
dForce Network
Lending Smart Contracts

Security Assessment

February 12th, 2021

 Disclaimer

CertiK reports are not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. These reports are not, nor should be considered, an indication of
the economics or value of any “product” or “asset” created by any team or project that
contracts CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free
nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice,
nor should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers
increase the quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source
code provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the
structure, implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has completed a round of auditing with the intention
to increase the quality of the company/product's IT infrastructure and or source code.

Project Name dForce Network - Lending Smart Contracts

Description Smart contracts of the dForceLending repository. The code
implements a lending protocol with the functionality of
providing flash loans. All of the assets lent and borrowed
acrrue interests based on the set the parameters.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. 4dd190395651e8e5b10bd8be733fb0ba4262613c
2. 397ec65b5676bd2f64d72e532e961595ab931e3d

Delivery Date Feb. 12, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 3

Timeline Jan. 2, 2021 - Jan. 31, 2021

Total Issues 61 (24 Resolved, 37 Acknowledged)

 Total Medium 4 (3 Resolved, 1 Acknowledged)

 Total Minor 8 (5 Resolved, 3 Acknowledged)

 Total Informational 49 (16 Resolved, 33 Acknowledged)

 Overview

Project Summary

Audit Summary

Vulnerability Summary

 Executive Summary

All of the functions in the Controller contract have proper access restriction and parameter
sanitization where necessary. The equity was found to be calculated correctly for each of the
accounts. Most of the findings are optimizational, while CON-13 addresses the issue of a
market exit while a user still has an active borrow balance in that market.

The PriceOracle contract has proper access restriction and parameter sanitization where
necessary and applies proper utilization of the Anchors and Reader architecture. Most of
the findings are optimizational, while POE-12 addresses specific uses of assert instead of
require , which should not be used in a production environment, as they will consume all

remaining gas in the event of a failure. Protection against flash loan vulnerabilities and price
manipulation was found to be implemented via the swing and anchors constraints, but there is
still a centralization issue with the PriceOracle contract. For most occasions, it would be
advisable to utilize a decentralized price oracle system, such as Chainlink.

While the Base contract was found to have proper access restriction and parameter
sanitization, BAS-01 outlines the possibility for replay attacks, which should be addressed
prior to deployment.

The RewardDistributor contract contains the potential for re-entrancy attacks in the
claimReward function, as outlined in RDR-01. The contract also fails to emit an event when

updating the global distribution speed in the _setGlobalDistributionSpeed function, as
outlined in RDR-02. The _updateReward function does not check if the supplied _address is
non-zero, as outlined in RDR-03. All of the other findings are optimizational.

The TokenERC20 contract has the potential for re-entrancy attacks, as outlined in TER-01,
which can be resolved with a simple inclusion of the nonReentrant modifier.

The iToken contract has proper access restriction for all the functions, where ITO-01
addresses an invalid calculation within the supplyRatePerBlock function, where the
calculation unnecessarily performs a multiplication with BASE .

The iETH contract was checked for native ETH transferring and receiving in order to ensure
that they are properly implemented for flash loans. In particular, ETH-02 points out the usage
of transfer for sending ETH, while ETH-05 points out the usage of receive for receiving
ETH. Proper access restriction was found to be implemented along with correct parameter
sanitization, which is missing in the actual function implementations but they are handled in
their internal counterparts.

It should be noted that the nonReentrant modifier should be refactored on the external
liquidateBorrow function in the iETH and iToken contracts in order to allow calling it

from within the flashloan function. Removing the nonReentrant modifier from the
liquidateBorrow function altogether is not an option, as it would open the potential for re-

entrancy attacks. The nonReentrant modifier should be replaced with a separate bool state
variable which acts as a mutex to prevent re-entrancy attacks within the liquidateBorrow
function, requiring the bool mutex to be false at the beginning of liquidateBorrow ,
setting the bool mutex to true after the requirement, calling the
_liquidateBorrowInternal function, then setting the bool mutex back to false after the

call to the _liquidateBorrowInternal function. The reason the nonReentrant modifier is
insufficient is because it shares a single bool across all functions marked nonReentrant
within the contract, which makes it impossible to call a separate function marked
nonReentrant when a nonReentract function is already executing. This is what prevents

the liquidateBorrow function from being called from within the flashloan function.

A review was performed for the flashloan exploit's fix related to decreasing of exchangeRate
enabling the liquidation of insolvent positions. The fix of adding flashloan amount to
totalBorrows is deemed safe and does not introduce any issues in flashloan, minting,

borrowing, repay and liquidation functionalitiles, and is regarded important to be incorporated
for production deployment.

