
Xend.Finance: Esusu
Smart Contracts

Security Assessment

January 27th, 2021

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. These reports are not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal
compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any
particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice
of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their
code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each
company and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help
reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing
technologies, and in no way claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK
by a Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation and
overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the intention to increase
the quality of the company/product's IT infrastructure and or source code.

Project Name Xend.Finance: Esusu

Description The project comprise of Esusu service where user deposits are staked on
yearn.finance to earn interest.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. 2242488840d3a07a71ad2ae667425f8ae391a808
2. 8e97179757a2f97ce4db71b8ffe5f3f31a045b5a 3.
9d86eff2366ea6815ccc59f3b1c8553f39887d93

Delivery Date January 27th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline November 6th, 2020 - January 27th, 2021

Total Issues 68

 Total Critical 4

 Total Major 1

 Total Medium 0

 Total Minor 4

 Total Informational 59

 Overview

Project Summary

Audit Summary

Vulnerability Summary

 Executive Summary

This report represents the results of CertiK’s engagement with Xend on their implementation of the Esusu smart
contracts.

Our findings mainly refer to optimizations and a couple of major issues. All of the findings except a few
informational were remediated. The overall security of the contracts can be deemed as high after the remediations
were applied.

ID Contract Location

EAR EsusuAdapter.sol EsusuAdapter.sol

ESE EsusuService.sol EsusuService.sol

ESG EsusuStorage.sol EsusuStorage.sol

EAW EsusuAdapterWithdrawalDelegate.sol EsusuAdapterWithdrawalDelegate.sol

IEA IEsusuAdapter.sol IEsusuAdapter.sol

IES IEsusuService.sol IEsusuService.sol

IES IEsusuStorage.sol IEsusuStorage.sol

IRC IRewardConfig.sol IRewardConfig.sol

OWN Ownable.sol Ownable.sol

OSE OwnableService.sol OwnableService.sol

RCG RewardConfig.sol RewardConfig.sol

 Files In Scope

6%
1%6%

87%

Finding Summary

Critical
Major
Minor
Informational

ID Title Type Severity Resolved

ESG-
01

Inefficient storage layout Gas
Optimization Informational

ESG-
02

Incorrect Grammar Language
Specific Informational

ESG-
03

Unused declared data-structure Coding Style
 Informational

ESG-
04

Redundant Variable Initialization Coding Style
 Informational

ESG-
05

Redundant Statements Dead Code
 Informational

 Findings

ESG-
06

Inefficient mapping declerations Gas
Optimization Informational

ESG-
07

Inefficient storage data initialization Gas
Optimization Informational

ESG-
08

Inefficient Greater-Than Comparison w/ Zero Gas
Optimization Informational

ESG-
09

require statement can be substituted with a
modifier

Gas
Optimization Informational

ESG-
10

Inefficiant local variable decleration Gas
Optimization Informational

ESG-
11

Inefficient code Gas
Optimization Informational

ESG-
12

Inefficient code Gas
Optimization Informational

ESG-
13

Inefficient storage access Gas
Optimization Informational

ESG-
14

Ineffectual code Dead Code
 Informational

ESG-
15

Inefficient storage struct values assignment Gas
Optimization Informational

ESG-
16

Explicitly returning local variable Gas
Optimization Informational

ESG-
17

Unlocked Compiler Version Language
Specific Informational

ESG-
18

Usage of alias uint instead of complete form
uint256

Coding Style
 Informational

ESE-
01

Usage of alias uint instead of complete form
uint256

Language
Specific Informational

ESE-
02

Anyone can deposit funds on an address's behalf Logical Issue Major

ESE-
03

Incorrect code Compiler Error Critical

ESE-
04

Incorrect code Compiler Error Critical

ESE-
05

Unlocked Compiler Version Language
Specific Informational

ESE-
06

Redundant Statements Dead Code
 Informational

OSE-
01

if block should be substitued with require
statement

Coding Style Minor

OSE-
02

if block can be substituted with a require
statement

Coding Style Minor

OSE-
03

Unlocked Compiler Version Language
Specific Informational

OSE-
04

Incorrect contract name Compiler Error Critical

EAR-
01

Redundant Statements Dead Code
 Informational

EAR-
02

Non-idiomatic location library import in the
contract

Language
Specific Informational

EAR-
03

Redundant storage variable Gas
Optimization Informational

EAR-
04

Mutability Specifiers Missing Gas
Optimization Informational

EAR-
05

Inefficient Greater-Than Comparison w/ Zero Gas
Optimization Informational

EAR-
06

Comparison with boolean literal Gas
Optimization Informational

EAR-
07

Requisite Value of ERC-20 transferFrom() /
transfer() Call

Logical Issue Minor

EAR-
08

