
Xend Finance: Yearn Savings
Smart Contracts

Security Assessment

January 27th, 2021

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or
team. These reports are not, nor should be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor do they provide any indication of the technologies proprietors, business, business model or legal
compliance.

CertiK Reports should not be used in any way to make decisions around investment or involvement with any
particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice
of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase the quality of their
code while reducing the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each
company and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help
reduce the attack vectors and the high level of variance associated with utilizing new and consistently changing
technologies, and in no way claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code provided to CertiK
by a Client.
An organized collection of testing results, analysis and inferences made about the structure, implementation and
overall best practices of a particular piece of source code.
Representation that a Client of CertiK has indeed completed a round of auditing with the intention to increase
the quality of the company/product's IT infrastructure and or source code.

Project Name Xend Finance: Yearn Savings

Description The codebase comprise of contracts which allow staking of DAI tokens
individually and as group and allows yield farming on Yearn Dai contract.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. 0b93bc9c84e53dffca0e0c292fb1d214104fa241
2. 249b1989dbd98107e972fbcead25f5a4c4754f54
3. c95a05704ee7ce10bdd2ce30cbfdc2358b586070

Delivery Date January 27th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 2

Timeline November 6th, 2020 - January 27th, 2021

Total Issues 74

 Total Critical 5

 Total Major 5

 Total Medium 3

 Total Minor 12

 Total Informational 49

 Overview

Project Summary

Audit Summary

Vulnerability Summary

 Executive Summary

This report represents the results of CertiK’s engagement with Xend on their implementation of the Yearn-savings
smart contracts.

Our findings mainly refer to optimizations and a couple of major issues. All of the findings except a few
informational were remediated. The overall security of the contracts can be deemed as high after the remediations
were applied.