ID Contract Location

BAS Base.sol contracts/TokenBase/Base.sol

CON Controller.sol contracts/Controller.sol

ERC ERC20.sol contracts/library/ERC20.sol

ITN IiToken.sol contracts/interface/IiToken.sol

IPO IPriceOracle.sol contracts/interface/IPriceOracle.sol

INI Initializable.sol contracts/library/Initializable.sol

IRM InterestRateModel.sol contracts/InterestRateModel/InterestRateModel.sol

IFE IFlashloanExecutor.sol contracts/interface/IFlashloanExecutor.sol

IRD IRewardDistributor.sol contracts/interface/IRewardDistributor.sol

ICI IControllerInterface.sol contracts/interface/IControllerInterface.sol

IIR IInterestRateModelInterface.sol contracts/interface/IInterestRateModelInterface.sol

OWN Ownable.sol contracts/library/Ownable.sol

PAN ProxyAdmin.sol contracts/library/ProxyAdmin.sol

POE PriceOracle.sol contracts/PriceOracle.sol

RGD ReentrancyGuard.sol contracts/library/ReentrancyGuard.sol

RDR RewardDistributor.sol contracts/RewardDistributor.sol

SRM SafeRatioMath.sol contracts/library/SafeRatioMath.sol

TAN TokenAdmin.sol

TER TokenERC20.sol contracts/TokenBase/TokenERC20.sol

TET TokenEvent.sol contracts/TokenBase/TokenEvent.sol

TSE TokenStorage.sol contracts/TokenBase/TokenStorage.sol

 Files In Scope

contracts/TokenBase/TokenAdmin.sol

ETH iETH.sol contracts/iETH.sol

ITO iToken.sol contracts/iToken.sol

 File Dependency Graph

80%

7%

13%

Informational
Medium
Minor

ID Title Type Severity Resolved

CON-01 Mappings data can be
packed in a struct

Gas Optimization Informational

CON-02 Mappings data can be
packed in a struct

Gas Optimization Informational

CON-03 Comparison with literal
true

Gas Optimization Informational

CON-04 Inefficient use of require
statements

Gas Optimization Informational

 Findings

CON-05 Inefficient use of require
statements

Gas Optimization Informational

CON-06 Redundant casting to type
address

Gas Optimization Informational

CON-07 Ineffectual code Inconsistency Informational

CON-08 Explicitly returning local
variable

Gas Optimization Informational

CON-09 Functions visiblity can be
changed to external

Gas Optimization Informational

CON-10 Documentation
discrepancy

Inconsistency Informational

CON-11 Incorrect naming
convention for external
functions

Language Specific Informational

CON-12 Lack of verification for the
passed argument

Logical Issue Minor

CON-13 Borrow status of the user is
not checked when exiting
from a market

Logical Issue Informational

CON-15 Redundant casting to
uint8

Gas Optimization Informational

CON-16 Contract name does not
comply with the convention

Language Specific Informational

POE-01 Code Optimization Gas Optimization Informational

POE-02 Conditional Optimization Gas Optimization Informational

POE-03 Visibility Specifiers Missing Language Specific Informational

POE-04 State Layout Optimization Gas Optimization Informational

POE-05 Order of Layout Coding Style Informational

POE-06 Variable Visibility Gas Optimization Informational

POE-07 event Optimization Language Specific Informational

POE-08 Ambiguous Error Message Inconsistency Informational

POE-09 Function Optimization Gas Optimization Informational

POE-10 Code Optimization Gas Optimization Informational

POE-11 Ambiguous NetSpec
Comments

Coding Style Informational

POE-12 Introduction of require
Statements

Volatile Code Minor

POE-13 Function Visibility
Optimization

Gas Optimization Informational

POE-14 Naming Conventions Coding Style Informational

POE-15 Inexistant Input Sanitization Volatile Code Informational

ETH-01 Ambiguous Statement Volatile Code Informational

ETH-02 Usage of transfer() for
sending Ether

Volatile Code Minor

ETH-03 Possibiliy of incorrect
calculation

Volatile Code Medium

ETH-04 Non Standard Contract
Naming

Coding Style Informational

ETH-05 Inexistent Input Sanitization Volatile Code Minor

ETH-06 Contract Size Compiler Error Informational

ITO-01 Possibiliy of incorrect Volatile Code Medium

calculation

ITO-02 Redundant casting to
uint8

Gas Optimization Informational

ITO-03 Contract name does not
comply with the convention

Language Specific Informational

BAS-01 Possibility of replay attack
in permit

Volatile Code Minor

RDR-01 Potential for re-entrancy
attacks in claimReward

Volatile Code Medium

RDR-02 Missing event for updating
global distribution speed

Implementation Minor

RDR-03 Lack of address check in
_updateReward

Volatile Code Minor

RDR-04 Unnecessary underscore
prefixing _setRewardToken

Naming Conventions Informational

RDR-05 Unnecessary underscore
prefixing _addRecipient

Naming Conventions Informational

RDR-06 Unnecessary underscore
prefixing _pause

Naming Conventions Informational

RDR-07 Unnecessary underscore
prefixing _unpause

Naming Conventions Informational

RDR-08 Unnecessary underscore
prefixing
_setGlobalDistribution

Speed

Naming Conventions Informational

RDR-09 Inefficient early return in Gas Optimization Informational

updateDistributionSpee

d

RDR-10 Unnecessary underscore
prefixing
_setDistributionFactor

s

Naming Conventions Informational

RDR-11 Inefficient early return in
updateDistributionStat

e

Gas Optimization Informational

RDR-12 Inefficient early return in
updateReward

Gas Optimization Informational

RDR-13 claimAllReward should