Incorrect spelling Coding Style
 Informational

EAR-
09

Inefficient code Gas
Optimization Informational

EAR-
10

Inefficient code Gas
Optimization Informational

EAR-
11

Unused local variable Gas
Optimization Informational

EAR-
12

Incorrect order of functions Language
Specific Informational

EAR-
13

Unlocked Compiler Version Language
Specific Informational

EAR-
14

Usage of alias uint instead of complete form
uint256

Language
Specific Informational

EAR-
15

Function visibility can be changed to external Language
Specific Informational

EAW-
01

Redundant Statements Dead Code
 Informational

EAW-
02

The require call does not have a reason string Language
Specific Informational

EAW-
03

Requisite Value of ERC-20 transferFrom() /
transfer() Call

Logical Issue Minor

EAW-
04

Incorrect code implementation Volatile Code Critical

EAW-
05

Inefficient Greater-Than Comparison w/ Zero Gas
Optimization Informational

EAW-
06

Comparison with boolean literal Language
Specific Informational

EAW-
07

Inefficient code Gas
Optimization Informational

EAW-
08

Inefficient code Gas
Optimization Informational

EAW-
09

Inefficient code Gas
Optimization Informational

EAW-
10

Usage of alias uint instead of complete form
uint256

Language
Specific Informational

EAW-
11

Function visibility can be changed to external Gas
Optimization Informational

EAW-
12

Unlocked Compiler Version Language
Specific Informational

RCG-
01

Mutability Specifiers Missing Gas
Optimization Informational

RCG-
02

Mutability Specifiers Missing Gas
Optimization Informational

RCG-
03

Redundant Statements Dead Code
 Informational

RCG-
04

Comparison with boolean literal Language
Specific Informational

RCG-
05

Explicitly returning a local variable from function Gas
Optimization Informational

RCG-
06

Incorrect Spelling Coding Style
 Informational

RCG-
07

Incorrect order of functions Language
Specific Informational

RCG-
08

Usage of alias uint instead of complete form
uint256

Language
Specific Informational

RCG-
09

Unlocked Compiler Version Language
Specific Informational

IEA-
01

Unlocked Compiler Version Language
Specific Informational

IES-
01

Unlocked Compiler Version Language
Specific Informational

IES-
02

Unlocked Compiler Version Language
Specific Informational

IRC-
01

Unlocked Compiler Version Language
Specific Informational

Type Severity Location

Gas Optimization Informational EsusuStorage.sol L30, L33-L34

 ESG-01: Inefficient storagestorage layout

Description:

The struct EsusuCycle 's declaration is inefficient as the struct's properties on the aforementioned lines can
be placed together to tight pack the data to use only one storage slot.

Recommendation:

We recommend to place the struct properties on the aforementioned lines next to each other to tight pack the
storage slot.

Alleviation:

Alleviation were applied as advised.

struct EsusuCycle {
 address Owner;
 CurrencyEnum Currency;
 CycleStateEnum CycleState;
}

Type Severity Location

Language Specific Informational EsusuStorage.sol L37

 ESG-02: Incorrect Grammar

Description:

The comment on the aforementioned line is grammatically incorrect.

Recommendation:

We recommend to recitify the comment on the aforementioned line.

Alleviation:

Alleviation were applied as advised.

// Time, when the cycle starts has elapsed. Anyone can start cycle after this time has
elapsed

Type Severity Location

Coding Style Informational EsusuStorage.sol L42-L46

 ESG-03: Unused declared data-structure

Description:

The struct Member declared on the aforementioned lines is never used in the code.

Recommendation:

We recommend to remove the struct Member on the aforementioned lines to increase the legibility of the codebase
as the struct is never used in the code.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Coding Style Informational EsusuStorage.sol L66

 ESG-04: Redundant Variable Initialization

Description:

All variable types within Solidity are initialized to their default "empty" value, which is usually their zeroed out
representation. Particularly:

uint / int : All uint and int variable types are initialized at 0
address : All address types are initialized to address(0)
byte : All byte types are initialized to their byte(0) representation
bool : All bool types are initialized to false
ContractType : All contract types (i.e. for a given contract ERC20 {} its contract type is ERC20) are

initialized to their zeroed out address (i.e. for a given contract ERC20 {} its default value is
ERC20(address(0)))
struct : All struct types are initialized with all their members zeroed out according to this table

Recommendation:

We advise that the linked initialization statements are removed from the codebase to increase legibility.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Dead Code Informational EsusuStorage.sol L56, L64

 ESG-05: Redundant Statements

Description:

The linked statements do not affect the functionality of the codebase and appear to be either leftovers from test
code or older functionality.

