
Customer: SDAO
Date: September 30th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for SDAO

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type LP tokens system

Platform EVM

Network Ethereum, BSC

Language Solidity

Methods Manual Review, Automated Review, Architecture Review

Website https://singularitydao.ai/

Timeline 01.09.2022 – 30.09.2022

Changelog 20.09.2022 – Initial Review
30.09.2022 – Second Review

www.hacken.io
2

https://singularitydao.ai/

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 9

Checked Items 10

System Overview 13

Findings 17

Disclaimers 21

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by SDAO (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/Singularity-DAO/DynasetForge
Commit:

29059274c4b78cb9ea85683129bdbdfcc5a8ea17
Documentation:

Functional requirements

Integration and Unit Tests: Yes
Contracts:
File: ./contracts/AbstractDynaset.sol
SHA3: bb447a424a0b10530f611b7efdf2a404c8938b3fe6b17471c11f86e3331810b6

File: ./contracts/AbstractDynasetFactory.sol
SHA3: 709a65edf023a278a86f48343b58ddfff7c33db1feda7e30958852808355d3e8

File: ./contracts/balancer/BConst.sol
SHA3: 26973f92b9ac2d1210d6d6cb6104e4037089503b88134e91134cdafd7d5054f4

File: ./contracts/balancer/BNum.sol
SHA3: ee5569a08d981eb403b31d1e41c1e8c39e4c0d8e0632f5ad9864dd476b203866

File: ./contracts/balancer/TToken.sol
SHA3: 556e32d39c987b25d512b8124cd7cc0128990239b48a8dd89a3321370ff094a3

File: ./contracts/DToken.sol
SHA3: 3ae7232a52f4fdd452fe1ddf50ef514ba976bf4accaca55894eeb9f8248a4fc5

File: ./contracts/DynasetTvlOracle.sol
SHA3: eaef426688e9e7e0283dcbe0b82207a58bcf8fe231cbe19f9a63c900db8e8403

File: ./contracts/interfaces/IDynaset.sol
SHA3: 91027c4ab1c489d8274ed70f5a5aae3084f10384e9a925c1e86a013307783353

File: ./contracts/interfaces/IDynasetContract.sol
SHA3: b2cbca9753dde72a7906436c2bde6644b29c63cf00ac814e6a1ae93bbf741726

File: ./contracts/interfaces/IDynasetTvlOracle.sol
SHA3: 301d0f74b51123ebe998fbd8c329fea72e755ceebe5fbd8ac86567696fab81e8

File: ./contracts/interfaces/IERC20.sol
SHA3: d1a91dd8043db0ec6ac9713c037bce285771691e0927107eb580efc76a059301

File: ./contracts/interfaces/IUniswapV2Pair.sol
SHA3: 494ba4054b5f2c0e85c0d9880e54d8c4262c2b699094bca9badc74e006ee24bb

File: ./contracts/interfaces/IUniswapV2Router.sol
www.hacken.io

4

https://docs.google.com/document/d/1wJnh77M7kganzRetIFkJiw3BO17SdLrt_8Lh2-pI2Gk/edit

SHA3: db9e2aea72ba9a85fe8cb17559d0e2f0a21270a3677316286ddbc6e1948f3217

File: ./contracts/interfaces/IUsdcOracle.sol
SHA3: 027aafdd93923a514b03924d4e038e86946d73eea49a99b242d589109168806d

File: ./contracts/interfaces/IWETH.sol
SHA3: 275bb193fe14d8ea3ef54f2fed5bb2aadf87825f8105e6a848e6079bec78d5c6

File: ./contracts/libs/FixedPoint.sol
SHA3: aafca1030d47441a7cc9a26b1aaa5bd5578b322cd3aaf0cce4e285e871514aef

File: ./contracts/libs/PriceLibrary.sol
SHA3: 7395b7903ed9476bad272281db50358c5519fe3fba57d5596c73ae1646bb41fb

File: ./contracts/libs/UniswapV2OracleLibrary.sol
SHA3: 5a6ffaa735bd714e694868d62c25a03f26e2a9073fb16010ce92bdc3235179dc

File: ./contracts/oracles/ChainlinkOracle.sol
SHA3: be1b49dd8a2e102ac7f4741a15ea1d2ac29770b06f58cb95320eae4df2a3a0f0