be declared external

Implementation Informational

IRM-01 getBorrowRate should be
declared external

Implementation Informational

TAN-01 Unnecessary underscore
prefixing _setController

Naming Conventions Informational

TAN-02 Unnecessary underscore
prefixing
_setInterestRateModel

Naming Conventions Informational

TAN-03 Unnecessary underscore
prefixing
_setNewReserveRatio

Naming Conventions Informational

TAN-04 Unnecessary underscore
prefixing
_setNewFlashloanFeeRat

io

Naming Conventions Informational

TAN-05 Unnecessary underscore Naming Conventions Informational

prefixing
_setNewProtocolFeeRati

o

TAN-06 Unnecessary underscore
prefixing
_withdrawReserves

Naming Conventions Informational

TER-01 Potential for re-entrancy
attacks in
_transferTokens

Volatile Code Minor

Type Severity Location

Gas Optimization Informational Controller.sol L62, L66

 CON-01: mappings data can be packed in a struct

Description:

The mappings on the aforementioned lines have key of type address representing a user's
address. These mappings can be combined into a single mapping having address as key
type and the value type will be a struct having properties from both aforementioned mappings.
This will reduce the lookup gas cost when reading data from these mappings.

Recommendation:

We advise to replace the aforementioned mappings with a single mapping by utilizing a struct
for the value types.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

struct UserData {
 EnumerableSetUpgradeable.AddressSet collaterals;
 EnumerableSetUpgradeable.AddressSet borrowed;
}

mapping(address => User) internal usersData;

Type Severity Location

Gas Optimization Informational Controller.sol L59, L107, L110, L113

 CON-02: Mappings data can be packed in a struct

Description:

The mappings on the aforementioned lines have key of type address representing a market's
address. These mappings can be combined into a single mapping having address as key
type and the value type will be a struct having properties from all aforementioned mappings.
This will reduce the lookup gas cost when reading data from these mappings.

Recommendation:

We advise to replace the aforementioned mappings with a single mapping by utilizing a struct
for the value types.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

struct MarketData {
 Market market;
 bool mintPaused;
 bool borrowPaused;
 bool redeemPaused;
}

mapping(address => MarketData) public marketsData;

Type Severity Location

Gas Optimization Informational Controller.sol L136

 CON-03: Comparison with literal truetrue

Description:

The aforementioned line performs comparison with a literal true . This comparison can be
replaced with the expression itself to increase the legibility of the code.

Recommendation:

We advise to utilize the expression itself in place of comparison with literal true .

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

require(
 msg.sender == owner || _paused,
 "Only owner can unpause"
);

Type Severity Location

Gas Optimization Informational Controller.sol L130-L138

 CON-04: Inefficient use of requirerequire statements

Description:

The require statements on the aforementioned lines can be replaced with a single require
statement to increase the legibility of the codebase and optimizing deploying gas cost from
reduced bytecode footprint of the contract.

Recommendation:

We advise to use a single require statements with the combined conditional logic from both
of the aforementioned require statements.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

require(
 msg.sender == owner || (msg.sender == pauseGuardian && _paused),
 "only owner can pause/unpause and only guardian can pause"
);

Type Severity Location

Gas
Optimization Informational

Controller.sol L300, L336, L374, L395, L432, L454, L476,
L588, L700, L770, L802, L1037

 CON-05: Inefficient use of requirerequire statements

Description:

Th require statements on the aforementioned lines can substituted with a function call
which would perform the said assertion. This will reduce the bytecode footprint of the contract
resulting in reduced gas cost upon the deployment.

Recommendation:

We advise to introduce a private function and that be used in place of the require
statements to reduce gas cost associated with individual use same require statement.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

function _isTokenAdded(address iToken) private {
 require(iTokens.contains(_iToken), "Token has not been listed");
}

Type Severity Location

Gas Optimization Informational Controller.sol L1067, L1072, L1079, L1410

 CON-06: Redundant casting to type addressaddress

Description:

The aforementioned lines perform redundant casting of iToken to type address which
already is of type address .

Recommendation:

We advise to remove the redundant casting to address to save gas cost associated with it.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

Type Severity Location

Inconsistency Informational Controller.sol L601

 CON-07: Ineffectual code

Description:

The aforementioned line utilizes local variable _minter as an expression to silence the
compiler warning of unused variable. As the variable is being used on L610 , the line
specifying the expression can be removed.