Recommendation:

We advise that they are removed to better prepare the code for production environments.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Gas Optimization Informational EsusuStorage.sol L69, L74-L78

 ESG-06: Inefficient mappingmapping declerations

Description:

The mapping declerations on the aforementioned lines is inefficient and can be converted into a single mapping that
utilizes a struct to reperesnt data all across all mappings.

Recommendation:

We recommend to use struct to represent data across mappings on the aforementioned lines as all of the mappings
have cycleId as their key.

Alleviation:

No alleviations.

struct CycleData {
 EsusuCycle esusuCycle;
 position mapping(address=>uint);
 beneficiary mapping(address=> uint);
 withdrawnCapital mapping(address=> uint);
}

mapping(uint256 => CycleData) public cyclesData;

Type Severity Location

Gas Optimization Informational EsusuStorage.sol L107-L120

 ESG-07: Inefficient storagestorage data initialization

Description:

The code on the aforementioned initialize storage data in an inefficient way by accessing struct through mapping
each time when it updates the property on struct.

Recommendation:

We recommend to introduce a local storage variable of type EsusuCycle and then update properties through this
local variable to save gas cost associated with redundant mapping lookup for struct access.

Alleviation:

Alleviation were applied as advised.

EsusuCycle storage cycle = EsusuCycleMapping[EsusuCycleId];
cycle.[property] = [value];

Type Severity Location

Gas
Optimization Informational

EsusuStorage.sol L129, L144, L156, L165, L175, L184, L193, L202, L211,
L219, L258, L267, L318, L248

 ESG-08: Inefficient Greater-Than Comparison w/ Zero

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the non-negative integer
range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Gas
Optimization Informational

EsusuStorage.sol L129, L144, L156, L165, L175, L184, L193, L202, L211,
L219, L258, L267, L318

 ESG-09: requirerequire statement can be substituted with a modifiermodifier

Description:

The require statements on the aforementioned line can substituted with a modifier to increase the legibility of the
code.

Recommendation:

We recommend to introduce a modifier.

The modfier can be used across all functions like so.

Alleviation:

Alleviation were applied as advised.

modifier isCycleIdValid(uint256 esusuCycleId) {
 require(esusuCycleId > 0 && esusuCycleId <= EsusuCycleId, "Cycle ID must be within
valid EsusuCycleId range");
}

function funcName(uint256 esusuCycleId) isCycleIdValid(esusuCycleId) {...}

Type Severity Location

Gas Optimization Informational EsusuStorage.sol L158, L167, L177, L186, L195, L204, L213, L221

 ESG-10: Inefficient local variable declaration

Description:

The variable declerations on the aforementioned lines are inefficient as whole struct is copied to memory yet only
single property is read from it.

Recommendation:

We recommend to directly return the struct properties from functions instead of storing them in a local variable.

Alleviation:

Alleviation were applied as advised.

return EsusuCycleMapping[esusuCycleId].propertyName;

Type Severity Location

Gas Optimization Informational EsusuStorage.sol L225, L234

 ESG-11: Inefficient code

Description:

The functions on the aforementioned lines make use of inefficient local variables which are only utilized once in the
function's code.

Recommendation:

We recommend to directly utilize the mapping value instead of making use of local variables to save gas cost
associated with extra local variables decelrations.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Gas Optimization Informational EsusuStorage.sol L243

 ESG-12: Inefficient code

Description:

The function on the aforementioned line contains inefficient code which makes use of inefficient local variable and
inefficient if-else block.

Recommendation:

We recommend to optimize the code in the aforementioned function.

Alleviation:

Alleviation were applied as advised.

function IsMemberInCycle(address memberAddress,uint esusuCycleId) external view
returns(bool){
 return MemberAddressToMemberCycleMapping[memberAddress][esusuCycleId].CycleId > 0;
}

Type Severity Location

Gas Optimization Informational EsusuStorage.sol L260-L262

 ESG-13: Inefficient storagestorage access

Description:

The aforementioned lines access same storage slot twice which is an inefficient implementation.

Recommendation:

We advise to use a local variable to return the value instead of directly reading from the storage .

