

XCAmpleforth

Security Assessment

February 1st, 2021

For :
XCAmpleforth

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that contracts
CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor do they provide any indication of the technologies proprietors,
business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice, nor
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code
provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure,
implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the
intention to increase the quality of the company/product's IT infrastructure and or source
code.

Project Name XCAmpleforth

Description A cross-chain bridge and token implementation of the
Ampleforth rebasing currency.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. 954d0d20de14a4a7641f1592a33410dd16059a2c
2. 9fd087667de9ae29db95945f7e42c749fbe75b9a

Delivery Date February 1st, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline January 25th, 2021 - February 1st, 2021

Total Issues 14

Total Critical 0

Total Major 0

Total Medium 2

Total Minor 2

Total Informational 10

 Overview

Project Summary

Audit Summary

Vulnerability Summary

ID Contract Location

AMP AMPLChainBridgeGateway.sol contracts/base-chain/bridge-
gateways/AMPLChainBridgeGateway.sol

CBX ChainBridgeXCAmpleGateway.sol contracts/satellite-chain/bridge-
gateways/ChainBridgeXCAmpleGateway.sol

TVT TokenVault.sol contracts/base-chain/TokenVault.sol

UIL UInt256Lib.sol contracts/satellite-chain/xc-
ampleforth/UInt256Lib.sol

XCA XCAmple.sol contracts/satellite-chain/xc-
ampleforth/XCAmple.sol

XCC XCAmpleController.sol contracts/satellite-chain/xc-
ampleforth/XCAmpleController.sol

 Executive Summary

We were tasked with auditing the cross-chain Ampleforth bridge implementation that is meant to
enable cross-chain transfers of the AMPL token from and to satellite chains that are different than
the main Ethereum network.

The bridge operates by relaying the supply at the time of a cross-chain transfer in addition to the
amount of tokens transferred, thus preventing any issues that would conventionally arise from
the dynamic rebase mechanism of Ampleforth and the desynchronization of satellite chains in
relation to the main chain.

The codebase has been developed with the latest security standards in mind and as such, our
findings mostly consisted of optimizations that could be applied to the codebase as well as an
extended set of best practises that would aid in the maintainability of the codebase. We were able
to pinpoint a minor issue in the way the DOMAIN_SEPARATOR is utilized in the EIP-2612
implementation of permits on the XCAmple.sol implementation, however the issue was
promptly dealt with.

Overall, the security of the codebase can be deemed to be of a high standard.

 Files In Scope

AMPLChainBridgeGateway.sol

IAmpleforth.sol

ITokenVault.sol

ChainBridgeXCAmpleGateway.sol

IBridgeGateway.sol

IXCAmpleController.sol

IXCAmpleControllerGateway.sol

XCAmpleController.sol

UInt256Lib.sol

IXCAmple.sol

IXCAmpleSupplyPolicy.sol

IBatchTxExecutor.sol

 File Dependency Graph (BETA)

14%

14%

71%

Finding Summary

Medium
Minor
Informational

 Findings

ID Title Type Severity Resolved

TVT-01 Function
Simplification

Gas Optimization Informational

TVT-02 Potential
Incompatibility w/
Underlying Token

Language Specific Minor

AMP-01 Mutability Specifiers
Missing

Gas Optimization Informational

AMP-02 Potential Loss of
Precision

Logical Issue Medium

CBX-01 Mutability Specifiers
Missing

Gas Optimization Informational

CBX-02 Potential Loss of
Precision

Mathematical
Operations

Medium

UIL-01 Usage of
Deprecated
Representation

Coding Style Informational

UIL-02 Inexistent Error
Message

Coding Style Informational

XCC-01 Function
Simplification

Gas Optimization Informational

XCA-01 Usage of
Deprecated
Representation

Coding Style Informational

XCA-02 Incorrect Utilization
of chainid

Logical Issue Minor

XCA-03 Usage of memory
Variable Over
storage

Gas Optimization Informational

XCA-04 Approval Amount
Desync

Mathematical
Operations

Informational

XCA-05 Inexistent Error
Message

Coding Style Informational

Type Severity Location

Gas Optimization Informational TokenVault.sol L56-L82

 TVT-01: Function Simplification

Description:

The linked functions toggle the bool state of the whitelistedBridgeGateways mapping to
adjust whether a particular bridge is whitelisted to withdraw and deposit tokens to the vault.