Recommendation:

We advise to remove the use of expression on the aforementioned line.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

Type Severity Location

Gas
Optimization Informational

Controller.sol L1249, L1292, L1315, L1373, L1429,
L1494

 CON-08: Explicitly returning local variable

Description:

The function on the aforementioned line explicitly returns a local variable which increases the
overall cost of gas.

Recommendation:

Since named return variables can be declared in the signature of a function, consider
refactoring to remove the local variable declaration and explicit return statement in order to
reduce the overall cost of gas.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

Type Severity Location

Gas Optimization Informational Controller.sol L1315, L1373

 CON-09: Functions visiblity can be changed to externalexternal

Description:

The functions on the aforementioned lines are never called within the contract and can have
their visibilities changed to external and the data location of their array parameters can be
changed to calldata which will save the gas cost associated with copying parameters to
memory .

Recommendation:

We advise to change the functions' visibilites to external and the data location of their
reference parameters to calldata .

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

Type Severity Location

Inconsistency Informational Controller.sol L51

 CON-10: Documentation discrepancy

Description:

There is documentation discrepancy in the comment on aforementioned line which describes
the property supplyCapacity following it as being checked in beforeBorrow function hook
yet it is only checked in beforeMint .

Recommendation:

We advise to change the comment on the aforementioned line to The supply capacity of
the asset, will be checked in beforeMint() .

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

Type Severity Location

Language
Specific Informational

Controller.sol L174, L231, L246, L267, L295, L331, L368,
L389, L409, L426, L448, L470, L481, L491, L509, L527, L552

 CON-11: Incorrect naming convention for externalexternal functions

Description:

The names of external functions on the aforementioned lines are prefixed with underscore
(_), which is a convention typically reserved for private and internal declarations.

Recommendation:

We advise to remove the _ from ther start of the function names to comply with the naming
convention for external functions.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "Public
functions starts with _ are owner functions for easy interaction on Remix or Etherscan."

Type Severity Location

Logical Issue Minor Controller.sol L409

 CON-12: Lack of verification for the passed argument

Description:

The function _setPauseGuardian receives _newPauseGuardian of type address as its
parameter, which is not validated against zero value.

Recommendation:

We advise to check the zero value of the argument _newPauseGuardian passed to the
function.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

require(
 _newPauseGuardian != address(0),
 "_newPauseGuardian cannot be zero"
);

Type Severity Location

Logical Issue Informational Controller.sol L1394

 CON-13: Borrow status of the user is not checked when exiting from a
market

Description:

When exiting market the user should have no borrow balance in that market. Calling
redeemAllowed does not necessarily ensure it as a user could have higher collateral in

another market and shortfall remains 0 . Although, this position can still be liquidated.

Recommendation:

A check can be added to ensure that user does not have borrow balance in the exiting market.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "Such
operation is allowed. Now user has entering a market is treated as use the asset as collateral,
and exiting a market only means the asset is no longer a collateral. The state is the same as
user has not use the token as collateral but has borrowed some."

require(
 LiToken(iToken).borrowBalanceStored(_account) == 0,
 "borrow balance must be 0 for exiting market"
);

Type Severity Location

Gas Optimization Informational Controller.sol L34

 CON-15: Redundant casting to uint8uint8

Description:

The aforementioned line performs redundant casting to uint8 as the value returns by the
function decimals is already a uint8 .

Recommendation:

We advise to remove the redundant casting to uint8 to save gas cost associated with the
casting operation.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

Type Severity Location

Language Specific Informational Controller.sol L13

 CON-16: Contract name does not comply with the convention

Description:

The contract name iToken starts with the small letter, which is against the convention of the
contract names as the convention is to start the contract name with capital letter.

Recommendation:

We advise to changed the name of contract to comply with the convention of contract names.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the token contract name."

Type Severity Location

Gas Optimization Informational PriceOracle.sol L187, L200

 POE-01: Code Optimization

Description:

The else block is redundant, as it only contains the return statement that is meant to be
executed in every scenario other than the one checked in the if block.

Recommendation:

We advise to remove the else block and directly use the return statement.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the oracle implementation."

Type Severity Location

Gas Optimization Informational PriceOracle.sol L233

 POE-02: Conditional Optimization

Description:

The linked conditional should only check against the edge case, i.e. inequality with zero.

Recommendation:

We advise to change to a "not equal" operation instead.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the oracle implementation."

Type Severity Location

Language Specific Informational PriceOracle.sol L259, L262, L268, L269

 POE-03: Visibility Specifiers Missing

Description:

The linked variable declarations do not have a visibility specifier explicitly set.

Recommendation:

Inconsistencies in the default visibility the Solidity compilers impose can cause issues in the
functionality of the codebase. We advise that visibility specifiers for the linked variables are
explicitly set.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the oracle implementation."