Alleviation:

Alleviation were applied as advised.

uint256 amount = EsusuCycleMapping[esusuCycleId].TotalAmountDeposited.add(amount);
EsusuCycleMapping[esusuCycleId].TotalAmountDeposited = amount;
return amount;

Type Severity Location

Dead Code Informational EsusuStorage.sol L276

 ESG-14: Ineffectual code

Description:

The aforementioned line add 0 to a storage variable which does not result in change of value of the variable and
hence the line can be considered a dead code.

Recommendation:

We recommend to remove the aforementioned line from the code.

Alleviation:

Alleviation were applied as advised.

Alleviation:
Alleviation were applied as advised.

Type Severity Location

Gas Optimization Informational EsusuStorage.sol L304-L307

 ESG-15: Inefficient storagestorage struct values assignment

Description:

The aforementioned lines update the properties of struct by accessing it through mapping. Each line perform
mapping lookup operation to retrieve struct which inefficient.

Recommendation:

We recommend to use a local storage variable pointing to struct and update properties directly on it to save gas
cost associated with redundant mapping lookups.

Alleviation:

Alleviation were applied as advised.

EsusuCycle storage cycle = EsusuCycleMapping[esusuCycleIdi];
cycle.property = value;

Type Severity Location

Gas Optimization Informational EsusuStorage.sol L356, L362-L364

 ESG-16: Explicitly returning local variable

Description:

The function CalculateMemberWithdrawalTime explicitly returns a local variable which increases the overall cost of
gas.

Recommendation:

Since named return variables can be declared in the signature of a function, consider refactoring to remove the
localvariable declaration and explicit return statement in order to reduce the overall cost of gas.

Alleviation:

Alleviation were applied as advised.

function CalculateMemberWithdrawalTime(uint cycleId, address member) external view
returns(uint withdrawalTime){

 mapping(address=>uint) storage memberPositionMapping =
CycleToMemberPositionMapping[cycleId];

 uint memberPosition = memberPositionMapping[member];

 withdrawalTime =
(EsusuCycleMapping[cycleId].CycleStartTime.add(memberPosition.mul(EsusuCycleMapping[cyc
leId].PayoutIntervalSeconds)));
}

Type Severity Location

Language Specific Informational EsusuStorage.sol L2

 ESG-17: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviation were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Coding Style Informational EsusuStorage.sol L1

 ESG-18: Usage of alias uintuint instead of complete form uint256uint256

Description:

The contract is using uint to declare 256-bit unsigned integers. Although, uint is an alias for uint256 and both
represent the same underlying integer allocation. It is advisable that for clean coding practices the complete form
uint256 should be used instead of the alias uint .

Recommendation:

we advise to use uint256 instead of alias uint in all of the occurrences in the contract.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Language Specific Informational EsusuService.sol L1

 ESE-01: Usage of alias uintuint instead of complete form uint256uint256

Description:

The contract is using uint to declare 256-bit unsigned integers. Although, uint is an alias for uint256 and both
represent the same underlying integer allocation. It is advisable that for clean coding practices the complete
form\n uint256 should be used instead of the alias uint .

Recommendation:

we advise to use uint256 instead of alias uint in all of the occurrences in the contract.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Logical Issue Major EsusuService.sol L57

 ESE-02: Anyone can deposit funds on an address's behalf

Description:

The call into Esusu Adapter on the aforementioned line passes member as second argument to the function
JoinEsusu which later utilizes funds from member using transferFrom enabling a random address moving funds

for the member if there is sufficient amount is approved to the Esusu Adapter contract.

Recommendation:

We advise to use msg.sender instead of member parameter so a user can only deposit funds of his own and not of
others to safeguard against unintended deposits from users.

Alleviation:

Alleviation were applied as advised.

_esusuAdapter.JoinEsusu(esusuCycleId, msg.sender);

Type Severity Location

Compiler Error Critical EsusuService.sol L92-L94

 ESE-03: Incorrect code

Description:

The function on the aforementioned lines expects a return value of bool type but no value is returned from the
body of the function.

Recommendation:

We recommend to correct the code and prepend the keyword return on L93 .

Alleviation:

Alleviation were applied as advised.

function IsMemberEligibleToWithdrawROI(uint esusuCycleId, address member) external view
returns(bool){
 return
_esusuAdapterWithdrawalDelegate.IsMemberEligibleToWithdrawROI(esusuCycleId,member);
}

Type Severity Location

Compiler Error Critical EsusuService.sol L96-L98

 ESE-04: Incorrect code

Description:

The function on the aforementioned lines expects a return value of type bool yet no value is returned from the
body of the function.