ID Contract Location

CYC Cycle.sol Cycle.sol

CRD ClientRecord.sol ClientRecord.sol

GRO Groups.sol Groups.sol

ICE ICycle.sol ICycle.sol

IGS IGroups.sol IGroups.sol

IGR IGroupSchema.sol IGroupSchema.sol

ICR IClientRecord.sol IClientRecord.sol

ISC ISavingsConfig.sol ISavingsConfig.sol

ICS IClientRecordShema.sol IClientRecordShema.sol

ISS ISavingsConfigSchema.sol ISavingsConfigSchema.sol

SCG SavingsConfig.sol SavingsConfig.sol

SOS StorageOwners.sol StorageOwners.sol

TRE Treasury.sol Treasury.sol

XFG XendFinanceGroup_Yearn_V1.sol XendFinanceGroup_Yearn_V1.sol

XFI XendFinanceIndividual_Yearn_V1.sol XendFinanceIndividual_Yearn_V1.sol

 Files In Scope

7%

7% 4%

16%

66%

Finding Summary

Critical
Major
Medium
Minor
Informational

ID Title Type Severity Resolved

IGR-
01

Unlocked Compiler Version Language Specific
 Informational

IGR-
02

Inefficient struct layout Gas Optimization
 Informational

IGR-
03

Inefficient struct layout Gas Optimization
 Informational

IGR-
04

Inefficient struct layout Gas Optimization
 Informational

SOS-
01

Unlocked Compiler Version Language Specific
 Informational

 Findings

SOS-
02

Inefficient functions Gas Optimization
 Informational

SOS-
03

if statement can subsituted with a require
statement

Volatile Code Minor

GRO-
01

Unlocked Compiler Version Language Specific
 Informational

GRO-
02

Unsafe addition Mathematical
Operations

 Minor

GRO-
03

Unsafe subtraction Mathematical
Operations

 Minor

GRO-
04

Unsafe addition Mathematical
Operations

 Minor

GRO-
05

Unsafe subtraction Mathematical
Operations

 Minor

GRO-
06

Inefficient function implementation Gas Optimization
 Informational

GRO-
07

Comparison with a literal boolean value Gas Optimization
 Informational

GRO-
08

Explicitly returning a local variable Gas Optimization
 Informational

CYC-
01

Unlocked Compiler Version Language Specific
 Informational

CYC-
02

Explicitly returning a local variable Gas Optimization
 Informational

CYC-
03

Comparison with a literal boolean value Gas Optimization
 Informational

CYC-
04

Inefficient function implementation Gas Optimization
 Informational

CYC-
05

updateCycleMember is not restricted by
onlyStorageOracle

Volatile Code Critical

CYC-
06

Incorrect code Control Flow Major

CYC-
07

Incorrect implementation of functions Volatile Code Major

CRD-
01

Unlocked Compiler Version Language Specific
 Informational

CRD-
02

Inefficient local variable Gas Optimization
 Informational

CRD-
03

Comparison with a literal boolean value Gas Optimization
 Informational

CRD-
04

Redundant Variable Initialization Coding Style
 Informational

CRD-
05

Inefficient storage update Gas Optimization
 Informational

ICS-
01

Unlocked Compiler Version Language Specific
 Informational

ISS-
01

Unlocked Compiler Version Language Specific
 Informational

ISS-
02

Inefficient struct layout Gas Optimization
 Informational

SCG-
01

Unlocked Compiler Version Language Specific
 Informational

SCG-
02

Empty constructor declaration Volatile Code
 Informational

SCG-
03

Comparison with a literal boolean value Gas Optimization
 Informational

SCG-
04

Explicitly returning a local variable Gas Optimization
 Informational

SCG-
05

Redundant Statements Dead Code
 Informational

SCG-
06

_validateRuleCreation always reverts the
transaction

Volatile Code Major

SCG-
07

modifyRule does not save the Rule Volatile Code Major

TRE- Unlocked Compiler Version Language Specific

01 Informational

TRE-
02

Redundant require statement Gas Optimization
 Informational

TRE-
03

Redundant require statement Gas Optimization
 Informational

TRE-
04

Comparison with a literal boolean value Gas Optimization
 Informational

TRE-
05

enum type is declared but never used Dead Code
 Informational

XFI-
01

Unlocked Compiler Version Language Specific
 Informational

XFI-
02

Redundant Variable Initialization Coding Style
 Informational

XFI-
03

Redundant storage variables Gas Optimization
 Informational

XFI-
04

Comparison with a literal boolean value Gas Optimization
 Informational

XFI-
05

Requisite Value of ERC-20 transferFrom() /
transfer() Call

Logical Issue Minor

XFI-
06

Inefficient local variable Gas Optimization
 Informational

XFI-
07

Function does not return a value Logical Issue Minor

XFI-
08

Unused local variables Dead Code
 Informational

XFI-
09

Incorrect code Logical Issue Critical

XFI-
10

Incorrect value provided for struct property Logical Issue Critical

XFI-
11

Incorrect code Logical Issue Critical

XFI-
12

Incorrect code Logical Issue Critical

XFI-
13

Possibility of re-entrancy attack Control Flow Medium

XFG-
01

Unlocked Compiler Version Language Specific
 Informational

XFG-
02

Redundant Variable Initialization Coding Style
 Informational

XFG-
03

Comparison with a literal boolean value Gas Optimization
 Informational

XFG-
04

Unnecessary local variables Gas Optimization
 Informational

XFG-
05

Explicitly returning a local variable Gas Optimization
 Informational

XFG-
06

Unnecessary local variables Gas Optimization
 Informational

XFG-
07

Function does return a value Dead Code Minor

XFG-
08

Requisite Value of ERC-20 transferFrom() /
transfer() Call

Logical Issue Minor

XFG-
09

Inefficient code Gas Optimization
 Informational

XFG-
10

Unsafe subtraction Mathematical
Operations

 Minor

XFG-
11

Unnecessary parenthesis around expressions Language Specific
 Informational

XFG-
12

Confusing modifier name Inconsistency
 Informational

XFG-
13

Unused local variables Gas Optimization
 Informational

XFG-
14

Unsafe subtraction Mathematical
Operations

 Minor

XFG-
15

Requisite Value of ERC-20 transferFrom() /
transfer() Call

Logical Issue Minor

XFG-
16

Ineffectual code Gas Optimization
 Informational

XFG-
17

Anyone can make a particular depositor join
cycle

Volatile Code Major

XFG-
18

Possibility of reentrancy attack Control Flow Medium

XFG-
19

Possibility of reentrancy attack Control Flow Medium

Type Severity Location

Language Specific Informational IGroupSchema.sol L1

 IGR-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Gas Optimization Informational IGroupSchema.sol L5, L9

 IGR-02: Inefficient struct layout

Description:

The struct properties of bool and address on the aforementioned lines can be placed together to tight pack the
storage layout of the struct.

Recommendation:

We recommend to place the struct properties of bool and address types on the aforementioned lines together so
they utilize only one slot instead of two slots.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational IGroupSchema.sol L13, L20, L26

 IGR-03: Inefficient struct layout

Description:

The struct properties of bool and enum on the aforementioned lines can be placed together to to tight pack the
struct.

Recommendation:

We advise to place the struct properties of bool and enum on the aforementioned lines next to each other so they
are stored in a single storage slot instead of three slots.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational IGroupSchema.sol L49, L52, L56

 IGR-04: Inefficient struct layout

Description:

The struct properties of bool and address types on the aforementioned lines can be placed together to tight
pack the struct.

Recommendation:

We advise to place the struct properties of bool and address on the aforementioned lines next to each other so
they are stored in a single storage slot instead of three slots.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Language Specific Informational StorageOwners.sol L1

 SOS-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Gas Optimization Informational StorageOwners.sol L11, L15

 SOS-02: Inefficient functions

Description:

The functions on the aforementioned lines can be replaced with a single function accepting the activate or decactive
state of the oracle as a bool parameter in the function signature. This will reduce the bytecode footprint of the
contract resulting in reduced gas cost for the deployment of the contract.

Recommendation:

We recommend to replace functions on the aforementioned with a single function that accepts status of the oracle
to change as bool parameter in the function signature.