Type Severity Location

Gas Optimization Informational PriceOracle.sol L495-L522

 POE-04: State Layout Optimization

Description:

The state should be as tightly packed as possible to 256-bit sized variables.

Recommendation:

We advise to change to a more optimal state layout.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the oracle implementation."

Type Severity Location

Coding Style Informational PriceOracle.sol General

 POE-05: Order of Layout

Description:

The order of layout does not follow the Solidity conventions.

Recommendation:

We advise to closely follow the Solidity style guide.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the oracle implementation."

Type Severity Location

Gas Optimization Informational PriceOracle.sol L498, L505

 POE-06: Variable Visibility

Description:

The linked variables are only used for internal operations, hence can have a stricter
visibility specifier to save gas.

Recommendation:

We advise to change the visibility of the linked variables to internal .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the oracle implementation."

Type Severity Location

Language
Specific Informational

PriceOracle.sol L602, L669, L714, L721, L731, L746, L751,
L761, L776, L784, L789

 POE-07: eventevent Optimization

Description:

The linked events could add the address parameters to the topics data structure.

Recommendation:

We advise to add the indexed attribute to the address parameters of the linked events.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the oracle implementation."

Type Severity Location

Inconsistency Informational PriceOracle.sol L946

 POE-08: Ambiguous Error Message

Description:

The error message of the linked require statement does not point to the problem at hand.

Recommendation:

We advise to update the linked error message.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the oracle implementation."

Type Severity Location

Gas Optimization Informational PriceOracle.sol L918-L973

 POE-09: Function Optimization

Description:

The setExchangeRate() function can be optimized in two parts, hence saving gas.

Recommendation:

We advise to store the ExchangeRateModel(exchangeRateModel) into a local variable instead
of casting the address to ExchangeRateModel . Also, introduce a storage variable and
update that instead of redundantly looking-up the exchangeRates mapping for the specific
asset .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the oracle implementation."

Type Severity Location

Gas Optimization Informational PriceOracle.sol L1149

 POE-10: Code Optimization

Description:

The for loop conditional redundantly does a look-up to the length member of the
_assets array on every iteration.

Recommendation:

We advise to introduce a local variable with the value of _assets.length instead.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the oracle implementation."

Type Severity Location

Coding Style Informational PriceOracle.sol L1248-L1252

 POE-11: Ambiguous NetSpec Comments

Description:

The linked NatSpec comments are describing some return values twice and are missing the
boolean return value description.

Recommendation:

We advise to update the linked NatSpec comments.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

Type Severity Location

Volatile Code Minor PriceOracle.sol L401, L888, L1344, L1522, L1526, L1579

 POE-12: Introduction of requirerequire Statements

Description:

A failed assert statement will consume all the gas available to the call.

Recommendation:

We advise to change the linked assert statements with require ones.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the oracle implementation."

Type Severity Location

Gas
Optimization Informational

PriceOracle.sol L683, L797, L822, L854, L887, L918, L982,
L1035, L1240, L1254, L1305, L1600

 POE-13: Function Visibility Optimization

Description:

The linked functions are declared as public , yet they are never called by the contract.

Recommendation:

We advise that the functions' visibility specifiers are set to external , optimizing the gas cost
of the function.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the oracle implementation."

Type Severity Location

Coding
Style Informational

PriceOracle.sol L259, L262, L268, L269, L498, L500, L565, L683,
L797, L822, L854, L887, L1078, L1112, L1141

 POE-14: Naming Conventions

Description:

The linked public / external variables and functions do not follow the Solidity standards in
regards to their naming.

Recommendation:

We advise to closely follow the Solidity style guide.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the oracle implementation."

Type Severity Location

Volatile Code Informational PriceOracle.sol L822-L847

 POE-15: Inexistant Input Sanitization

Description:

The _setPendingAnchorAdmin() function does not check whether the input value is equal to
the existing one.

Recommendation:

We advise to add a require statement checking against the existing value of
pendingAnchorAdmin .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the oracle implementation."

Type Severity Location

Volatile Code Informational iETH.sol L37

 ETH-01: Ambiguous Statement

Description:

The linked statement does not properly use the _spender parameter. Also, the
_doTransferIn() function does not follow the functionality explained in the NatSpec

comments.

Recommendation:

We advise to revise the _doTransferIn() function.

Alleviation:

The recommendation was not taken into account.

Type Severity Location

Volatile Code Minor iETH.sol L49, L124, L139

 ETH-02: Usage of transfer()transfer() for sending Ether

Description:

After EIP-1884 was included in the Istanbul hard fork, it is not recommended to use
.transfer() or .send() for transferring ether as these functions have a hard-coded value

for gas costs making them obsolete as they are forwarding a fixed amount of gas, specifically
2300 . This can cause issues in case the linked statements are meant to be able to transfer

funds to other contracts instead of EOAs.