File: ./contracts/oracles/Uniswapv2Oracle.sol
SHA3: 6909952d6a4c7e5a2d87fa096341ac04aae029690d1c211d3453ced7d2e3b8ba

File: ./contracts/oracles/Uniswapv3Oracle.sol
SHA3: 2198a6dddf9b531d4b37229c8036bd8e2b12cd2a265e0213af6d2d8a794a5e53

File: ./contracts/oracles/UsdcOracle.sol
SHA3: c31262bb84283e8dfa3a28d34a64a72dbf65cdc631c5f8955efa716c5e941e31

File: ./contracts/recipe/UniswapV2Library.sol
SHA3: fae0a20c4f7e281c08cb7b40e4140b54bf609e2d51c9f38c07b02797acbada79

File: ./contracts/DynasetDydx.sol
SHA3: ecfc9c8712c8dba96ecac1105aab06e12f9050b738c062ec56053b87f6d94a88

File: ./contracts/DynasetDydxFactory.sol
SHA3: 1d60f0b95c6c034d76275a26a57c23066f9b0280eb3b3dd4a5e0b791bea2987d

Second review scope
Repository:

https://github.com/Singularity-DAO/DynasetForge
Commit:

58d76819f83b4aefecb43d889677807667ac3fcc
Documentation:

Functional requirements

Functional requirements
Integration and Unit Tests: Yes
Contracts:
File: ./contracts/AbstractDynaset.sol
SHA3: d08dcc63a38ba715bd85afe69c981c55f0057b80ca641770444801e6c9ced3e8

File: ./contracts/AbstractDynasetFactory.sol
SHA3: 8dbd0715ab4e0c8a16b95e77dd086152b9dd9208ffb40d3da7335d49a8805473

File: ./contracts/balancer/BConst.sol
SHA3: 26973f92b9ac2d1210d6d6cb6104e4037089503b88134e91134cdafd7d5054f4

File: ./contracts/balancer/BNum.sol

www.hacken.io
5

https://docs.google.com/document/d/1wJnh77M7kganzRetIFkJiw3BO17SdLrt_8Lh2-pI2Gk/edit
https://docs.google.com/document/d/1xVoEpO08f6jnrIQk0ViD7cKaimE45PKFkyeP0cusBbY/edit

SHA3: ee5569a08d981eb403b31d1e41c1e8c39e4c0d8e0632f5ad9864dd476b203866

File: ./contracts/balancer/TToken.sol
SHA3: 556e32d39c987b25d512b8124cd7cc0128990239b48a8dd89a3321370ff094a3

File: ./contracts/DToken.sol
SHA3: 3ae7232a52f4fdd452fe1ddf50ef514ba976bf4accaca55894eeb9f8248a4fc5

File: ./contracts/DynasetDydx.sol
SHA3: ecfc9c8712c8dba96ecac1105aab06e12f9050b738c062ec56053b87f6d94a88

File: ./contracts/DynasetDydxFactory.sol
SHA3: 1d60f0b95c6c034d76275a26a57c23066f9b0280eb3b3dd4a5e0b791bea2987d

File: ./contracts/DynasetTvlOracle.sol
SHA3: 517ae27466f107d7d1c7d8ebb22d8c7cae17c07f5fce94087ac1ef491f8dad16

File: ./contracts/interfaces/IDynaset.sol
SHA3: 91027c4ab1c489d8274ed70f5a5aae3084f10384e9a925c1e86a013307783353

File: ./contracts/interfaces/IDynasetContract.sol
SHA3: b2cbca9753dde72a7906436c2bde6644b29c63cf00ac814e6a1ae93bbf741726

File: ./contracts/interfaces/IDynasetTvlOracle.sol
SHA3: 301d0f74b51123ebe998fbd8c329fea72e755ceebe5fbd8ac86567696fab81e8

File: ./contracts/interfaces/IERC20.sol
SHA3: d1a91dd8043db0ec6ac9713c037bce285771691e0927107eb580efc76a059301

File: ./contracts/interfaces/IUniswapV2Pair.sol
SHA3: 494ba4054b5f2c0e85c0d9880e54d8c4262c2b699094bca9badc74e006ee24bb

File: ./contracts/interfaces/IUniswapV2Router.sol
SHA3: db9e2aea72ba9a85fe8cb17559d0e2f0a21270a3677316286ddbc6e1948f3217