Alleviation:

Alleviations were applied as advised.

function changeStorageOracleStatus(address oracle, bool status) external onlyOwner {
 storageOracles[oracle] = status;
}

Type Severity Location

Volatile Code Minor StorageOwners.sol L28-L30

 SOS-03: ifif statement can subsituted with a requirerequire statement

Description:

The if statement on the aforementioned does not revert the transaction when the newOwner is set to
address(0) .

Recommendation:

We advise to use a require statement in place of if statement that reverts when newOwner is set to
address(0) .

Alleviation:

No alleviations..

Type Severity Location

Language Specific Informational Groups.sol L1

 GRO-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Mathematical Operations Minor Groups.sol L55

 GRO-02: Unsafe addition

Description:

The aforementioned line performs unsafe addition which can result in overflow of integer value.

Recommendation:

We advise to use the add function from SafeMath library to perform safe addition which reverts the transaction if
overflow happens.

Alleviation:

Alleviations were applied as advised.

totalTokensDeposited[tokenAddress] = totalTokensDeposited[tokenAddress].add(amount);

Type Severity Location

Mathematical Operations Minor Groups.sol L69

 GRO-03: Unsafe subtraction

Description:

The aforementioned line performs unsafe subtraction which can be result in underflow of integer value.

Recommendation:

We advise to use sub function from SafeMath library to perform subtraction so that the transaction is reverted if
underflow happens.

Alleviation:

Alleviations were applied as advised.

totalTokensDeposited[tokenAddress] = totalTokensDeposited[tokenAddress].sub(amount);

Type Severity Location

Mathematical Operations Minor Groups.sol L86

 GRO-04: Unsafe addition

Description:

The aforementioned line performs unsafe addition which can result in overflow of integer value.

Recommendation:

We advise to use add function of SafeMath library to perform addition so that the transaction is reverted if
overflow happens.

Alleviation:

Alleviations were applied as advised.

totalEthersDeposited = totalEthersDeposited.add(amount);

Type Severity Location

Mathematical Operations Minor Groups.sol L99

 GRO-05: Unsafe subtraction

Description:

The aforementioned line performs unsafe subtraction which can result in underflow of integer value.

Recommendation:

We recommend to use sub function of SafeMath library to perform subtraction so that the transaction is reverted
if underflow happens.

Alleviation:

Alleviations were applied as advised.

totalEthersDeposited = totalEthersDeposited.sub(amount);

Type Severity Location

Gas Optimization Informational Groups.sol L208

 GRO-06: Inefficient function implementation

Description:

The implementation of the function on the aforementioned line is inefficient as it redundantly checks bool value
with an if statement and then returns it as is.

Recommendation:

We advise to remove the if-else block and directly return the expression MemberIndexer[depositor].exists
from the function to have efficient implementation.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational Groups.sol L1

 GRO-07: Comparison with a literal boolean value

Description:

The contract has several occurrences of comparison with a literal boolean values of true or false that can be
replaced replacing with compared expression itself to increase the legibility of the code.

Recommendation:

We advise to use the compared expression itself in place of expression's comparison with a boolean literal. The
expression can be replaced as is when the expression is expected to evaluate to true and negation of expression
can be used when the expression is expected to have false value.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational Groups.sol L123, L130, L194, L397, L180, L295

 GRO-08: Explicitly returning a local variable

Description:

The functions on the aforementioned line explicitly return a local variable which increases overall cost of gas.

Recommendation:

Since named return variables can be declared in the signature of a function, consider refactoring to remove the local
variable declaration and explicit return statement in order to reduce the overall cost of gas.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Language Specific Informational Cycle.sol L1

 CYC-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Gas Optimization Informational Cycle.sol L370, L459, L453, L446, L428, L491, L465, L356, L361

 CYC-02: Explicitly returning a local variable

Description:

The functions on the aforementioned line explicitly return a local variable which increases overall cost of gas.

Recommendation:

Since named return variables can be declared in the signature of a function, consider refactoring to remove the local
variable declaration and explicit return statement in order to reduce the overall cost of gas.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational Cycle.sol L1

 CYC-03: Comparison with a literal boolean value

Description:

The contract has several occurrences of comparison with a literal boolean values of true or false that can be
replaced replacing with compared expression itself to increase the legibility of the code.

Recommendation:

We advise to use the compared expression itself in place of expression's comparison with a boolean literal. The
expression can be replaced as is when the expression is expected to evaluate to true and negation of expression
can be used when the expression is expected to have false value.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational Cycle.sol L517

 CYC-04: Inefficient function implementation

Description:

The implementation of the function on the aforementioned line is inefficient as it redundantly checks bool value
with an if statement and then returns it as is.

Recommendation:

We advise to remove the if-else block and directly return the expression CycleMembersDeepIndexer[cycleId]
[depositor].exists; from the function to have efficient implementation.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Volatile Code Critical Cycle.sol L220

 CYC-05: updateCycleMemberupdateCycleMember is not restricted by onlyStorageOracleonlyStorageOracle

Description:

The function updateCycleMember on the aforementioned line updates a member within cycle and can be called by
anyone while it should have been restricted to onlyStorageOracle .

Recommendation:

We advise to add onlyStorageOracle modifier in the function declaration so that only an allowed address could
call this function keeping the integrity of the data.