Recommendation:

We advise to prepend the keywork return on L97 to rectify the code.

Alleviation:

Alleviation were applied as advised.

function IsMemberEligibleToWithdrawCapital(uint esusuCycleId, address member) external
view returns(bool){
 return
_esusuAdapterWithdrawalDelegate.IsMemberEligibleToWithdrawCapital(esusuCycleId,member);
}

Type Severity Location

Language Specific Informational EsusuService.sol L1

 ESE-05: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviation were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Dead Code Informational EsusuService.sol L13

 ESE-06: Redundant Statements

Description:

The linked statements do not affect the functionality of the codebase and appear to be either leftovers from test
code or older functionality.

Recommendation:

We advise that they are removed to better prepare the code for production environments.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Coding Style Minor OwnableService.sol L32-L34

 OSE-01: ifif block should be substitued with requirerequire statement

Description:

The if block on the aforementioned evaluates to false when an zero address is provided yet the transaction
executes successfully without setting a new owner.

Recommendation:

We advise to use a require statement such that the transaction reverts when an zero address is provided to
increase the legibility of the code.

Alleviation:

Alleviation were applied as advised.

require(newOwner != address(0), "address cannot be zero");
owner = newOwner;

Type Severity Location

Coding Style Minor OwnableService.sol L41-L43

 OSE-02: ifif block can be substituted with a requirerequire statement

Description:

The if block on the aforementioned line evaluates to false when an zero address is provided yet the transaction
executes successfully with setting a new contract owner.

Recommendation:

We recommend to use a require function such that the transaction reverts when an zero address is provided to
increase the legibility of the code.

Alleviation:

Alleviation were applied as advised.

require(newServiceContract != address(0), "address cannot be zero");

Type Severity Location

Language Specific Informational [OwnableService.sol L1]

 OSE-03: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviation were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Compiler Error Critical OwnableService.sol L9

 OSE-04: Incorrect contract name

Description:

The contract name on the aforementioned line is specified as Ownable while the filename and as well the usage of
this contract at several places in the codebase expects its name to be OwnableService .

Recommendation:

We advise to change the name of the contract from Ownable to OwnableService to correctly compile the
contracts codebase.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Dead Code Informational EsusuAdapter.sol L79, L86

 EAR-01: Redundant Statements

Description:

The linked statements do not affect the functionality of the codebase and appear to be either leftovers from test
code or older functionality.

Recommendation:

We advise that they are removed to better prepare the code for production environments.

Alleviation:

Alleviation were applied as advised partly.

Type Severity Location

Language Specific Informational EsusuAdapter.sol L96

 EAR-02: Non-idiomatic location librarylibrary import in the contract

Description:

The statement for linking of SafeMath library to uint256 on the aforementioned line has non-idiomatic location in
the contract.

Recommendation:

We adivse to move the aforementioned line at the start of contract's body to increase the quality of the codebase.

Alleviation:

Alleviation were applied as advised.

contract EsusuAdapter is OwnableService, ISavingsConfigSchema {
 using SafeMath for uint256;
 ...
}

Type Severity Location

Gas Optimization Informational EsusuAdapter.sol L85

 EAR-03: Redundant storagestorage variable

Description:

The purpose of the storage variable _owner on the aformentioned line can be served by the storage owner
inherited from the contract OwnableService .

Recommendation:

We recommend to remove the _owner from the aforementioned line and its usage in the code be replaced by the
storage variable owner .

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Gas Optimization Informational EsusuAdapter.sol L87, L90, L91, L92

 EAR-04: Mutability Specifiers Missing

Description:

The linked variables are assigned to only once, either during their contract-level declaration or during the
constructor 's execution.

Recommendation:

For the former, we advise that the constant keyword is introduced in the variable declaration to greatly optimize
the gas cost involved in utilizing the variable. For the latter, we advise that the immutable mutability specifier is set
at the variable's contract-level declaration to greatly optimize the gas cost of utilizing the variables. Please note that
the immutable keyword only works in Solidity versions v0.6.5 and up.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Gas Optimization Informational EsusuAdapter.sol L154, L225, L325

 EAR-05: Inefficient Greater-Than Comparison w/ Zero

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the non-negative integer
range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

Alleviation were applied as advised partly.

Type Severity Location

Gas Optimization Informational EsusuAdapter.sol L168, L409

 EAR-06: Comparison with boolean literal

Description:

The aforementioned lines perform comparison with boolean literal as predicate of if statements.

