
Xend.Finance: Yearn-Dai
Smart Contracts

Security Assessment

January 27th, 2021

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. These reports are not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal
compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any
particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice
of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their
code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each
company and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help
reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing
technologies, and in no way claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK
by a Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation and
overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the intention to increase
the quality of the company/product's IT infrastructure and or source code.

Project Name Xend.Finance: Yearn-Dai

Description The repository allows investing of Dai in yearn finance and allows withdrawal.
It provides interface through an adapter-service pattern where the service
contract serves as main interacting contract for the functionality.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. bd8d35fb8d5919cb97e288dc7887aa7c6b8d29f5
2. e8bcbb45b88fda634c54b801375ff019aaa0fab0

Delivery Date January 27th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline November 17th, 2020 - January 27th, 2021

Total Issues 24

 Total Critical 2

 Total Major 0

 Total Medium 1

 Total Minor 11

 Total Informational 10

 Overview

Project Summary

Audit Summary

Vulnerability Summary

 Executive Summary

This report represents the results of CertiK’s engagement with Xend on their implementation of the Yearn-dai
contracts.

Our findings mainly refer to optimizations and a couple of major issues. All of the findings except a few
informational were remediated. The overall security of the contracts can be deemed as high after the remediations
were applied.

ID Contract Location

DLA DaiLendingAdapter.sol DaiLendingAdapter.sol

DLS DaiLendingService.sol DaiLendingService.sol

IDT IDaiToken.sol IDaiToken.sol

IYD IYDaiToken.sol IYDaiToken.sol

IDL IDaiLendingService.sol IDaiLendingService.sol

OWN Ownable.sol Ownable.sol

 Files In Scope

8%
4%

46%

42%

Finding Summary

Critical
Medium
Minor
Informational

ID Title Type Severity Resolved

OWN-
01

if block should be substitued with require call Coding Style Minor

OWN-
02

if block can be substituted with a require call Coding Style Minor

OWN-
03

Unlocked Compiler Version Language
Specific Informational

DLS-
01

Unlocked Compiler Version Language
Specific Informational

DLS-
02

if block can be substituted with a require
statement

Coding Style Minor

 Findings

DLA-
01

Unlocked Compiler Version Language
Specific Informational

DLA-
02

Mutability Specifiers Missing Gas
Optimization Informational

DLA-
03

Inefficient code Coding Style
 Informational

DLA-
04

storage is updated after external interaction Coding Style Medium

DLA-
05

Function visibility can be changed to external Gas
Optimization Informational

DLA-
06

Requisite Value of ERC-20 transferFrom() /
transfer() Call

Logical Issue Minor

DLA-
07

Requisite Value of ERC-20 transferFrom() /
transfer() Call

Logical Issue Minor

DLA-
08

Requisite Value of ERC-20 transferFrom() /
transfer() Call

Logical Issue Minor

DLA-
09

Requisite Value of ERC-20 transferFrom() /
transfer() Call

Logical Issue Minor

DLA-
10

Requisite Value of ERC-20 transferFrom() /
transfer() Call

Logical Issue Minor

DLA-
11

Requisite Value of ERC-20 transferFrom() /
transfer() Call

Logical Issue Minor

DLA-
12

Requisite Value of ERC-20 transferFrom() /
transfer() Call

Logical Issue Minor

DLA-
13

Requisite Value of ERC-20 transferFrom() /
transfer() Call

Logical Issue Minor

DLA-
14

Inefficient code Gas
Optimization Informational

IDT-01 Incorrect code Logical Issue Critical

IDT-02 Unlocked Compiler Version Language
Specific Informational

IYD-01 Unlocked Compiler Version Language

Specific Informational

IDL-01 Unlocked Compiler Version Language
Specific Informational

IDL-02 Function signature in interface not declared
external

Compiler Error Critical

Type Severity Location

Coding Style Minor Ownable.sol L32-L34

 OWN-01: ifif block should be substitued with requirerequire call

Description:

The if block on the aforementioned line evaluates to false when an zero address is provided yet the transaction
executes successfully with setting a new contract owner.