Recommendation:

As the toggle mechanism can only utilize two states, these two functions can be combined into a
single one that accepts a bool variable as input, reducing the bytecode size of the contract and
thus the overall gas footprint of its deployment.

Alleviation:

The team stated that while a reduction in gas cost would be achievable, they opted to retain the
structure as it currently is to minimize critical operational errors.

Type Severity Location

Language Specific Minor TokenVault.sol L95, L110

 TVT-02: Potential Incompatibility w/ Underlying Token

Description:

The vault is meant to be utilized with the Ampleforth main-chain currency on Ethereum which
currently conforms to the ERC-20 standard properly, however, this may not always be the case.

Recommendation:

As the main chain Ampleforth implementation utilizes the proxy pattern, it is possible that an
upgrade of the protocol will no longer be fully compliant with the ERC-20 standard causing the
strict require checks utilized in the vault to fail and thus preventing any type of cross-chain
transfer from occuring again. Although the likelihood of this scenario is low, it is still a plausible
scenario as the same ERC-20 incompatibility is observed in the Tether stablecoin and has caused
significant issues in the past.

It is more optimal to utilize the SafeERC20 OpenZeppelin library implementation for conducting
ERC-20 transfers as it is fully compatible with all types of ERC-20 tokens and will also allow the
Ampleforth codebase to be utilized by other projects.

Alleviation:

The issue was fully remediated by using the SafeERC20 implementation by OpenZeppelin.

Type Severity Location

Gas Optimization Informational AMPLChainBridgeGateway.sol L41-L43

 AMP-01: Mutability Specifiers Missing

Description:

The linked variables are assigned to only once, either during their contract-level declaration or
during the constructor 's execution.

Recommendation:

For the former, we advise that the constant keyword is introduced in the variable declaration to
greatly optimize the gas cost involved in utilizing the variable. For the latter, we advise that the
immutable mutability specifier is set at the variable's contract-level declaration to greatly
optimize the gas cost of utilizing the variables. Please note that the immutable keyword only
works in Solidity versions v0.6.5 and up.

Alleviation:

The team introduced the immutable keyword to the specified variables thus optimizing the gas
cost involved in utilizing them.

Type Severity Location

Logical Issue Medium AMPLChainBridgeGateway.sol L111

 AMP-02: Potential Loss of Precision

Description:

The Ampleforth protocol follows a strict rebase policy whereby consequent rebases will never
incur loss of precision in the underlying values used to transact with the currency as denoted by
their uFragments.sol supply adjustment analysis. Multiple epoch rebases that can accumulate,
however, do not guarantee the same constraints in the rebase operation of the cross-chain
Ampleforth in comparison to the main-chain Ampleforth.

Recommendation:

We advise that a subsequent thorough analysis is performed on the impacts of accumulated
rebases to the cross-chain transfers of AMPL to xcAMPL, as this can have a significant impact to
the currency as a whole. Solutions to the introduction of accumulated rebases would be ensuring
at the code level that cross-chain transactions fail if multiple epochs have passed on both chains
and that rebase operations on satellite chains occur on each consequent epoch and fail if an
attempt is made to 'skip' intermediate epoch adjustments.

Alleviation:

The team responded that in the case that a rebase epoch on the main chain is not propagated to
the satellite chain in due time, the satellite chain balances will be temporarily out of sync.
However, this mechanism is not exploitable as cross-chain AMPL transfers are accompanied by
the current total supply at the time of the transfer, meaning that no arbitrage can occur in this
scenario. As such, all types of cross-chain transfers will be pristine.