Recommendation:

We advise that the linked .transfer() and .send() calls are substituted with the utilization
of the sendValue() function from the Address.sol implementation of OpenZeppelin either
by directly importing the library or copying the linked code.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change, aiming to restrict the gas."

Type Severity Location

Volatile Code Medium iETH.sol L298

 ETH-03: Possibility of incorrect calculation

Description:

he aforementioned line totalBorrows.mul(BASE).rdiv(_underlying) multiplies
totalBorrows with BASE so the decimals are not lost in division. It is not needed as rdiv ,

in its implementation, also multiplies the expression with BASE .

Recommendation:

We advise to remove the multiplication with BASE on the aforementioned line.

Alleviation:

The dForce team stated "The calulation itself is correct, changed for easy reading."

Type Severity Location

Coding Style Informational iETH.sol L11

 ETH-04: Non Standard Contract Naming

Description:

The contract naming does not follow the Solidity naming conventions.

Recommendation:

We advise to closely follow the Solidity style guide.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the token contract name."

Type Severity Location

Volatile Code Minor iETH.sol L186

 ETH-05: Inexistent Input Sanitization

Description:

The receive() function allows the contract to receive ETH , to repay a successful flash loan.

Recommendation:

We advise to add a require statement ensuring that only a contract is able to send ETH to
the contract.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

Type Severity Location

Compiler Error Informational iETH.sol General

 ETH-06: Contract Size

Description:

Contract size exceeds byte limit, may cause an issue in mainnet deployment.

Recommendation:

No recommendation.

Alleviation:

The dForce team stated "With 200 runs of optimization, code size is okay."

Type Severity Location

Volatile Code Medium iToken.sol L307

 ITO-01: Possibility of incorrect calculation

Description:

The aforementioned line totalBorrows.mul(BASE).rdiv(_underlying) multiplies
totalBorrows with BASE so the decimals are not lost in division. It is not needed as rdiv ,

in its implementation, also multiplies the expression with BASE .

Recommendation:

We advise to remove the multiplication with BASE on the aforementioned line.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

borrowRatePerBlock().tmul(
 BASE.sub(reserveRatio),
 totalBorrows.rdiv(_underlying)
);

Type Severity Location

Gas Optimization Informational iToken.sol L34

 ITO-02: Redundant casting to uint8uint8

Description:

The aforementioned line performs redundant casting to uint8 as the value returns by the
function decimals is already a uint8 .

Recommendation:

We advise to remove the redundant casting to uint8 to save gas cost associated with the
casting operation.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

Type Severity Location

Language Specific Informational iToken.sol L13

 ITO-03: Contract name does not comply with the convention

Description:

The contract name iToken starts with the small letter, which is against the convention of the
contract names as the convention is to start the contract name with capital letter.

Recommendation:

We advise to changed the name of contract to comply with the convention of contract names.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "No plan to
change the token contract name."

Type Severity Location

Volatile Code Minor Base.sol L577, L45

 BAS-01: Possibility of replay attack in permitpermit

Description:

The permit function on L577 performs the operation of deriving signer address from the
signature values of v , r and s . The state varible DOMAIN_SEPARATOR that is used to
calculate hash has a value of chainid that is derived only once in initialize function, which
does not change after contract deployment. The issue arises in the event of fork when the
cross-chain replay attacks can be executed.
The attack scenario can be thought of as if a fork of Ethereum happens and two different
networks have id of for example 1 and 9 . The chainid coded in DOMAIN_SEPARATOR will be
the same on contracts residing in both of the forks. If the chainid 1 is stored in the contract
then the permit transaction signed for chainid 1 will be executable on both of the forks.

Recommendation:

We advise to construct the DOMAIN_SEPRATOR hash inside the permit function so the current
chainid could be fetched and only the transactions signed for current network could

succeed.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "More
explanation needed."

Type Severity Location

Volatile Code Medium contracts/RewardDistributor.sol L419-L420

 RDR-01: Potential for re-entrancy attacks in claimRewardclaimReward

Description:

The public claimReward function in the RewardDistributor contract has the potential for
re-entrancy attacks due to the lack of access restriction and transferring from the arbitrary
rewardToken address state variable to arbitrary _holders addresses. In the case that the

caller supplies a valid account address in the _holders address array parameter with a non-
zero reward value, a malicious rewardToken contract or _account address could re-enter
the claimReward function and drain the funds, because each account's reward amount is not
updated in the public reward address-to-amount mapping state variable until L420, following
the transfer on L419.

Recommendation:

This can be resolved by following the Check-Effects-Interactions pattern, setting the reward
value for the current _account to zero before the transfer by effectively swapping L419 and
L420.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

Type Severity Location

Implementation Minor contracts/RewardDistributor.sol L172

 RDR-02: Missing event for updating global distribution speed

Description:

The public _setGlobalDistributionSpeed function in the RewardDistributor contract
allows the owner to modify the globalDistributionSpeed state variable without emitting an
event, which makes it difficult to track off-chain.