File: ./contracts/interfaces/IUsdcOracle.sol
SHA3: f7ee8bf6d7f3e01650e0843f435b4e830481a0a1038aa1f0d699516f58b45373

File: ./contracts/interfaces/IWETH.sol
SHA3: 275bb193fe14d8ea3ef54f2fed5bb2aadf87825f8105e6a848e6079bec78d5c6

File: ./contracts/interfaces/OneInchAggregator.sol
SHA3: 51ebe65bc772829ea4969395f69fd92c1cb76065c75611f40ffc65b395de964d

File: ./contracts/libs/FixedPoint.sol
SHA3: aafca1030d47441a7cc9a26b1aaa5bd5578b322cd3aaf0cce4e285e871514aef

File: ./contracts/libs/PriceLibrary.sol
SHA3: 7395b7903ed9476bad272281db50358c5519fe3fba57d5596c73ae1646bb41fb

File: ./contracts/libs/UniswapV2OracleLibrary.sol
SHA3: 5a6ffaa735bd714e694868d62c25a03f26e2a9073fb16010ce92bdc3235179dc

File: ./contracts/Migrations.sol
SHA3: 1ed21175afe224f2dec4194e8acc3c1c2a8f88df513f6f81a4a578b9b487d53d

File: ./contracts/oracles/ChainlinkOracle.sol
SHA3: 13662629aa016b5b027bfc434a157fc78ff5c6439ea7bfcf266d90baa0ad63e4

File: ./contracts/oracles/Uniswapv2Oracle.sol

www.hacken.io
6

SHA3: 6797d58792a3b85ec1d99f08f68995e241b71bd852c740e5544b930457ec7f70

File: ./contracts/oracles/Uniswapv3Oracle.sol
SHA3: 363cdc6ef4b26054ad2fb4c9a32a13594c562177b42eacaefa6419db632a80b8

File: ./contracts/oracles/UsdcOracle.sol
SHA3: f16ae90bc00c408507a1b812a0225b6048fcdb9ce54512006ef34cdfcef2087a

File: ./contracts/recipe/UniswapV2Library.sol
SHA3: fae0a20c4f7e281c08cb7b40e4140b54bf609e2d51c9f38c07b02797acbada79

www.hacken.io
7

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
8

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10. Functional
requirements are provided. A technical description is provided as comments
in the code.

Code quality
The total Code Quality score is 7 out of 10. Redundant declarations and
code duplications were found. Tests were provided. Integration Hardhat
tests coverage is 60%; 14% for Hardhat unit tests coverage, and 18% for
Truffle tests.

Architecture quality
The architecture quality score is 10 out of 10. The Truffle is provided as
a development environment; it implements deployment scripts and tests (The
Hardhat is used for tests as well.)

Security score
As a result of the audit, the code contains 3 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.7.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

19 September 2022 7 0 2 3

30 September 2022 3 0 0 0

www.hacken.io
9

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization SWC-115 tx.origin should not be used for Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115

through
tx.origin

authorization.

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain identifier
should always be used. All parameters
from the signature should be used in
signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Failed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom Transaction execution costs should not

depend dramatically on the amount of Passed

www.hacken.io
11

https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
12

System Overview

DynasetDydx is an actively managed multi-asset on-chain crypto investment
system with the following contracts:

● AbstractDynaset — is an abstract contract with the base Dynaset
functionality. The contract is an ERC-20 token. Token`s name and
symbol are defined when the contract deployment, the total supply is
unlimited. The contract allows depositing tokens in appropriate
weights for each token to get the desired amount of the Dynaset
tokens. Resulting Dynaset share is calculated according to the sum of
UDS prices of deposited tokens to the total deposited tokens in USD
ratio (Uniswap oracle). The Dynaset tokens can be redeemed: the
appropriate amounts of the tokens in the pool will be transferred to
the user during the redeeming, and the Dynaset tokens will be burnt.
The addresses should be allowed to deposit and redeem tokens.

● DynasetDydx — is a contract that inherits the AbstractDynaset
contract. The functionality of the contract allows the user with the
digitalAssetManager role to withdraw and deposit ERC-20 tokens from
contract.

