-defined, straight-forward, and following industrial standards. Corre-
sponding unit tests were added to cover the possible scenarios, and potential edge cases,
well in the meantime we recommend to have more detailed documents describing the
product and rules. As summary, Hodl.sol smart contract is designing with the business
model of a saving-account-alike, where people can deposit principle and lock with a period
of time, and finally return in interest.

CertiK team did not find any potential security risks from the smart contract, but
again we urge users who plan to purchase such financial product to have a fully under-
standing before taking further actions. The contract leans on appropriate standards with
minimal storage, and cost consumption on each function invocation, in order to fulfill
the business requirements. The proper intervention mechanism helps to minimize and
prevent human errors. We conclude that Hodl.sol smart contract shall launch in a well-
tested and secure state, is not vulnerable to any known antipatterns or bugs, and the risk
is likely very low.

Recommendations

Items in this section are low impact to the overall aspects of the smart contracts, thus
will let client to decide whether to have those reflected in the final deployed version of
source codes.

Hodl.sol

• deposit(uint256 durationInt) – durationInt represents the index of the enum
defined in the contract, use Duration is better practice there as Solidity will convert
into uint8 (also aligns with the coding style from the rest of the code).

page 14

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

• collect() – The depositRecords array is updated/truncated via a smart but a bit
tricky solution, we suggest to have more comments describing how it works, and
make the variable namings more human readable. Also, we suggest to have an
illustration for how interests were calculated for end users, i.e. if a user choose to
buy a 1-day period deposit but withdraw on day 4 will only get one day interest
(instead of 3).

page 15

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

Source Code with CertiK Labels

File Hodl.sol

1 pragma solidity >=0.4.25 < 0.5.0;

2
3 import ’openzeppelin-solidity/contracts/math/SafeMath.sol’;

4 import ’openzeppelin-solidity/contracts/ownership/Ownable.sol’;

5
6
7 contract Hodl is Ownable {

8 enum Duration {

9 OneDay, OneWeek, OneMonth, OneQuarter, HalfYear, OneYear

10 }

11
12 struct DepositRecord {

13 uint256 startTime;

14 uint256 principal;

15 Duration duration;

16 uint256 collected;

17 }

18
19 mapping(address => DepositRecord[]) public depositRecords;

20 uint256 public endowment;

21 using SafeMath for uint256;

22
23 event Collected(address indexed account, uint256 amount, uint256 time);

24 event Deposited(address indexed account, uint256 amount, uint256 time, Duration

duration);

25 event Endowed(address indexed account, uint256 amount);

26 event Closed(address indexed account, uint256 amount, uint256 time, Duration

duration);

27 event WithdrawnEndowment(address indexed account, uint256 amount);

28
29 uint8 constant MAX_ACTIVE_DEPOSITS = 16;

30 uint256 constant MAX_DEPOSIT_AMOUNT = 1000000 ether;

31
32 /*@CTK endow

33 @tag assume_completion

34 @post __post.endowment == endowment + msg.value

35 */

36 function endow() public payable {

37 // allow anyone to transfer funds to this contract

38 endowment = endowment.add(msg.value);

39 emit Endowed(msg.sender, msg.value);

40 }

41
42 /*@CTK withdrawEndowment

43 @tag assume_completion

44 @post _owner == msg.sender

45 @post __post.endowment == endowment - amount

46 */

47 function withdrawEndowment(uint256 amount) public onlyOwner {

48 require(amount <= endowment, ’Withdrawing amount is larger than endowment.’);

49 Ownable.owner().transfer(amount);

50 endowment = endowment.sub(amount);

51 emit WithdrawnEndowment(msg.sender, amount);

52 }

page 16

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

53
54 /*CTK deposit

55 @tag assume_completion

56 @post depositRecords[msg.sender].length < MAX_ACTIVE_DEPOSITS

57 */

58 function deposit(uint256 durationInt) public payable {

59 require(depositRecords[msg.sender].length < MAX_ACTIVE_DEPOSITS, ’Exceeded max

active deposits’);

60 require(getTotalDeposits(msg.sender).add(msg.value) <= MAX_DEPOSIT_AMOUNT, ’

Exceeded max deposit amount’);

61 require(durationInt <= uint256(Duration.OneYear), ’Invalid duration’);

62 require(msg.value > 0, ’Need value to deposit’);

63
64 Duration duration = Duration(durationInt);

65 DepositRecord memory dr;

66 dr.startTime = getTime();

67 dr.duration = duration;

68 dr.principal = msg.value;

69 dr.collected = 0;

70
71 uint256 totalInterest = interest(dr.principal, dr.duration);

72
73 require(totalInterest <= endowment, ’Insufficient endowment’);

74
75 endowment = endowment.sub(totalInterest);

76 depositRecords[msg.sender].push(dr);

77 emit Deposited(msg.sender, dr.principal, dr.startTime, dr.duration);