Type Severity Location

Gas Optimization Informational ChainBridgeXCAmpleGateway.sol L38-L39

 CBX-01: Mutability Specifiers Missing

Description:

The linked variables are assigned to only once, either during their contract-level declaration or
during the constructor 's execution.

Recommendation:

For the former, we advise that the constant keyword is introduced in the variable declaration to
greatly optimize the gas cost involved in utilizing the variable. For the latter, we advise that the
immutable mutability specifier is set at the variable's contract-level declaration to greatly
optimize the gas cost of utilizing the variables. Please note that the immutable keyword only
works in Solidity versions v0.6.5 and up.

Alleviation:

The team introduced the immutable keyword to the specified variables thus optimizing the gas
cost involved in utilizing them.

Type Severity Location

Mathematical
Operations

Medium ChainBridgeXCAmpleGateway.sol L84

 CBX-02: Potential Loss of Precision

Description:

The Ampleforth protocol follows a strict rebase policy whereby consequent rebases will never
incur loss of precision in the underlying values used to transact with the currency as denoted by
their uFragments.sol supply adjustment analysis. Multiple epoch rebases that can accumulate,
however, do not guarantee the same constraints in the rebase operation of the cross-chain
Ampleforth in comparison to the main-chain Ampleforth.

Recommendation:

We advise that a subsequent thorough analysis is performed on the impacts of accumulated
rebases to the cross-chain transfers of AMPL to xcAMPL, as this can have a significant impact to
the currency as a whole. Solutions to the introduction of accumulated rebases would be ensuring
at the code level that cross-chain transactions fail if multiple epochs have passed on both chains
and that rebase operations on satellite chains occur on each consequent epoch and fail if an
attempt is made to 'skip' intermediate epoch adjustments.

Alleviation:

The team responded that in the case that a rebase epoch on the main chain is not propagated to
the satellite chain in due time, the satellite chain balances will be temporarily out of sync.
However, this mechanism is not exploitable as cross-chain AMPL transfers are accompanied by
the current total supply at the time of the transfer, meaning that no arbitrage can occur in this
scenario. As such, all types of cross-chain transfers will be pristine.

Type Severity Location

Coding Style Informational UInt256Lib.sol L9

 UIL-01: Usage of Deprecated Representation

Description:

The maximum value of int256 is currently represented by the contract using bitwise shifts and
negations whereas the current standard utilizes the special type keyword to wrap the type and
access the max member i.e. type(int256).max , as introduced in Solidity 0.6.8.

Recommendation:

We advise that the representation style is changed to the one mentioned in this exhibit's
description.

Alleviation:

The team has replaced the deprecated representation with type(uint256).max .

Type Severity Location

Coding Style Informational UInt256Lib.sol L15

 UIL-02: Inexistent Error Message

Description:

Error messages should always accompany a require invocation to aid in both explaining what
the imposed check is meant to achieve as well as aid in debugging processes.

Recommendation:

We advise that an error message is provided for the linked require check.

Alleviation:

The team introduced an error message to the linked require check.

Type Severity Location

Gas Optimization Informational XCAmpleController.sol L83-L99

 XCC-01: Function Simplification

Description:

The linked functions toggle the bool state of the whitelistedBridgeGateways mapping to
adjust whether a particular bridge is whitelisted to burn and mint tokens in the satellite chain.

Recommendation:

As the toggle mechanism can only utilize two states, these two functions can be combined into a
single one that accepts a bool variable as input, reducing the bytecode size of the contract and
thus the overall gas footprint of its deployment.

Alleviation:

The team stated that while a reduction in gas cost would be achievable, they opted to retain the
structure as it currently is to minimize critical operational errors.