Alleviation:

Alleviations were applied as advised.

function updateCycleMember(
 uint256 cycleId,
 address payable depositor,
 uint256 totalLiquidityAsPenalty,
 uint256 numberOfCycleStakes,
 uint256 stakesClaimed,
 bool hasWithdrawn
) external onlyStorageOracle {...}

Type Severity Location

Control Flow Major Cycle.sol L487

 CYC-06: Incorrect code

Description:

The aforementioned line calls the function _getCycleIndex to get the index of CycleFinancial but the call returns
the index of Cycle corresponding to the cycleId .

Recommendation:

We advise to call the function _getCycleFinancialIndex to correctly get the index of CycleFinancial .

Alleviation:

The team responded with "the cycle and cycleFinancials always have the same index, because cycleFinancials
record is created for every cycle that is created." rendering this exhibit ineffectual.

uint256 index = _getCycleFinancialIndex(cycleFinancial.cycleId);

Type Severity Location

Volatile Code Major Cycle.sol L378-L396

 CYC-07: Incorrect implementation of functions

Description:

The functions getRecordIndexForCycleMembersIndexerByDepositor and
getRecordIndexForCycleMembersIndexer on the aforementioned lines have incorrect implementation where
getRecordIndexForCycleMembersIndexerByDepositor returns record index for cycle member while
getRecordIndexForCycleMembersIndexer returns record index for cycle member by depositor.

Recommendation:

We advise to swap the implementations of both function so they returns record index from their corresponsing
mappings.

function getRecordIndexForCycleMembersIndexerByDepositor(
 uint256 cycleId,
 uint256 recordIndexLocation
) external view returns (bool, uint256) {
 RecordIndex memory recordIndex
 = CycleMembersIndexerByDepositor[depositorAddress][recordIndexLocation];
 return (recordIndex.exists, recordIndex.index);
}

function getRecordIndexForCycleMembersIndexer(
 address depositorAddress,
 uint256 recordIndexLocation
) external view returns (bool, uint256) {
 RecordIndex memory recordIndex
 = CycleMembersIndexer[cycleId][recordIndexLocation];
 return (recordIndex.exists, recordIndex.index);
}

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Language Specific Informational ClientRecord.sol L1

 CRD-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Gas Optimization Informational ClientRecord.sol L18-L19

 CRD-02: Inefficient local variable

Description:

The local variable on the aforementioned line is inefficient as it copies the struct value into a memory variable and
the it returns one property of the struct from the function.

Recommendation:

We recommend to directly return the value from the function instead of copying the struct into memory and then
returning the property of it.

Alleviation:

Alleviations were applied as advised.

function doesClientRecordExist(address depositor)
 external
 view
 returns (bool)
{
 return ClientRecordIndexer[depositor].exists;
}

Type Severity Location

Gas Optimization Informational ClientRecord.sol L1

 CRD-03: Comparison with a literal boolean value

Description:

The contract has several occurrences of comparison with a literal boolean values of true or false that can be
replaced replacing with compared expression itself to increase the legibility of the code.

Recommendation:

We advise to use the compared expression itself in place of expression's comparison with a boolean literal. The
expression can be replaced as is when the expression is expected to evaluate to true and negation of expression
can be used when the expression is expected to have false value.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Coding Style Informational ClientRecord.sol L66-L74

 CRD-04: Redundant Variable Initialization

Description:

All variable types within Solidity are initialized to their default "empty" value, which is usually their zeroed out
representation. Particularly:

uint / int : All uint and int variable types are initialized at 0
address : All address types are initialized to address(0)
byte : All byte types are initialized to their byte(0) representation
bool : All bool types are initialized to false
ContractType : All contract types (i.e. for a given contract ERC20 {} its contract type is ERC20) are

initialized to their zeroed out address (i.e. for a given contract ERC20 {} its default value is
ERC20(address(0)))
struct : All struct types are initialized with all their members zeroed out according to this table

Recommendation:

We advise that the linked initialization statements are removed from the codebase to increase legibility.

Alleviation:

No alleviations.

Type Severity Location

Gas Optimization Informational ClientRecord.sol L78-L84

 CRD-05: Inefficient storage update

Description:

The aforementioned lines update a struct inside array and upon each update it computes the localtion of struct
inside array which is an inefficient approach.

Recommendation:

We advise to store a refrence to struct inside a variable of type ClientRecord pointing to storage and then update
the properties of struct using this storage variable which is gas efficient compared to the current implementation.

Alleviation:

No alleviations.

ClientRecord storage clientRecord = ClientRecords[index];
clientRecord.underlyingTotalDeposits = underlyingTotalDeposits;
clientRecord.underlyingTotalWithdrawn = underlyingTotalWithdrawn;
clientRecord.derivativeBalance = derivativeBalance;
clientRecord.derivativeTotalDeposits = derivativeTotalDeposits;
clientRecord.derivativeTotalWithdrawn = derivativeTotalWithdrawn;

Type Severity Location

Language Specific Informational IClientRecordShema.sol L1

 ICS-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Language Specific Informational ISavingsConfigSchema.sol L1

 ISS-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Gas Optimization Informational ISavingsConfigSchema.sol L5, L9, L10

 ISS-02: Inefficient struct layout

Description:

The properties bool and enum of struct on the aforementioned lines can be placed together to tight pack the
struct.