78 }

79
80 /*@CTK getTime

81 @post __return == now

82 */

83 function getTime() public view returns(uint256) {

84 return now; // solium-disable-line security/no-block-members

85 }

86
87 /*CTK dayInterest

88 @pre duration == Duration.OneDay

89 @post __return

90 */

91 function dayInterest(uint256 principal, Duration duration) public pure returns(

uint256) {

92 uint256 dates = toDays(duration);

93 return interest(principal, duration).div(dates);

94 }

95
96 function interest(uint256 principal, Duration duration) public pure returns(uint256)

{

97 (uint256 mul, uint256 div) = interestRate(duration);

98 (mul, div) = interestRate(duration);

99 return principal.mul(mul).div(div);

100 }

101
102 /*@CTK interestRate

103 @post duration == Duration.OneDay -> (__return == 1 && __return1 == 10000)

104 @post duration == Duration.OneWeek -> (__return == 1 && __return1 == 1000)

105 @post duration == Duration.OneMonth -> (__return == 7 && __return1 == 1000)

106 @post duration == Duration.OneQuarter -> (__return == 25 && __return1 == 1000)

page 17

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

107 @post duration == Duration.HalfYear -> (__return == 1 && __return1 == 10)

108 @post duration == Duration.OneYear -> (__return == 3 && __return1 == 10)

109 */

110 function interestRate(Duration duration) private pure returns(uint256, uint256) {

111 if (duration == Duration.OneDay) {

112 return (1, 10000);

113 } else if (duration == Duration.OneWeek) {

114 return (1, 1000);

115 } else if (duration == Duration.OneMonth) {

116 return (7, 1000);

117 } else if (duration == Duration.OneQuarter) {

118 return (25, 1000);

119 } else if (duration == Duration.HalfYear) {

120 return (1, 10);

121 } else if (duration == Duration.OneYear) {

122 return (3, 10);

123 }

124
125 revert(’Invalid duration’);

126 }

127
128 /*@CTK toDays

129 @post duration == Duration.OneDay -> __return == 1

130 @post duration == Duration.OneWeek -> __return == 7

131 @post duration == Duration.OneMonth -> __return == 30

132 @post duration == Duration.OneQuarter -> __return == 90

133 @post duration == Duration.HalfYear -> __return == 180

134 @post duration == Duration.OneYear -> __return == 365

135 */

136 function toDays(Duration duration) private pure returns(uint256) {

137 if (duration == Duration.OneDay) {

138 return 1;

139 } else if (duration == Duration.OneWeek) {

140 return 7;

141 } else if (duration == Duration.OneMonth) {

142 return 30;

143 } else if (duration == Duration.OneQuarter) {

144 return 90;

145 } else if (duration == Duration.HalfYear) {

146 return 180;

147 } else if (duration == Duration.OneYear) {

148 return 365;

149 }

150
151 revert(’Invalid duration’);

152 }

153
154 //

155 function collect() external {

156 uint256 s0; // principal plus interest for one deposit record

157 uint256 i0; // accrued interest for one deposit record

158 uint256 c0; // collectible funds for one deposit record

159 uint256 c; // total collectible for sender

160
161 // calculate how much to collect

162 address sender = msg.sender;

163 DepositRecord[] storage drlist = depositRecords[sender];

164 uint256 j = 0;

page 18

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

165 for (uint256 i = 0; i < drlist.length; i++) {

166 DepositRecord storage dr = drlist[i];

167 uint256 daysPassed = getTime().sub(dr.startTime).div(1 days);

168 uint256 durationDays = toDays(dr.duration);

169 if (daysPassed >= durationDays) {

170 s0 = interest(dr.principal, dr.duration).add(dr.principal);

171 c0 = s0.sub(dr.collected);

172 // Not updating dr.collected because drlist[i] would be either overwritten or "

removed" by reducing drlist.length

173 emit Closed(sender, dr.principal, getTime(), dr.duration);

174 } else {

175 i0 = dayInterest(dr.principal, dr.duration).mul(daysPassed);

176 c0 = i0.sub(dr.collected);

177 if (i != j) {

178 drlist[j] = dr;

179 }

180 drlist[j].collected = i0;

181 j++;

182 }

183 c = c.add(c0);

184 }

185
186 // Reducing the length performs an implicit delete on each of the removed elements

.

