
Xend.Finance: Xend Token
Smart Contracts

Security Assessment

January 27th, 2021

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. These reports are not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal
compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any
particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice
of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their
code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each
company and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help
reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing
technologies, and in no way claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK
by a Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation and
overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the intention to increase
the quality of the company/product's IT infrastructure and or source code.

Project Name Xend.Finance: Xend Token

Description The codebase comprise of ERC20 implementation of Xend token which
allows burning, minting and buying of XendToken.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. 4cf8a749224deac304958bbc1ad54512688db9be
2. ad4f0efb31c87f52477a2653a6d4f70eb94e5571
3. 2d7cfb61ef8797c04da8af0492090664816d7bea

Delivery Date January 27th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline November 6th, 2020 - January 27th, 2021

Total Issues 11

 Total Critical 1

 Total Major 0

 Total Medium 0

 Total Minor 1

 Total Informational 9

 Overview

Project Summary

Audit Summary

Vulnerability Summary

 Executive Summary

This report represents the results of CertiK’s engagement with Xend on their implementation of the Xend Token
smart contracts.

Our findings mainly refer to optimizations and a single critical issue. All of the findings except a few informational
were remediated. The overall security of the contracts can be deemed as high after the remediations were applied.

ID Contract Location

ERC ERC20.sol ERC20.sol

IER IERC20.sol IERC20.sol

IXT IXendToken.sol IXendToken.sol

XTN XendToken.sol XendToken.sol

XTM XendTokenMinters.sol XendTokenMinters.sol

 Files In Scope

9%

9%

82%

Finding Summary

Critical
Medium
Informational

 Findings

ID Title Type Severity Resolved

XTN-01 Unlocked Compiler Version Language Specific Informational

XTN-02 Imports are not used Dead Code Informational

XTN-03 _price can be set by any address Logical Issue Critical

ERC-01 Unlocked Compiler Version Language Specific Informational

ERC-02 Import is not used Dead Code Informational

ERC-03 Ineffecutal code Mathematical Operations Informational

ERC-04 Transfer event is not fired Volatile Code Medium

ERC-05 Unused function Gas Optimization Informational

XTM-01 Comparison with a literal boolean value Gas Optimization Informational

IXT-01 Unlocked Compiler Version Language Specific Informational

IER-01 Unlocked Compiler Version Language Specific Informational

Type Severity Location

Language Specific Informational XendToken.sol L1

 XTN-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Recommendation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Dead Code Informational XendToken.sol L4, L6

 XTN-02: Imports are not used

Description:

The contracts from the files imported on the aforementioned lines are never used in the contract.

Recommendation:

We advise to remove the imports from the aforementioned lines to increase the legibility and quality of the
codebase.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Logical Issue Critical XendToken.sol L74

 XTN-03: _price_price can be set by any address

Description:

The function SetPrice on the aforementioned line can be called by any address setting the price of XendToken.

Recommendation:

We advise to restrict the execution of function by only the owner of the contract so that a random address could not
change the price of token.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Language Specific Informational ERC20.sol L3

 ERC-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Dead Code Informational ERC20.sol L9

 ERC-02: Import is not used

Description:

The contracts in the file imported on the aforementioned line are never used in the contract.

Recommendation:

We advise to remove the import on the aforementioned line to increase the legibility and quality of the codebase.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Mathematical Operations Informational ERC20.sol L70-L71

 ERC-03: Ineffecutal code

Description:

The assignments on the aforementioned lines take into account the previous values of the variable. As the code
resides inside the constructor and previous values are always zero so the consideration of previous can be ignored.

Recommendation:

We advise to directly the assign the values instead of adding new values to previous values as previous values are
always zero.

Alleviation:

Alleviations were applied as advised.

_totalSupply = totalSupply;
_balances[address(this)] = totalSupply;

Type Severity Location

Volatile Code Medium ERC20.sol L72

 ERC-04: TransferTransfer event is not fired

Description:

The constructor assigns totalSupply as balance to address(this) yet does not fire corresponding Transfer
event for the transfer. It violates the standard implementation of ERC20 tokens and can be problematic as many
dApps and Blockchain explorer rely on the Transfer event for their operations.

Recommendation:

We advise to fire Transfer event inside the constructor of the contract.

Alleviation:

Alleviations were applied as advised.

emit Transfer(address(0), address(this), totalSupply);

Type Severity Location

Gas Optimization Informational ERC20.sol L359

 ERC-05: Unused function

Description:

The function on the aforementioned is internal and never called from within the contract or any contract inheriting
this contract.

Recommendation:

We advise to remove the function on the aforementioned line as it is never used.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational XendTokenMinters.sol L10, L19, L26

 XTM-01: Comparison with a literal boolean value

Description:

The contract has several occurrences of comparison with a literal boolean values of true or false that can be
replaced replacing with compared expression itself to increase the legibility of the code.

Recommendation:

We advise to use the compared expression itself in place of expression's comparison with a boolean literal. The
expression can be replaced as is when the expression is expected to evaluate to true and negation of expression
can be used when the expression is expected to have false value.

Alleviation:

No alleviations.

Type Severity Location

Language Specific Informational IXendToken.sol L1

 IXT-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Language Specific Informational IERC20.sol l3

 IER-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate different,
more optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as overflows,
incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect notion on
how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions being invoke-
able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in
a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a struct
assignment operation affecting an in-memory struct rather than an in-storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or
delete .

Coding Style

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to make the codebase
more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a
constructor assignment imposing different require statements on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and should
otherwise be specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile using the
specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