Recommendation:

We recommend to use the boolean expressions directly as predicate of if statements instead of comparing them
with boolean literals.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Logical Issue Minor EsusuAdapter.sol L178, L382, L394

 EAR-07: Requisite Value of ERC-20 transferFrom()transferFrom() / transfer()transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether (USDT) leading to

unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the transferFrom() /
transfer() function is safely invoked in all circumstances through the use of safeTransferFrom() /
safeTransfer() functions of SafeERC20 library.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Coding Style Informational EsusuAdapter.sol L200

 EAR-08: Incorrect spelling

Description:

The comment on the aforementioned line has incorrect spelling for the word multiply .

Recommendation:

We recommend to correct the word spellings on the aforementioned line.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Gas Optimization Informational EsusuAdapter.sol L319

 EAR-09: Inefficient code

Description:

The function on the aforementioned line has inefficient code in its body which can be optimized to save gas cost
associated with its execution.

Recommendation:

We recommend to use the following code in the function's body to have optimized code.

Alleviation:

Alleviation were applied as advised.

function _isMemberABeneficiaryInCycle(address memberAddress,uint esusuCycleId)
internal view returns(bool){
 return _esusuStorage.GetMemberCycleToBeneficiaryMapping(esusuCycleId, memberAddress)
> 0;
}

Type Severity Location

Gas Optimization Informational EsusuAdapter.sol L333

 EAR-10: Inefficient code

Description:

The function on the aforementioned line has inefficient code in its body which can be optimized to save gas cost
associated with its execution.

Recommendation:

We advise to use the following code in the function body to optimize it.

Alleviation:

Alleviation were applied as advised.

function _isMemberInWithdrawnCapitalMapping(address memberAddress,uint esusuCycleId)
internal view returns(bool){
 return _esusuStorage.GetMemberWithdrawnCapitalInEsusuCycle(esusuCycleId,
memberAddress) > 0;
}

Type Severity Location

Gas Optimization Informational EsusuAdapter.sol L353

 EAR-11: Unused local variable

Description:

The local variable exists is assigned the first value from the tuple returned from the function. This local variable is
never used in the code and hence its decleration can be omitted.

Recommendation:

We recommend to skip the local variable exists declaration on the aforementioned line to save gas cost
associated with it.

Alleviation:

Alleviation were applied as advised.

(, uint index) = _groupsContract.getGroupIndexerByName(name);

Type Severity Location

Language Specific Informational EsusuAdapter.sol

 EAR-12: Incorrect order of functions

Description:

The structure of the codebase does not conform to the official Solidity style guide of v0.6.x .

Recommendation:

An indicative excerpt of the style guide is that functions should be grouped according to their visibility and ordered:

Within a grouping, place the view and pure functions last.

Alleviation:

Alleviation were applied as advised.

constructor
receive function (if exists)
fallback function (if exists)
external
public
internal
private

Type Severity Location

Language Specific Informational EsusuAdapter.sol L1

 EAR-13: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviation were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Language Specific Informational EsusuAdapter.sol L1

 EAR-14: Usage of alias uintuint instead of complete form uint256uint256

Description:

The contract is using uint to declare 256-bit unsigned integers. Although, uint is an alias for uint256 and both
represent the same underlying integer allocation. It is advisable that for clean coding practices the complete
form\n uint256 should be used instead of the alias uint .

Recommendation:

we advise to use uint256 instead of alias uint in all of the occurrences in the contract.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Language
Specific Informational

EsusuAdapter.sol L122, L149, L208, L274, L279, L302, L309, L350,
L374

 EAR-15: Function visibility can be changed to externalexternal

Description:

The functions on the aforementioned lines can have their visibilities changed from public to external as they are
never called from within the contract.

Recommendation:

We recommend to changed the visibilites of the functions on the aforementioned lines from public to external .

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Dead Code Informational EsusuAdapterWithdrawalDelegate.sol L54-L63

 EAW-01: Missing mutability specifier

Description:

The linked lines do not have mutability specificier for the variables declared..

Recommendation:

We advise that the mutability specifier is added for the linked variable declarations.

Alleviation:

No alleviations.

Type Severity Location

Language Specific Informational EsusuAdapterWithdrawalDelegate.sol L105

 EAW-02: The requirerequire call does not have a reasonreason string

Description:

The require call on the aforementioned line does not have a reason string.

Recommendation:

We advise to add the reason string in the require call on the aforementioned line to increase the legibility of the
code.