Recommendation:

We recommend to place the properties of bool and enum on the aforementioned lines next to each other so that
they can be packed within a single storage slot.

Alleviation:

Alleviations were applied as advised.

struct RuleSet {
 uint256 minimum;
 uint256 maximum;
 uint256 exact;
 bool applies;
 RuleDefinition ruleDefinition;
 bool exists;
}

Type Severity Location

Language Specific Informational SavingsConfig.sol L1

 SCG-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Volatile Code Informational SavingsConfig.sol L12

 SCG-02: Empty constructor declaration

Description:

An empty constructor is declared on the aforementioned line which is unnecessary.

Recommendation:

We advise to remove the empty constructor declaration on the aforementioned line to increase the quality of the
code.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational SavingsConfig.sol L1

 SCG-03: Comparison with a literal boolean value

Description:

The contract has several occurrences of comparison with a literal boolean values of true or false that can be
replaced replacing with compared expression itself to increase the legibility of the code.

Recommendation:

We advise to use the compared expression itself in place of expression's comparison with a boolean literal. The
expression can be replaced as is when the expression is expected to evaluate to true and negation of expression
can be used when the expression is expected to have false value.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational SavingsConfig.sol L40, L119

 SCG-04: Explicitly returning a local variable

Description:

The functions on the aforementioned line explicitly return a local variable which increases overall cost of gas.

Recommendation:

Since named return variables can be declared in the signature of a function, consider refactoring to remove the local
variable declaration and explicit return statement in order to reduce the overall cost of gas.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Dead Code Informational SavingsConfig.sol L150

 SCG-05: Redundant Statements

Description:

The linked statements do not affect the functionality of the codebase and appear to be either leftovers from test
code or older functionality.

Recommendation:

We advise that they are removed to better prepare the code for production environments.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Volatile Code Major SavingsConfig.sol L96, L134

 SCG-06: _validateRuleCreation_validateRuleCreation always reverts the transaction

Description:

The call to function _validateRuleCreation on the aforementioned line always reverts the transaction because the
exists property of an exisiting Rule is set to true and the _validateRuleCreation asserts that the exists

property should be false .

Recommendation:

We advise to set the property of exists to false so that _validateRuleCreation call does not revert the
transaction and it successfully modify the Rule.

Alleviation:

Alleviations were applied as advised.

ruleSet.exists = false;

Type Severity Location

Volatile Code Major SavingsConfig.sol L96

 SCG-07: modifyRulemodifyRule does not save the Rule

Description:

The function modifyRule does not save the new state of Rule in the storage making the transaction ineffecutal.

Recommendation:

We advise to add the call to _saveRule so that the update RuleSet is saved to storage of the contract.

Alleviation:

Alleviations were applied as advised.

_saveRule(ruleKey, ruleSet);

Type Severity Location

Language Specific Informational Treasury.sol L1

 TRE-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Gas Optimization Informational Treasury.sol L26-L29

 TRE-02: Redundant requirerequire statement

Description:

The require statement on the aforementioned line is redundant as the same check is performed by the require
statement on L24 .

Recommendation:

We advise to remove the redundant require statement on the aforementioned line from the function.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational Treasury.sol L58-L61

 TRE-03: Redundant requirerequire statement

Description:

The require statement on the aforementioned line is redundant as the same check is performed by the require
statement on L56 .

Recommendation:

We advise to remove the redundant require statement on the aforementioned line from the function.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational Treasury.sol L1

 TRE-04: Comparison with a literal boolean value

Description:

The contract has several occurrences of comparison with a literal boolean values of true or false that can be
replaced replacing with compared expression itself to increase the legibility of the code.

Recommendation:

We advise to use the compared expression itself in place of expression's comparison with a boolean literal. The
expression can be replaced as is when the expression is expected to evaluate to true and negation of expression
can be used when the expression is expected to have false value.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Dead Code Informational Treasury.sol L16

 TRE-05: enumenum type is declared but never used

Description:

The enum type DepositType is never used in the code and can be removed from the contract.

Recommendation:

We advise to remove the enum type declared on the aforementioned line to increase the quality of the code.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Language Specific Informational XendFinanceIndividual_Yearn_V1.sol L1

 XFI-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Coding Style Informational XendFinanceIndividual_Yearn_V1.sol L47

 XFI-02: Redundant Variable Initialization

Description:

All variable types within Solidity are initialized to their default "empty" value, which is usually their zeroed out
representation. Particularly:

uint / int : All uint and int variable types are initialized at 0
address : All address types are initialized to address(0)
byte : All byte types are initialized to their byte(0) representation
bool : All bool types are initialized to false
ContractType : All contract types (i.e. for a given contract ERC20 {} its contract type is ERC20) are

initialized to their zeroed out address (i.e. for a given contract ERC20 {} its default value is
ERC20(address(0)))
struct : All struct types are initialized with all their members zeroed out according to this table

Recommendation:

We advise that the linked initialization statements are removed from the codebase to increase legibility.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational XendFinanceIndividual_Yearn_V1.sol L50-L51

 XFI-03: Redundant storage variables

Description:

The storage variables of TreasuryAddress and TokenAddress are redundant as its values are also stored in
storage variables of treasury and daiToken .