● AbstractDynasetFactory — is an abstract contract with the base
DynasetFactory functionality for managing Dynaset contracts (Dynasets
creation is not implemented in this contract).
The functionality allows the owner to collect fees from the Dynaset:

○ Performance fee: the fee is the defined percentage of the total
amount of tokens in the contract in USD (up to 25%, is defined
for each Dynaset contract when initialization). The fee
collected is transferred to the contract in USD tokens. Fee
collecting can be triggered once a month.

○ Management fee: the fee is the defined percentage from the
year's total amount of tokens in the contract in USD (up to 5%,
is defined for each Dynaset contract when initialization): the
amount of calculated fee is multiplied by the amount of time
since the last fee collection and is divided by the year time.
Fee collecting can be triggered once a month, together with the
performance fee.

The owner can withdraw tokens from the contract to the defined
deployment address. The owner can create a snapshot for each Dynaset:
the total amount of tokens in the contract in USD at that moment will
not be considered in the fee calculations. The owner sets and updates
the oracles (DynasetTvlOracle) for each Dynaset that are used for the
fee calculations. The fees are transferred to the defined gnosis
address.

● DynasetDydxFactory — is a contract that inherits the AbstractFactory
contract and allows the creation of Dynasets.

● DynasetTvlOracle — is a contract that interacts with oracle
(UsdcOracle contract), obtains USD prices for Dynasets and underlying

www.hacken.io
13

tokens, allows to update tokens prices, used in the AbstractDynaset,
AbstractDynasetFactory, DirectForge and ForgeV1 contracts.

● UniswapV2Library — is a library with helper methods for the Uniswap
oracle, used in the Uniswapv2Oracle and PriceLibrary contracts.

● PriceLibrary — is a library that helps to retrieve and aggregate data
from the Uniswap oracle, used in the Uniswapv2Oracle contract.

● FixedPoint — is a library for handling binary fixed-point numbers,
used in the Uniswapv2Oracle, PriceLibrary, UniswapV2OracleLibrary
contracts.

● UniswapV2OracleLibrary — is a library with helper methods for the
Uniswap oracle, used in the PriceLibrary contract.

● DToken — is an ERC-20 token contract, inherited by the
AbstractDynaset contract.

● DTokenBase — is a contract with base ERC-20 token functional,
inherited by the DToken contract.

● BConst — is a helper contract that contains constants, used in the
BNum contract.

● BNum — is a contract that contains the functional for calculations,
used in the AbstractDynaset contract.

● UsdcOracle — is a contract that interacts with the oracles, obtains
prices and allows to update oracles. The contract contains the
preferred oracle; the user with the ORACLE_ADMIN role adds fallback
oracles to the contract; when obtaining prices, they are requested
from all the oracles in turn until the stale (2 days initially, can
be changed by the user with the ORACLE_ADMIN role) price is returned.

● Uniswapv2Oracle — is a contract that allows getting prices of tokens
from the Uniswap V2 oracle. The contract provides average token
prices that are measured using the recent and historical prices.

The prices for tokens can be obtained after the defined deployment
time periods. All the prices are stored in the contract state (in
USDC for WETH, and in the WETH for all the other tokens). The average
token prices are measured using the current token price received from
the oracle and the previously obtained one if it is at least half a
period older than now and at most 2 periods older.

● Uniswapv3Oracle — is a contract that allows getting prices of tokens
from the Uniswap V3 oracle.

● ChainlinkOracle — is a contract that allows getting prices of tokens
from the Chainlink oracle.

● IDynaset — is an interface for the Dynaset contract, used in the
DynasetTvlOracle contracts.

● IDynasetContract — is an interface for the Dynaset contract,
inherited by the AbstractDynaset, used in the AbstractDynasetFactory
contract.

www.hacken.io
14

● IDynasetTvlOracle — is an interface for the DynasetTvlOracle
contract, inherited by the DynasetTvlOracle contract, used in the
AbstractDynaset, AbstractDynasetFactory, DynasetTvlOracle contracts.

● IERC20 — is an interface for the ERC-20 tokens, inherited by the
DToken, IDynaset, contracts.

● IUniswapV2Pair — is an interface for Uniswap pair, used in the
AbstractDynaset, UniswapV2OracleLibrary, UniswapV2Library contracts.

● IUniswapV2Router — is an interface for Uniswap router, used in the
AbstractDynaset contracts.

● IUsdcOracle — is an interface for USDC oracle, inherited by the
UsdcOracle, Uniswapv3Oracle, Uniswapv2Oracle, ChainlinkOracle
contract, used in the DynasetTvlOracle contract.