Recommendation:

Consider introducing a SetGlobalDistributionSpeed event in order to safely track changing
of the globalDistributionSpeed state variable on chain.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

Type Severity Location

Volatile Code Minor contracts/RewardDistributor.sol L360

 RDR-03: Lack of address check in _updateReward_updateReward

Description:

The internal _updateReward function in the RewardDistributor contract does not check if
the supplied _account address parameter is non-zero.

Recommendation:

Consider introducing a requirement in order to verify that the supplied _account address
parameter is non-zero before using it in the function.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

Type Severity Location

Naming Conventions Informational contracts/RewardDistributor.sol L90

 RDR-04: Unnecessary underscore prefixing _setRewardToken_setRewardToken

Description:

The external _setRewardToken function in the RewardDistributor contract is prefixed with
an underscore (_), which is a convention typically reserved for private and internal
declarations.

Recommendation:

Since the function is external, consider renaming the function to setRewardToken .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "Public
functions starts with _ are owner functions for easy interaction on Remix or Etherscan."

Type Severity Location

Naming Conventions Informational contracts/RewardDistributor.sol L110

 RDR-05: Unnecessary underscore prefixing _addRecipient_addRecipient

Description:

The external _addRecipient function in the RewardDistributor contract is prefixed with an
underscore (_), which is a convention typically reserved for private and internal declarations.

Recommendation:

Since the function is external, consider renaming the function to addRecipient .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "Public
functions starts with _ are owner functions for easy interaction on Remix or Etherscan."

Type Severity Location

Naming Conventions Informational contracts/RewardDistributor.sol L132

 RDR-06: Unnecessary underscore prefixing _pause_pause

Description:

The external _pause function in the RewardDistributor contract is prefixed with an
underscore (_), which is a convention typically reserved for private and internal declarations.

Recommendation:

Since the function is external, consider renaming the function to pause .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "Public
functions starts with _ are owner functions for easy interaction on Remix or Etherscan."

Type Severity Location

Naming Conventions Informational contracts/RewardDistributor.sol L144

 RDR-07: Unnecessary underscore prefixing _unpause_unpause

Description:

The external _unpause function in the RewardDistributor contract is prefixed with an
underscore (_), which is a convention typically reserved for private and internal declarations.

Recommendation:

Since the function is external, consider renaming the function to unpause .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "Public
functions starts with _ are owner functions for easy interaction on Remix or Etherscan."

Type Severity Location

Naming Conventions Informational contracts/RewardDistributor.sol L165

 RDR-08: Unnecessary underscore prefixing _setGlobalDistributionSpeed_setGlobalDistributionSpeed

Description:

The public _setGlobalDistributionSpeed function in the RewardDistributor contract is
prefixed with an underscore (_), which is a convention typically reserved for private and
internal declarations.

Recommendation:

Since the function is public, consider renaming the function to
setGlobalDistributionSpeed .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "Public
functions starts with _ are owner functions for easy interaction on Remix or Etherscan."

Type Severity Location

Gas Optimization Informational contracts/RewardDistributor.sol L185-L187

 RDR-09: Inefficient early return in updateDistributionSpeedupdateDistributionSpeed

Description:

The public updateDistributionSpeed function in the RewardDistributor contract checks
if the paused state variable is set before returning, which is inefficient.

Recommendation:

This should most likely revert instead so that the gas is refunded.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

Type Severity Location

Naming Conventions Informational contracts/RewardDistributor.sol L271

 RDR-10: Unnecessary underscore prefixing _setDistributionFactors_setDistributionFactors

Description:

The external _setDistributionFactors function in the RewardDistributor contract is
prefixed with an underscore (_), which is a convention typically reserved for private and
internal declarations.

Recommendation:

Since the function is external, consider renaming the function to setDistributionFactors .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "Public
functions starts with _ are owner functions for easy interaction on Remix or Etherscan."

Type Severity Location

Gas Optimization Informational contracts/RewardDistributor.sol L300-L302

 RDR-11: Inefficient early return in updateDistributionStateupdateDistributionState

Description:

The external updateDistributionState function in the RewardDistributor contract
checks if the paused state variable is set before returning, which is inefficient.

Recommendation:

This should most likely revert instead so that the gas is refunded.

Alleviation:

The recommendation was not taken into account.

Type Severity Location

Gas Optimization Informational contracts/RewardDistributor.sol L351-L353

 RDR-12: Inefficient early return in updateRewardupdateReward

Description:

The external updateReward function in the RewardDistributor contract checks if the
paused state variable is set before returning, which is inefficient.

Recommendation:

This should most likely revert instead so that the gas is refunded.

Alleviation:

The recommendation was not taken into account.