Recommendation:

We recommend to use a require function such that the transaction reverts when an zero address is provided to
increase the legibility of the code.

Alleviation:

Alleviations were applied as advised.

require(newOwner != address(0), "address cannot be zero");

Type Severity Location

Coding Style Minor Ownable.sol L41-L43

 OWN-02: ifif block can be substituted with a requirerequire call

Description:

The if block on the aforementioned line evaluates to false when an zero address is provided yet the transaction
executes successfully with setting a new contract owner.

Recommendation:

We recommend to use a require function such that the transaction reverts when an zero address is provided to
increase the legibility of the code.

Alleviation:

No alleviations.

require(newServiceContract != address(0), "address cannot be zero");

Type Severity Location

Language Specific Informational Ownable.sol L1

 OWN-03: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Language Specific Informational DaiLendingService.sol L1

 DLS-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Coding Style Minor DaiLendingService.sol L14

 DLS-02: ifif block can be substituted with a requirerequire statement

Description:

The if block on the aforementioned line evaluates to false when an zero address is provided yet the transaction
executes successfully with setting a new contract owner.

Recommendation:

We recommend to use a require function such that the transaction reverts when an zero address is provided to
increase the legibility of the code.

Alleviation:

No alleviations.

require(_owner != address(0), "address cannot be zero");

Type Severity Location

Language Specific Informational DaiLendingAdapter.sol L1

 DLA-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Gas Optimization Informational DaiLendingAdapter.sol L74, L76

 DLA-02: Mutability Specifiers Missing

Description:

The linked variables are assigned to only once, either during their contract-level declaration or during the
constructor 's execution.

Recommendation:

For the former, we advise that the constant keyword is introduced in the variable declaration to greatly optimize
the gas cost involved in utilizing the variable. For the latter, we advise that the immutable mutability specifier is set
at the variable's contract-level declaration to greatly optimize the gas cost of utilizing the variables. Please note that
the immutable keyword only works in Solidity versions v0.6.5 and up.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Coding Style Informational DaiLendingAdapter.sol L135-L140

 DLA-03: Inefficient code

Description:

The code on the aforementioned lines in GetNetRevenue is redundant as the same calculation is performed by the
function GetGrossRevenue .

Recommendation:

We recommend to utilize the call to function GetGrossRevenue in place of the aforementioned lines in
GetNetRevenue to reduce bytecode footprint of the contract which will result in reduced deployment gas cost and it

also increases the legibility of the codebase.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Coding Style Medium DaiLendingAdapter.sol L166-L170, L200-L204, L236-L242

 DLA-04: storagestorage is updated after external interaction

Description:

The aforementioned lines contain code blocks which update storage after external interactions are performed
which can open doors to re-entrancy attacks. Additionally, the dai and yDai tokens do not have constant
addresses within the current codebase, re-entrancy is still a possibility in the case that the token implementations
change to a malicious implementation.

Recommendation:

We recommend to update storage before the external interactions or ReentrancyGuard contract from
OpenZeppelin can be used and nonReentrant modifier can be added to the signatures of vulnerable functions.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational DaiLendingAdapter.sol L85, L89, L93, L100, L133, L147, L181, L218

 DLA-05: Function visibility can be changed to externalexternal

Description:

The functions on the aforementioned lines are never called from within the contract and hence their visibilities can
be changed to external .

Recommendation:

We recommend to change the visibility of the functions on the aforementioned lines from public to external as
they are never called from within the contract.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Logical Issue Minor DaiLendingAdapter.sol L114

 DLA-06: Requisite Value of ERC-20 transferFrom()transferFrom() / transfer()transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether (USDT) leading to

unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the transferFrom() /
transfer() function is safely invoked in all circumstances through the use of safeTransferFrom() /
safeTransfer() functions of SafeERC20 library.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Logical Issue Minor DaiLendingAdapter.sol L157