Type Severity Location

Coding Style Informational XCAmple.sol L46, L54

 XCA-01: Usage of Deprecated Representation

Description:

The maximum value of uint256 and uint128 is currently represented by the contract using
bitwise negations whereas the current standard utilizes the special type keyword to wrap the
type and access the max member i.e. type(uint256).max , as introduced in Solidity 0.6.8.

Recommendation:

We advise that the representation style is changed to the one mentioned in this exhibit's
description.

Alleviation:

The team has replaced the deprecated representation with type(uint256).max .

Type Severity Location

Logical Issue Minor XCAmple.sol L88, L148-L160

 XCA-02: Incorrect Utilization of chainid

Description:

The linked code relates to the utilization of the chainid variable which is meant to represent the
current chain's ID for usage in the EIP-712 and EIP-2612 standards. As noted in the EIPs, by
computing the chainid once the standards' functions are susceptible to cross-chain attacks in
case of a fork.

Recommendation:

When an Ethereum-based chain is forked, its chain ID changes whilst its state remains the same
at the point of forking. This means that the forked chain's XCAmple implementation will be
utilizing an incorrect chainid to validate signatures with. This can lead to replay attacks whereby
a single EIP-712 signature is valid for both the forked chain and the base chain.

To alleviate this, the chainid and consequent hash of the DOMAIN_SEPARATOR need to be
computed on a need-to-use basis. Otherwise, if compatibility in the forked chain is of no concern,
the chainid computed during the initialize function can be stored at a contract-level variable
and consequently compared on each EIP-712 bearing function to a dynamically evaluated
chainid , throwing in case the chain IDs do not match. This will prevent replay attacks in forks,
however, it will also render the EIP-712 scheme unusable in the forked chain implementation.

Alleviation:

The team refactored the way the DOMAIN_SEPARATOR is computed by replacing it with a function
call that dynamically computes the chainid of the current chain and prevents cross-chain replay
attacks due to a misassigned chainid . A further optimization that could be done at this point is
to cache the keccak256 result of the "main-chain" and, should the chainid be differt,
dynamically compute it. This should optimize the gas cost of the function significantly.

Type Severity Location

Gas Optimization Informational XCAmple.sol L114

 XCA-03: Usage of memory Variable Over storage

Description:

The linked line performs a return statement on the globalAMPLSupply stored in storage after
performing a successful equality check of this value with the in-memory newGlobalAMPLSupply
variable.

Recommendation:

As the current return statement performs a redundant storage read operation, we advise that
the newGlobalAMPLSupply variable is instead returned here optimizing the gas cost of the
function.

Alleviation:

The linked segment was adjusted to prioritize utilization of in-memory variables where possible
instead of in-storage ones.

Type Severity Location

Mathematical Operations Informational XCAmple.sol L326-L331

 XCA-04: Approval Amount Desync

Description:

As the Ampleforth is unique in the sense that it is a rebasing token, a set amount of permitted
tokens to be transmitted via an approval can have a different underlying gon value due to supply
rebases.

Recommendation:

While this is a well known trait of the protocol, it should still be mentioned in the accompanying
comments of the approve function to ensure users of the codebase are fully aware of this
functionality. Additionally, an optional deviation threshold can be introduced here whereby a user
permits their allowances to deviate in the underlying gon value by a set amount to prevent sharp
differences in supply being taken advantage of by approved addresses.

Alleviation:

A comment was introduced properly defining this behaviour.

Type Severity Location

Coding Style Informational XCAmple.sol L419, L429

 XCA-05: Inexistent Error Message

Description:

Error messages should always accompany a require invocation to aid in both explaining what
the imposed check is meant to achieve as well as aid in debugging processes.

Recommendation:

We advise that an error message is provided for the linked require check.

Alleviation:

The team introduced error messages to the linked require checks.

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a
transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such
as overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only
functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases
that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the
result of a struct assignment operation affecting an in-memory struct rather than an in-
storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of
private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements on
the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw
format and should otherwise be specified as constant contract variables aiding in their legibility
and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to
compile using the specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