Type Severity Location

Implementation Informational contracts/RewardDistributor.sol L429

 RDR-13: claimAllRewardclaimAllReward should be declared external

Description:

The public claimAllReward function in the RewardDistributor contract should be re-
declared as external.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

Type Severity Location

Implementation

Informational

contracts/InterestRateModel/InterestRateModel.sol L97-
L101

 IRM-01: getBorrowRategetBorrowRate should be declared external

Description:

The public getBorrowRate view function in the InterestRateModel contract should be re-
declared as external.

Alleviation:

The recommendation was not taken into account, with the dForce team stating "The Interest
Rate Model will be completely rewrote."

Type Severity Location

Naming Conventions Informational contracts/TokenBase/TokenAdmin.sol L28

 TAN-01: Unnecessary underscore prefixing _setController_setController

Description:

The external _setController function in the TokenAdmin contract is prefixed with an
underscore (_), which is a convention typically reserved for private and internal declarations.

Recommendation:

Since the function is external, consider renaming the function to setController .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "Public
functions starts with _ are owner functions for easy interaction on Remix or Etherscan."

Type Severity Location

Naming Conventions Informational contracts/TokenBase/TokenAdmin.sol L50

 TAN-02: Unnecessary underscore prefixing _setInterestRateModel_setInterestRateModel

Description:

The external _setInterestRateModel function in the TokenAdmin contract is prefixed with
an underscore (_), which is a convention typically reserved for private and internal
declarations.

Recommendation:

Since the function is external, consider renaming the function to setInterestRateModel .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "Public
functions starts with _ are owner functions for easy interaction on Remix or Etherscan."

Type Severity Location

Naming Conventions Informational contracts/TokenBase/TokenAdmin.sol L71

 TAN-03: Unnecessary underscore prefixing _setNewReserveRatio_setNewReserveRatio

Description:

The external _setNewReserveRatio function in the TokenAdmin contract is prefixed with an
underscore (_), which is a convention typically reserved for private and internal declarations.

Recommendation:

Since the function is external, consider renaming the function to setNewReserveRatio .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "Public
functions starts with _ are owner functions for easy interaction on Remix or Etherscan."

Type Severity Location

Naming Conventions Informational contracts/TokenBase/TokenAdmin.sol L94

 TAN-04: Unnecessary underscore prefixing _setNewFlashloanFeeRatio_setNewFlashloanFeeRatio

Description:

The external _setNewFlashloanFeeRatio function in the TokenAdmin contract is prefixed
with an underscore (_), which is a convention typically reserved for private and internal
declarations.

Recommendation:

Since the function is external, consider renaming the function to setNewFlashloanFeeRatio .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "Public
functions starts with _ are owner functions for easy interaction on Remix or Etherscan."

Type Severity Location

Naming Conventions Informational contracts/TokenBase/TokenAdmin.sol L117

 TAN-05: Unnecessary underscore prefixing _setNewProtocolFeeRatio_setNewProtocolFeeRatio

Description:

The external _setNewProtocolFeeRatio function in the TokenAdmin contract is prefixed
with an underscore (_), which is a convention typically reserved for private and internal
declarations.

Recommendation:

Since the function is external, consider renaming the function to setNewProtocolFeeRatio .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "Public
functions starts with _ are owner functions for easy interaction on Remix or Etherscan."

Type Severity Location

Naming Conventions Informational contracts/TokenBase/TokenAdmin.sol L142

 TAN-06: Unnecessary underscore prefixing _withdrawReserves_withdrawReserves

Description:

The external _withdrawReserves function in the TokenAdmin contract is prefixed with an
underscore (_), which is a convention typically reserved for private and internal declarations.

Recommendation:

Since the function is external, consider renaming the function to withdrawReserves .

Alleviation:

The recommendation was not taken into account, with the dForce team stating "Public
functions starts with _ are owner functions for easy interaction on Remix or Etherscan."

Type Severity Location

Volatile Code Minor contracts/TokenBase/TokenERC20.sol L34

 TER-01: Potential for re-entrancy attacks in _transferTokens_transferTokens

Description:

The internal _transferTokens function in the TokenERC20 contract has the potential for re-
entrancy attacks due to being accessible from the public transfer and transferFrom
functions and making a call to the internal ERC20._transfer function.

Recommendation:

Consider utilizing the nonReentrant modifier on the internal _transferTokens function in
order to protect against re-entrancy attacks.

Alleviation:

The recommendation was applied in commit
397ec65b5676bd2f64d72e532e961595ab931e3d.

 Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but
generate different, more optimal EVM opcodes resulting in a reduction on the total gas cost of
a transaction.

Arithmetic

Arithmetic exhibits entail findings that relate to mishandling of math formulas, such as
overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an
incorrect notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only
functions being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge
cases that may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as
the result of a struct assignment operation affecting an in-memory struct rather than an
in-storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage
of private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements
on the input variables than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw
format and should otherwise be specified as constant contract variables aiding in their
legibility and maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible
to compile using the specified version of the project.

Dead Code

Code that otherwise does not affect the functionality of the codebase and can be safely
omitted.a