Privileged roles
● The AbstractDynaset and DynasetDydx contracts have privileged roles

of controller, factory and digitalAssetManager:
○ The controller can set addresses that can deposit and redeem

tokens.
○ The factory can initialize the contract, withdraw fees and set

the oracle address.
○ The digitalAssetManager can add and remove pool tokens (remove

when the token balance in the contracts is 0).
● The digitalAssetManager of the DynasetDydx contract can withdraw

tokens from the pool and deposit them.
● The owner of the AbstractDynasetFactory and DynasetDydxFactory

contracts can initialize Dynaset contracts, collect and withdraw fees
from them, set and update DynasetTvlOracle contracts for DynasetDydx
contracts, update the gnosis address (address where the fees are
transferred to).

● The owner of the DynasetDydxFactory contract can create DynasetDydx
contracts.

● The ORACLE_ADMIN role of the UsdcOracle contract allows to set
fallback oracles and stale price period, and pause the oracles.

● The ORACLE_ADMIN role of the Uniswapv3Oracle contract allows to set
the Uniswap fee.

Risks
● In the Uniswapv2Oracle contract, the average prices are computed

using the current and previously manually obtained token prices; they
should have the correct time gap between each other. Therefore, it is
impossible to get the average prices when the token price has been
obtained the first time and the time period has not passed, or when
the token price has not been updated in time and the required time
period has expired.

www.hacken.io
15

(https://docs.uniswap.org/protocol/V2/guides/smart-contract-integrati
on/building-an-oracle#oracle-maintenance)

● Despite the documentation specifying that there are AI contracts to
manage the funds based on the profit forecasts, the project does not
contain any AI contracts. (It is impossible to run AI on the
blockchain)

● If the calculated fee amount in the DynasetDydxFactory is greater
than the USD balance on the DynasetDydx contract, it would be
impossible to collect the fee.

● The user with the digitalAssetManager role of the DynasetDydx
contract can withdraw tokens from the pool.

www.hacken.io
16

https://docs.uniswap.org/protocol/V2/guides/smart-contract-integration/building-an-oracle#oracle-maintenance
https://docs.uniswap.org/protocol/V2/guides/smart-contract-integration/building-an-oracle#oracle-maintenance

Findings

Critical

1. Denial of Service vulnerability

When obtaining the prices from the fallbackOracles, for the price and
observation values assignment, the value > value condition is
checked, which always returns false.

Therefore, the prices from fallbackOracles can not be obtained.

Path: ./contracts/oracles/UsdcOracle.sol : getPrice()

Recommendation: replace the value > value condition with value > 0,
or fix the logic in another required way, and ensure that prices from
fallbackOracles can be obtained.

Status: Fixed (Revised commit:
58d76819f83b4aefecb43d889677807667ac3fcc)

2. Denial of Service vulnerability

Functions updateTokenPrices of ChainlinkOracle and Uniswapv3Oracle do
not update tokens prices, and canUpdateTokenPrices functions return
false value.

Therefore, these oracles are inoperable and cannot provide prices for
UsdcOracle contract.

Paths: ./contracts/oracles/ChainlinkOracle.sol :
canUpdateTokenPrices(), updateTokenPrices();
./contracts/oracles/Uniswapv3Oracle.sol : canUpdateTokenPrices(),
updateTokenPrices()

Recommendation: ensure that ChainlinkOracle and Uniswapv3Oracle
contract can provide tokens prices for the UsdcOracle contract.

Status: Fixed (Revised commit:
58d76819f83b4aefecb43d889677807667ac3fcc)

3. Flashloan attack

Uniswapv3Oracle and Uniswapv2Oracle contracts use Uniswap router for
the prices obtaining.

The prices in the Uniswap may be disbalanced using the flashloan, and
the price may be manipulated.

Paths: ./contracts/oracles/Uniswapv3Oracle.sol,
./contracts/oracles/Uniswapv2Oracle.sol

www.hacken.io
17

Recommendation: do not the current price for the price calculation,
replace the arithmetic mean with the geometric mean in the
Uniswapv2Oracle.

Status: Mitigated (The Customer comment: “The oracles are taking the
average price of two observations at least a minimal observation
period in the past. Which means an attacker needs to manipulate the
price over several minutes without it getting arbitraged. A flashloan
has zero effect on such oracles.”)