 DLA-07: Requisite Value of ERC-20 transferFrom()transferFrom() / transfer()transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether (USDT) leading to

unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the transferFrom() /
transfer() function is safely invoked in all circumstances through the use of safeTransferFrom() /
safeTransfer() functions of SafeERC20 library.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Logical Issue Minor DaiLendingAdapter.sol L163

 DLA-08: Requisite Value of ERC-20 transferFrom()transferFrom() / transfer()transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether (USDT) leading to

unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the transferFrom() /
transfer() function is safely invoked in all circumstances through the use of safeTransferFrom() /
safeTransfer() functions of SafeERC20 library.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Logical Issue Minor DaiLendingAdapter.sol L191

 DLA-09: Requisite Value of ERC-20 transferFrom()transferFrom() / transfer()transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether (USDT) leading to

unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the transferFrom() /
transfer() function is safely invoked in all circumstances through the use of safeTransferFrom() /
safeTransfer() functions of SafeERC20 library.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Logical Issue Minor DaiLendingAdapter.sol L197

 DLA-10: Requisite Value of ERC-20 transferFrom()transferFrom() / transfer()transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether (USDT) leading to

unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the transferFrom() /
transfer() function is safely invoked in all circumstances through the use of safeTransferFrom() /
safeTransfer() functions of SafeERC20 library.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Logical Issue Minor DaiLendingAdapter.sol L225

 DLA-11: Requisite Value of ERC-20 transferFrom()transferFrom() / transfer()transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether (USDT) leading to

unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the transferFrom() /
transfer() function is safely invoked in all circumstances through the use of safeTransferFrom() /
safeTransfer() functions of SafeERC20 library.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Logical Issue Minor DaiLendingAdapter.sol L233

 DLA-12: Requisite Value of ERC-20 transferFrom()transferFrom() / transfer()transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether (USDT) leading to

unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the transferFrom() /
transfer() function is safely invoked in all circumstances through the use of safeTransferFrom() /
safeTransfer() functions of SafeERC20 library.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Logical Issue Minor DaiLendingAdapter.sol L269

 DLA-13: Requisite Value of ERC-20 transferFrom()transferFrom() / transfer()transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether (USDT) leading to

unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the transferFrom() /
transfer() function is safely invoked in all circumstances through the use of safeTransferFrom() /
safeTransfer() functions of SafeERC20 library.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational DaiLendingAdapter.sol L147, L181, L218

 DLA-14: Inefficient code

Description:

The Withdraw , WithdrawByShares and WithdrawBySharesOnly functions contain code duplication and inefficient
userDaiDeposit mapping lookups.

Recommendation:

It would be advisable to make an internal _withdraw function, which has parameters and the capability to support
the functionality for all three public-facing withdraw functions, as well as looking up userDaiDeposits[owner] only
once, storing it in a local variable, and referencing that local variable instead of subsequent lookups of
userDaiDeposits[owner] .

Alleviation:

Alleviations were partly applied as advised.

Type Severity Location

Logical Issue Critical IDaiToken.sol L1

 IDT-01: Incorrect code

Description:

The file expects to contain interface for Dai Token yet it contains interface for IYDaiToken .

Recommendation:

We recommend to replace the IYDaiToken with IDaiToken in the file.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Language Specific Informational IDaiToken.sol L1

 IDT-02: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Language Specific Informational IYDaiToken.sol L1

 IYD-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Language Specific Informational IDaiLendingService.sol L1

 IDL-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Compiler Error Critical IDaiLendingService.sol L20

 IDL-02: Function signature in interfaceinterface not declared external

Description:

An interface can only have function signatures with visibilities specified as external yet the function signature on
the aforementioned line does not have its visibility specified.

Recommendation:

We advise to add the visibility of external to function signature on the aforementioned line.

Alleviation:

Alleviations were applied as advised.

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate different,
more optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as overflows,
incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect notion on
how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions being invoke-
able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in
a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a struct
assignment operation affecting an in-memory struct rather than an in-storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or
delete .

Coding Style

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to make the codebase
more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a
constructor assignment imposing different require statements on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and should
otherwise be specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile using the
specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