Alleviation:

Alleviation were applied as advised.

require(_isMemberEligibleToWithdrawCapital(esusuCycleId,member), "member is not
eligible to withdraw");

Type Severity Location

Logical Issue Minor EsusuAdapterWithdrawalDelegate.sol L127, L171, L290, L321

 EAW-03: Requisite Value of ERC-20 transferFrom()transferFrom() / transfer()transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether (USDT) leading to

unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the transferFrom() /
transfer() function is safely invoked in all circumstances through the use of safeTransferFrom() /
safeTransfer() functions of SafeERC20 library.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Volatile Code Critical EsusuAdapterWithdrawalDelegate.sol L235-L240

 EAW-04: Incorrect code implementation

Description:

The code block on the aforementioned lines calculate the ROI in DAI for transfer to the user. It is using incorrect
equations which results in incorrect amount beint sent to user as ROI .

Recommendation:

We recommend to rectify the equations to correctly send the ROI amount to the user. Aftert having discussion with
the team, the correct payout calculation code was identified as followed:

Alleviation:

Alleviation were applied as advised.

uint Bt = _esusuStorage.GetEsusuCycleTotalBeneficiaries(esusuCycleId);
uint Ta = TotalMembers.sub(Bt);
uint Troi =
overallGrossDaiBalance.sub(_esusuStorage.GetEsusuCycleTotalAmountDeposited(esusuCycleId
).sub(_esusuStorage.GetEsusuCycleTotalCapitalWithdrawn(esusuCycleId)));
uint Mroi = Troi.div(Ta);

Type Severity Location

Gas Optimization Informational EsusuAdapterWithdrawalDelegate.sol L362, L389, L416, L429

 EAW-05: Inefficient Greater-Than Comparison w/ Zero

Description:

The linked greater-than comparisons with zero compare variables that are restrained to the non-negative integer
range, meaning that the comparator can be changed to an inequality one which is more gas efficient.

Recommendation:

We advise that the above paradigm is applied to the linked greater-than statements.

Alleviation:

Alleviation were applied as advised partly.

Type Severity Location

Language Specific Informational EsusuAdapterWithdrawalDelegate.sol L371, L397, L399

 EAW-06: Comparison with boolean literal

Description:

The aforementioned line perform comparison with boolean literals.

Recommendation:

Boolean expressions can be used directly instead of comparing them with boolean literals to increase the legibility of
the codebase.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Gas Optimization Informational EsusuAdapterWithdrawalDelegate.sol L375-L380

 EAW-07: Inefficient code

Description:

The if-else block on the aforementioned lines is unnecessary and can be replaced with a return statement.

Recommendation:

We recommend to remove the if-else block and replace it with a return statement.

Alleviation:

Alleviation were applied as advised.

return now > memberWithdrawalTime;

Type Severity Location

Gas Optimization Informational EsusuAdapterWithdrawalDelegate.sol L416-L421

 EAW-08: Inefficient code

Description:

The if-else block on the aforementioned lines is inefficient can be replaced with a return statement.

Recommendation:

We advise to remove if-else block and use return statement.

Alleviation:

Alleviation were applied as advised.

return amount > 0;

Type Severity Location

Gas Optimization Informational EsusuAdapterWithdrawalDelegate.sol L429-L434

 EAW-09: Inefficient code

Description:

The if-else block on the aforementioned lines is unnecessary and can be replaced with a return statement.

Recommendation:

We recommend to remove the if-else block and replace with a return statement.

Alleviation:

Alleviation were applied as advised.

return amount > 0;

Type Severity Location

Language Specific Informational EsusuAdapterWithdrawalDelegate.sol L1

 EAW-10: Usage of alias uintuint instead of complete form uint256uint256

Description:

The contract is using uint to declare 256-bit unsigned integers. Although, uint is an alias for uint256 and both
represent the same underlying integer allocation. It is advisable that for clean coding practices the complete
form\n uint256 should be used instead of the alias uint

Recommendation:

we advise to use uint256 instead of alias uint in all of the occurrences in the contract.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Gas Optimization Informational EsusuAdapterWithdrawalDelegate.sol L100, L219, L340, L351

 EAW-11: Function visibility can be changed to externalexternal

Description:

The functions on the aforementioned lines can have their visibilities changed from public to external as they are
never called from within the contract.

Recommendation:

We recommend to change the visibilites of the functions on the aforementioned lines from public to external .