High

1. Requirements violation; Denial of Service vulnerability

Function updateTokenPrices runs over fallbackOracles array to update
tokens prices, but the tokens for the preferredOracle are not
updated.

Therefore, tokens may be un-updated or not updated in time, leading
to the inoperability of the oracle.

Path: ./contracts/oracles/UsdcOracle.sol : updateTokenPrices()

Recommendation: ensure that all the token prices are updated.

Status: Mitigated (The Customer comment: “Works as designed. Since
chainlink oracle is used as preferred oracle. The oracles do provide
prices even when we don't update them explicitly. Even when the
prices are not updated in the preferred oracle, it will return the
fallback oracle.”)

2. Unsecure oracles usage

The UsdcOracle contract does not allow to remove oracles it relies on
(preferredOracle, fallbackOracles).

Therefore, if the oracle is compromised, it will be impossible to
pause it.

Path: ./contracts/oracles/UsdcOracle.sol : preferredOracle,
fallbackOracles

Recommendation: add the ability to pause oracles.

Status: Fixed (Revised commit:
58d76819f83b4aefecb43d889677807667ac3fcc)

Medium

No medium severity issues were found.

Low

1. Boolean equality

The values are compared to true and false instead of a direct boolean
check.

www.hacken.io
18

Path: ./contracts/AbstractDynaset.sol : joinDynaset(), exitDynaset();

Recommendation: remove the boolean equality.

Status: Fixed (Revised commit:
58d76819f83b4aefecb43d889677807667ac3fcc)

2. Redundant role

The ORACLE_ADMIN roles of the DynasetTvlOracle, Uniswapv2Oracle,
ChainlinkOracle contracts are never used.

Paths: ./contracts/DynasetTvlOracle.sol : ORACLE_ADMIN;
./contracts/oracles/Uniswapv2Oracle.sol : ORACLE_ADMIN;
./contracts/oracles/ChainlinkOracle.sol : ORACLE_ADMIN;

Recommendation: remove the redundant roles.

Status: Reported

3. Never used functions

There are never used functions in the contracts.

Unused code decreased the code readability.

Paths: ./contracts/libs/FixedPoint.sol : encode(), encode144(),
div(), decode(); ./contracts/balancer/BNum.sol : bpow(),
bpowApprox(), bdiv(), bsubSign(), badd(), bsub(), bpowi(), bfloor(),
btoi();

Recommendation: remove never used functions.

Status: Reported

4. Never used variables

The contract contains variables that are never used.

Unused code decreased the code readability.

Paths: ./contracts/balancer/BConst.sol : WEIGHT_UPDATE_DELAY,
WEIGHT_CHANGE_PCT, MIN_FEE, MAX_FEE, EXIT_FEE, MAX_IN_RATIO,
MAX_OUT_RATIO

Recommendation: remove the redundant code.

Status: Reported

5. Redundant imports

The contracts contain imports that are not used.

Unused code decreases the code readability.

Paths: ./contracts/AbstractDynasetFactory.sol :
"@openzeppelin/contracts/utils/math/SafeMath.sol";
./contracts/AbstractDynaset.sol : "./interfaces/IUniswapV2Pair.sol",
"./interfaces/OneInchAggregator.sol";

www.hacken.io
19

./contracts/DynasetDydxFactory.sol :
"./interfaces/IDynasetContract.sol"

Recommendation: remove the redundant imports.

Status: Fixed (Revised commit:
58d76819f83b4aefecb43d889677807667ac3fcc)

6. Default visibility usage

There is variable default visibility usage.

The explicit visibility makes it easier to catch incorrect
assumptions about who can access the variable.

Path: ./contracts/oracles/UsdcOracle.sol : staleOraclePeriod

Recommendation: define the visibility explicitly.

Status: Fixed (Revised commit:
58d76819f83b4aefecb43d889677807667ac3fcc)

7. Missing zero addresses validations

The parameters tokens and tokenProvider are not checked for a
non-zero value.

This can lead to unwanted external calls to 0x0.

Path: ./contracts/AbstractDynaset.sol : initialize

Recommendation: add the zero address checks.

Status: Fixed (Revised commit:
58d76819f83b4aefecb43d889677807667ac3fcc)

www.hacken.io
20

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Сonsultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
21