187 drlist.length = j;

188
189 // transfer

190 sender.transfer(c);

191
192 emit Collected(sender, c, getTime());

193 }

194
195 function getDeposits(address target) external view returns (

196 uint256 blockTime, uint256[4][]) {

197 uint256 len = depositRecords[target].length;

198 uint256[4][] memory packed = new uint256[4][](len);

199
200 /*@CTK getDeposits

201 @inv i <= len

202 @inv i >= 1 -> packed[i - 1][0] == depositRecords[target][i - 1].startTime

203 @inv i >= 1 -> packed[i - 1][1] == depositRecords[target][i - 1].principal

204 @inv i >= 1 -> packed[i - 1][3] == depositRecords[target][i - 1].collected

205 @post i == len

206 @post !__should_return

207 */

208 for (uint256 i = 0; i < len; i++) {

209 DepositRecord memory certificate = depositRecords[target][i];

210 packed[i][0] = certificate.startTime;

211 packed[i][1] = certificate.principal;

212 packed[i][2] = uint256(certificate.duration);

213 packed[i][3] = certificate.collected;

214 }

215
216 return (getTime(), packed);

217 }

218
219 function getTotalDeposits(address account) internal view returns (uint256) {

220 uint256 amount = 0;

page 19

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

221 /*CTK getTotalDeposits

222 @inv i < depositRecords[account].length

223 @inv depositRecords[account][i].principal >= 0

224 @inv amount >= amount__pre + depositRecords[account][i].principal

225 @post i == depositRecords[account].length

226 @post !__should_return

227 */

228 for(uint256 i = 0; i < depositRecords[account].length; i++) {

229 amount = amount.add(depositRecords[account][i].principal);

230 }

231 return amount;

232 }

233 }

File HodlWithFakeTime.sol

1 pragma solidity >=0.4.25 < 0.5.0;

2
3 import ’./Hodl.sol’;

4
5 // HodlWithFakeTime provides ‘setTime()‘ to test time passage

6 // for the ‘Hodl‘ contract and should not be deployed on production networks.

7 contract HodlWithFakeTime is Hodl {

8 uint256 fakeTime;

9 /*@CTK getTime

10 @post __return == fakeTime

11 */

12 function getTime() public view returns(uint256) {

13 return fakeTime;

14 }

15
16 /*@CTK setTime

17 @post __post.fakeTime == f

18 */

19 function setTime(uint256 f) public {

20 fakeTime = f;

21 }

22 }

File openzeppelin-solidity/contracts/ownership/Ownable.sol

1 pragma solidity ^0.5.0;

2
3 /**

4 * @title Ownable

5 * @dev The Ownable contract has an owner address, and provides basic authorization

control

6 * functions, this simplifies the implementation of "user permissions".

7 */

8 contract Ownable {

9 address private _owner;

10
11 event OwnershipTransferred(address indexed previousOwner, address indexed newOwner

);

12
13 /**

14 * @dev The Ownable constructor sets the original ‘owner‘ of the contract to the

sender

15 * account.

16 */

page 20

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

17 /*@CTK Ownable

18 @post __post._owner == msg.sender

19 */

20 constructor () internal {

21 _owner = msg.sender;

22 emit OwnershipTransferred(address(0), _owner);

23 }

24
25 /**

26 * @return the address of the owner.

27 */

28 /*@CTK owner

29 @post __return == _owner

30 */

31 function owner() public view returns (address) {

32 return _owner;

33 }

34
35 /**

36 * @dev Throws if called by any account other than the owner.

37 */

38 modifier onlyOwner() {

39 require(isOwner());

40 _;

41 }

42
43 /**

44 * @return true if ‘msg.sender‘ is the owner of the contract.

45 */

46 /*@CTK isOwner

47 @post __return == (msg.sender == _owner)

48 */

49 function isOwner() public view returns (bool) {

50 return msg.sender == _owner;

51 }

52
53 /**

54 * @dev Allows the current owner to relinquish control of the contract.

55 * @notice Renouncing to ownership will leave the contract without an owner.

56 * It will not be possible to call the functions with the ‘onlyOwner‘

57 * modifier anymore.

58 */

59 /*@CTK renounceOwnership

60 @tag assume_completion

61 @post _owner == msg.sender

62 @post __post._owner == address(0)

63 */

64 function renounceOwnership() public onlyOwner {

65 emit OwnershipTransferred(_owner, address(0));

66 _owner = address(0);

67 }

68
69 /**

70 * @dev Allows the current owner to transfer control of the contract to a newOwner

.

71 * @param newOwner The address to transfer ownership to.

72 */

73 /*@CTK transferOwnership

page 21

Formal Verification Platform for
Smart Contracts and Blockchain Ecosystems

74 @tag assume_completion

75 @post _owner == msg.sender

76 */

77 function transferOwnership(address newOwner) public onlyOwner {

78 _transferOwnership(newOwner);

79 }

80
81 /**

82 * @dev Transfers control of the contract to a newOwner.

83 * @param newOwner The address to transfer ownership to.

84 */

85 /*@CTK _transferOwnership

86 @tag assume_completion

87 @post newOwner != address(0)

88 @post __post._owner == newOwner

89 */

90 function _transferOwnership(address newOwner) internal {

91 require(newOwner != address(0));

92 emit OwnershipTransferred(_owner, newOwner);

93 _owner = newOwner;

94 }

95 }

page 22