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Language Specific Informational EsusuAdapterWithdrawalDelegate.sol L1

 EAW-12: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviation were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Gas Optimization Informational RewardConfig.sol L79, L80

 RCG-01: Mutability Specifiers Missing

Description:

The linked variables are assigned to only once, either during their contract-level declaration or during the
constructor 's execution.

Recommendation:

For the former, we advise that the constant keyword is introduced in the variable declaration to greatly optimize
the gas cost involved in utilizing the variable. For the latter, we advise that the immutable mutability specifier is set
at the variable's contract-level declaration to greatly optimize the gas cost of utilizing the variables. Please note that
the immutable keyword only works in Solidity versions v0.6.5 and up.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Gas Optimization Informational RewardConfig.sol L81

 RCG-02: Mutability Specifiers Missing

Description:

The linked variables are assigned to only once, either during their contract-level declaration or during the
constructor 's execution.

Recommendation:

For the former, we advise that the constant keyword is introduced in the variable declaration to greatly optimize
the gas cost involved in utilizing the variable. For the latter, we advise that the immutable mutability specifier is set
at the variable's contract-level declaration to greatly optimize the gas cost of utilizing the variables. Please note that
the immutable keyword only works in Solidity versions v0.6.5 and up.

Alleviation:

No alleviations.

Type Severity Location

Dead Code Informational RewardConfig.sol L84, L91

 RCG-03: Redundant Statements

Description:

The linked statements do not affect the functionality of the codebase and appear to be either leftovers from test
code or older functionality.

Recommendation:

We advise that they are removed to better prepare the code for production environments.

Alleviation:

Alleviation were applied as advised partly.

Type Severity Location

Language Specific Informational RewardConfig.sol L136, L157, L177

 RCG-04: Comparison with boolean literal

Description:

The aforementioned lines perform comparison with boolean literal.

Recommendation:

We advise to directly use the boolean expression on the aforementioned lines instead of performing comparison
with boolean literal.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Gas
Optimization Informational

RewardConfig.sol L133, L154, L174, L197, L229, L240, L254, L270,
L286

 RCG-05: Explicitly returning a local variable from function

Description:

The functions on the aforementioned lines explicitly return a local variable which increases the overall cost of gas.

Recommendation:

Since named return variables can be declared in the signature of a function, consider refactoring to remove the local
variable declaration and explicit return statement from all of the function on the aforementioned lines in order to
reduce the overall cost of gas.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Coding Style Informational RewardConfig.sol L194

 RCG-06: Incorrect Spelling

Description:

The comment on the aforementioned line has incorrect spelling for the word multiplied .

Recommendation:

We recommend to correct the spellings of the word on the aforementioned line.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Language Specific Informational RewardConfig.sol

 RCG-07: Incorrect order of functions

Description:

The structure of the codebase does not conform to the official Solidity style guide of v0.6.x .

Recommendation:

An indicative excerpt of the style guide is that functions should be grouped according to their visibility and ordered:

Within a grouping, place the view and pure functions last.

Alleviation:

Alleviation were applied as advised.

constructor
receive function (if exists)
fallback function (if exists)
external
public
internal
private

Type Severity Location

Language Specific Informational RewardConfig.sol L1

 RCG-08: Usage of alias uintuint instead of complete form uint256uint256

Description:

The contract is using uint to declare 256-bit unsigned integers. Although, uint is an alias for uint256 and both
represent the same underlying integer allocation. It is advisable that for clean coding practices the complete
form\\n uint256 should be used instead of the alias uint .\n",
The contract is using uint to declare 256-bit unsigned integers. Although, uint is an alias for uint256 and both
represent the same underlying integer allocation. It is advisable that for clean coding practices the complete form
uint256 should be used instead of the alias uint .

Recommendation:

we advise to use uint256 instead of alias uint in all of the occurrences in the contract.

Alleviation:

Alleviation were applied as advised.

Type Severity Location

Language Specific Informational RewardConfig.sol L1

 RCG-09: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviation were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Language Specific Informational IEsusuAdapter.sol L1

 IEA-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviation were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Language Specific Informational IEsusuService.sol L1

 IES-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviation were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Language Specific Informational IEsusuStorage.sol L1

 IES-02: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviation were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Language Specific Informational IRewardConfig.sol L1

 IRC-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviation were applied as advised.

pragma solidity 0.6.2;

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate different,
more optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as overflows,
incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect notion on
how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions being invoke-
able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in
a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a struct
assignment operation affecting an in-memory struct rather than an in-storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or
delete .

Coding Style

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to make the codebase
more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a
constructor assignment imposing different require statements on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and should
otherwise be specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile using the
specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