Recommendation:

We advise to remove the redundant storage variables from the aforementioned lines and storage variables of
treasury and daiToken be used in place of them.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational XendFinanceIndividual_Yearn_V1.sol L1

 XFI-04: Comparison with a literal boolean value

Description:

The contract has several occurrences of comparison with a literal boolean values of true or false that can be
replaced replacing with compared expression itself to increase the legibility of the code.

Recommendation:

We advise to use the compared expression itself in place of expression's comparison with a boolean literal. The
expression can be replaced as is when the expression is expected to evaluate to true and negation of expression
can be used when the expression is expected to have false value.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Logical Issue Minor XendFinanceIndividual_Yearn_V1.sol L86

 XFI-05: Requisite Value of ERC-20 transferFrom()transferFrom() / transfer()transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether (USDT) leading to

unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the transferFrom() /
transfer() function is safely invoked in all circumstances through the use of safeTransferFrom() /
safeTransfer() functions of SafeERC20 library.

Alleviation:

Alleviations were partly applied as advised.

Type Severity Location

Gas Optimization Informational XendFinanceIndividual_Yearn_V1.sol L357

 XFI-06: Inefficient local variable

Description:

The aforementioned line declares a local variable which is used only once in the function and hence it is inefficient to
declare and use it.

Recommendation:

We advise to use the initialization part of local variable declaration directly at the place where it is used.

Alleviation:

Alleviations were applied as advised.

_deposit(msg.sender);

Type Severity Location

Logical Issue Minor XendFinanceIndividual_Yearn_V1.sol L285

 XFI-07: Function does not return a value

Description:

The function on the aforementioned lines specifies a uint256 as a return type in its signature yet no value is
returned from the body of the function.

Recommendation:

We advise to remove return type of uint256 from the signature of the function as the function does not need to
return a value.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Dead Code Informational XendFinanceIndividual_Yearn_V1.sol L316, L317, L337, L338

 XFI-08: Unused local variables

Description:

The local variables on the aforementioned lines are declared to store the values from the returned tuple yet these
local variables are never used within the code.

Recommendation:

We advise to remove the declaration of the local variables on the aforementioned lines as they are never used in the
code.

Alleviation:

No alleviations.

Type Severity Location

Logical Issue Critical XendFinanceIndividual_Yearn_V1.sol L446-L455

 XFI-09: Incorrect code

Description:

The aforementioned lines add the deposit amounts to record the second time as the amounts are already added
when the struct is initialized on L36 .

Recommendation:

We advise to remove the aforementioned lines so that the amounts are not added twice to the record variable of
struct type.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Logical Issue Critical XendFinanceIndividual_Yearn_V1.sol L440

 XFI-10: Incorrect value provided for struct property

Description:

The value of underlyingAmountDeposited is used for the initialization of struct property
underlyingTotalWithdrawn which is incorrect as the property underlyingTotalWithdrawn should be initialized

with 0 when the record is new.

Recommendation:

We advise to pass the literal 0 on the aforementioned line to correctly initialize the struct property of
underlyingTotalWithdrawn .

Alleviation:

Alleviations were applied as advised.

ClientRecord memory record = ClientRecord(
 true,
 client,
 underlyingAmountDeposited,
 0,
 derivativeAmountDeposited,
 derivativeAmountDeposited,
 0
);

Type Severity Location

Logical Issue Critical XendFinanceIndividual_Yearn_V1.sol L486

 XFI-11: Incorrect code

Description:

The aforementioned line adds derivativeAmountWithdrawn to record.derivativeTotalDeposits which is
incorrect as the function is called after withdrawal and not after deposit.

Recommendation:

We recommend to use the struct property of derivativeTotalWithdrawn to correctly update the record with the
amount of derivative that is withdrawn.

Alleviation:

Alleviations were applied as advised.

record.derivativeTotalWithdrawn = record.derivativeTotalWithdrawn.add(
 derivativeAmountWithdrawn
);

Type Severity Location

Logical Issue Critical XendFinanceIndividual_Yearn_V1.sol L489

 XFI-12: Incorrect code

Description:

The aforementioned line adds derivativeAmountWithdrawn to record.derivativeBalance which is incorrect as
the function is called after withdrawal and not after deposit.

Recommendation:

We recommend to subtract derivativeAmountWithdrawn from record.derivativeBalance as the derivative
balance is decreased after withdrawal.

Alleviation:

Alleviations were applied as advised.

record.derivativeBalance = record.derivativeBalance.sub(
 derivativeAmountWithdrawn
);

Type Severity Location

Control Flow Medium XendFinanceIndividual_Yearn_V1.sol L258

 XFI-13: Possibility of re-entrancy attack

Description:

The transfer function call on the aforementioned has possibility of re-entrancy if the transfer function of the
called contract is compromised. The re-entrancy will allow the draining of funds from the contract as the record are
updated only after the transfer call.

Recommendation:

We advise to either move the transfer call at the end of function or make the function non-reentrant by inheriting
from Openzeppelin's ReentrancyGuard contract and using the modifier nonReentrant .

Alleviation:

Alleviations were applied as advised.

https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/utils/ReentrancyGuard.sol

Type Severity Location

Language Specific Informational XendFinanceGroup_Yearn_V1.sol L3

 XFG-01: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of the contract
permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated
bytecode between compilations due to differing compiler version numbers. This can lead to an ambiguity when
debugging as compiler specific bugs may occur in the codebase that would be hard to identify over a span of
multiple compiler versions rather than a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the contract can be
compiled at. For example, for version v0.6.2 the contract should contain the following line:

Alleviation:

Alleviations were applied as advised.

pragma solidity 0.6.2;

Type Severity Location

Coding Style Informational XendFinanceGroup_Yearn_V1.sol L96

 XFG-02: Redundant Variable Initialization

Description:

All variable types within Solidity are initialized to their default "empty" value, which is usually their zeroed out
representation. Particularly:

uint / int : All uint and int variable types are initialized at 0
address : All address types are initialized to address(0)
byte : All byte types are initialized to their byte(0) representation
bool : All bool types are initialized to false
ContractType : All contract types (i.e. for a given contract ERC20 {} its contract type is ERC20) are

initialized to their zeroed out address (i.e. for a given contract ERC20 {} its default value is
ERC20(address(0)))
struct : All struct types are initialized with all their members zeroed out according to this table

Recommendation:

We advise that the linked initialization statements are removed from the codebase to increase legibility.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational XendFinanceGroup_Yearn_V1.sol L1

 XFG-03: Comparison with a literal boolean value

Description:

The contract has several occurrences of comparison with a literal boolean values of true or false that can be
replaced replacing with compared expression itself to increase the legibility of the code.

Recommendation:

We advise to use the compared expression itself in place of expression's comparison with a boolean literal. The
expression can be replaced as is when the expression is expected to evaluate to true and negation of expression
can be used when the expression is expected to have false value.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational XendFinanceGroup_Yearn_V1.sol L108-L113

 XFG-04: Unnecessary local variables

Description:

The local variables declarations on the aforementioned lines are unnecessary as the function call on L115 can
directly utilize the properties of struct variable group for arguments.

Recommendation:

We advise to remove the redundant local variable declarations on the aforementioned lines.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas
Optimization Informational

XendFinanceGroup_Yearn_V1.sol L118, L134, L154, L294, L304, L343, L382,
L409, L448, L716, L643

 XFG-05: Explicitly returning a local variable

Description:

The functions on the aforementioned line explicitly return a local variable which increases overall cost of gas.

Recommendation:

The functions on the aforementioned line explicitly return a local variable which increases overall cost of gas.

Alleviation:

No alleviations.

Type Severity Location

Gas Optimization Informational XendFinanceGroup_Yearn_V1.sol L255-L269

 XFG-06: Unnecessary local variables

Description:

The local variables on the aforementioned lines are unnecessary as the function call on L170 can directly utilize the
properties of struct variable cycleMember as arguments.

Recommendation:

We advise to remove the local variables declarations on the aforementioned lines as they are redundant.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Dead Code Minor XendFinanceGroup_Yearn_V1.sol L465

 XFG-07: Function does not return a value

Description:

The function on the aforementioned line specifies CycleMember as a return type yet the body of the function does
not return any value.

Recommendation:

We recommend to remove the CycleMember as return type from the signature of the function as the function does
not need to return it.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Logical Issue Minor XendFinanceGroup_Yearn_V1.sol L1189

 XFG-08: Requisite Value of ERC-20 transferFrom()transferFrom() / transfer()transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether (USDT) leading to

unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the transferFrom() /
transfer() function is safely invoked in all circumstances through the use of safeTransferFrom() /
safeTransfer() functions of SafeERC20 library.

Alleviation:

Alleviations were partly applied as advised.

Type Severity Location

Gas Optimization Informational XendFinanceGroup_Yearn_V1.sol L795-L796

 XFG-09: Inefficient code

Description:

The if-else block on the aforementioned lines is inefficient as it explicitly return boolean literal depending the
evaluation of the predicate.

Recommendation:

We advise to directly return the predicate expression for the efficient implementation of the code.

Alleviation:

Alleviations were applied as advised.

return currentTimeStamp >= cycleEndTimeStamp;

Type Severity Location

Mathematical Operations Minor XendFinanceGroup_Yearn_V1.sol L763

 XFG-10: Unsafe subtraction

Description:

The aforementioned line performs unsafe subtraction which can be result in underflow of integer value.

Recommendation:

We advise to use sub function from SafeMath library to perform subtraction so that the transaction is reverted if
underflow happens.

Alleviation:

Alleviations were applied as advised.

uint256 derivativeBalanceToWithdraw = cycleFinancial.derivativeBalance.sub(
 cycleFinancial.derivativeBalanceClaimedBeforeMaturity
);

Type Severity Location

Language Specific Informational XendFinanceGroup_Yearn_V1.sol L819, L825

 XFG-11: Unnecessary parenthesis around expressions

Description:

The expressions on the aforementioned lines have unnecessary parenthesis around them.

Recommendation:

We advise to remove the parenthesis around expressions on the aforementioned lines to increase the legibility of the
codebase.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Inconsistency Informational XendFinanceGroup_Yearn_V1.sol L816

 XFG-12: Confusing modifier name

Description:

The modifier onlyCycleCreator 's name suggests that it only allows the creator of cycle to execute function
guarded by this modifier yet the implementation of the modifier suggests that it also allows the cycle member to
execute function guarded by the modifier.

Recommendation:

We advise to change the name of modifier to onlyCycleCreatorOrMember to suggest that it also allows cycle
member in addition to cycle creator to execute function guarded by the modifier.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas
Optimization Informational

XendFinanceGroup_Yearn_V1.sol L1276, L1277, L1255, L1256, L1301,
L1302

 XFG-13: Unused local variables

Description:

The local variables on the aforementioned lines are declared to store the values from the returned tuple yet these
local variables are never used within the code.

Recommendation:

We advise to remove the declaration of the local variables on the aforementioned lines as they are never used in the
code.

Alleviation:

No alleviations.

Type Severity Location

Mathematical Operations Minor XendFinanceGroup_Yearn_V1.sol L951

 XFG-14: Unsafe subtraction

Description:

The aforementioned line performs unsafe subtraction which can be result in underflow of integer value.

Recommendation:

We advise to use sub function from SafeMath library to perform subtraction so that the transaction is reverted if
underflow happens.

Alleviation:

Alleviations were applied as advised.

underlyingAmountThatMemberDepositIsWorth =
underlyingAmountThatMemberDepositIsWorth.sub(totalDeductible);

Type Severity Location

Logical Issue Minor XendFinanceGroup_Yearn_V1.sol L977

 XFG-15: Requisite Value of ERC-20 transferFrom()transferFrom() / transfer()transfer() Call

Description:

While the ERC-20 implementation does necessitate that the transferFrom() / transfer() function returns a
bool variable yielding true , many token implementations do not return anything i.e. Tether (USDT) leading to

unexpected halts in code execution.

Recommendation:

We advise that the SafeERC20.sol library is utilized by OpenZeppelin to ensure that the transferFrom() /
transfer() function is safely invoked in all circumstances through the use of safeTransferFrom() /
safeTransfer() functions of SafeERC20 library.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Gas Optimization Informational XendFinanceGroup_Yearn_V1.sol L976

 XFG-16: Ineffectual code

Description:

The if statement on the aforementioned line will never evaluate to false as the same condition is checked in a
require statement on L973 and the control flow reaches to if statement only after the condition in require

statement evaluates to true .

Recommendation:

We advise to remove the if condition on the aforementioned line as it is redundant.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Volatile Code Major XendFinanceGroup_Yearn_V1.sol L1713

 XFG-17: Anyone can make a particular depositor join cycle

Description:

The function joinCycleDelegate on the aforementioned line allows anyone to call it and make depositorAddress
join the cycle if it has approved sufficient tokens amount to the contract.

Recommendation:

We advise to remove this function as only the depositing address should be allowed to call the function.

Alleviation:

Alleviations were applied as advised.

Type Severity Location

Control Flow Medium XendFinanceGroup_Yearn_V1.sol L977

 XFG-18: Possibility of reentrancy attack

Description:

The transfer function call on the aforementioned line will allow reentrancy into the contract if the transfer
function of the called contract is compromised leading draining of funds as the cycle, cycleMember and
cycleFinancials are updated after the transfer call.

Recommendation:

We advise to move the transfer call at the end of function execution so reentrancy would not allow draining of
funds or alternatively the function can be non-reentrant by inherting the contract from Openzeppelin's
ReentrancyGuard contract and using the nonReentrant modifier on the function.

Alleviation:

Alleviations were applied as advised.

https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/utils/ReentrancyGuard.sol

Type Severity Location

Control Flow Medium XendFinanceGroup_Yearn_V1.sol L1150

 XFG-19: Possibility of reentrancy attack

Description:

The transfer call on the aforementioned line will allow reentrancy into the contract if the transfer function of the
called contract is compromised. This will lead draining of funds as the cycle related storage variables are updated
after the call to transfer .

Recommendation:

We advise either to move transfer call at the end of function or make the function non-Reentrant by inherting the
contract from Openzeppelin's ReentrancyGuard contract and use modfier nonReentrant with the function.

Alleviation:

Alleviations were applied as advised.

https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/utils/ReentrancyGuard.sol

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate different,
more optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as overflows,
incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect notion on
how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions being invoke-
able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may result in
a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result of a struct
assignment operation affecting an in-memory struct rather than an in-storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or
delete .

Coding Style

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to make the codebase
more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different code, such as a
constructor assignment imposing different require statements on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format and should
otherwise be specified as constant contract variables aiding in their legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile using the
specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely omitted.

