
 

Smart Contract 
Source Code Audit 

Sovryn Governance 
Prepared for Sovryn • January 2021 

v210115  

1. Table Of Contents 
1. Table Of Contents 

2. Executive Summary 

3. Introduction 

4. Assessment 

4.1 Governance 
4.2 Staking 
4.3 Vesting 
4.4 Rewards and fee sharing 

5. Conclusions and Recommendations 

6. Summary of Findings 

8. Findings 

SVN-014  -  Incorrect ecrecover return value checks 
SVN-015  -  Shadowed declarations 
SVN-016  -  Incorrect revert error message strings in Checkpoints.sol 

9. Disclaimer 

  

© 2021 Coinspect         1       



 

2. Executive Summary 
 
In January 2021, Sovryn engaged Coinspect to perform a source code review of their new               
governance, staking and fee sharing contracts. The objective of the audit was to evaluate              
the security of the smart contracts implementing these features. 
 
The code reviewed was found to be clear, well written, and properly documented. No high 
risk vulnerabilities  were discovered during this audit. 
 
Even though the new features give the protocol users more participation, it is worth noting, 
by design, centralized roles are still able to control governance decisions, at least until 
governance abdicates their proposal veto right. 
 
The following issues were identified during the assessment: 
 

  

© 2021 Coinspect         2       

High Risk Medium Risk Low Risk Informational 

0 0 1 2 

https://sovryn.app/
https://coinspect.com/


 

3. Introduction 
 
Sovryn’s goal is to enable lending, borrowing and margin trading in the RSK blockchain. 
 
This audit focused on the smart contracts that implement the following recently developed             
features: 

1. Governance 
2. Staking 
3. Vesting 
4. Sovryn Rewards Token 

 
The audit started on January 4th and was conducted on the PR#63 Governance pull request               
from the Sovryn Git repository. This pull request includes 310 commits and modified 73 files. 
 
This review focused on the following new Solidity source files shown here with their 
sha256sum hash: 
 
5500fd645abe493558849208348b5ca09d5fbcb63862cede9585d075a35ebc4a  ./governance/Vesting/IVesting.sol 

6a3cd8228410fb5639c13542d500ac4fc55dd56ccb7fb2a6cecd28c82de2ea87  ./governance/Vesting/Vesting.sol 

2616a8c6a5b39046d9f3d64b8b6e83ba24a40cdaffc20ebe63bf445a469285da  ./governance/Vesting/TeamVesting.sol 

345ce97154433a1d77bf4d3998080677d0faacd2b6cd037b87ffbe93311fac6b  ./governance/Vesting/RSOV.sol 

752d4cb2d6bf3d35dea9084a80facf60935341f803d6f463838d85b0d9d789cd  ./governance/Vesting/DevelopmentVesting.sol 

829d54b74fb8eab57f0bddf904300233763fcb593935290bb6d4fc9aa016a35d  ./governance/IFeeSharingProxy.sol 

379e1187912e7d676816adb0d264bc963340b376b5bfae339177ea135be36121  ./governance/Staking/StakingStorage.sol 

3f3d31dcaa4c0e8766a6d00b5c27b3a738c159cd58bf61e246da7728fce46c54  ./governance/Staking/SafeMath96.sol 

3f324cab3adbda475ae5d0c5e8786fdf2cd7309721bd3df550db49d0d66d4cbf  ./governance/Staking/WeightedStaking.sol 

3464e5dfdf5f9d31cded3a5dc1e55b69d0948debb41ad275a9806ecceda22b5a  ./governance/Staking/Checkpoints.sol 

a4766027aa58e996dd1a99caeb6ccb833da1d8ee5d0fc1cfdafc5629ab0ab0a6  ./governance/Staking/IStaking.sol 

d49fd09134e68430f3a1323d4462de352969be164751e271f778c84a174f1efe  ./governance/Staking/StakingProxy.sol 

2fad61745acd6d5aad1cf8a27346e9a6522caff4464ce0f80a1baf092f2c5823  ./governance/Staking/Staking.sol 

7b03830660d9e887b7526a17e29d83a2226d97a2ca2086580a55f2bb20ac97aa  ./governance/Timelock.sol 

3bc9e03898c93961e77de52c9b48acc9e2a71e5a526416212694742522fcec70  ./governance/FeeSharingProxy.sol 

bb12a6faf2c9a816b939abc6e671f36f436f5f3403b22d4dab1b07685ac94aff  ./governance/GovernorAlpha.sol 

cdcc5deac47f210bcf7032d03dbdb16156f802a6197d71997ad2528590213711  ./proxy/Proxy.sol 

 
The changes made to other smart contracts in the platform in order to integrate these new 
files were reviewed as well. 
 
The following design documentation provided by the Sovryn team was consulted during the 
assessment: 

1. Governance development plan 
2. https://hackmd.io/eLCgFHT3QEKre9bf_nyCOA?view#Governance-Brainstorming  

© 2021 Coinspect         3       

https://github.com/DistributedCollective/Sovryn-smart-contracts/pull/63
https://docs.google.com/document/d/1N1J0HH6Yy6TMYEfj76ctnR--M6UjPyKIxiH10sY5F7E/edit
https://hackmd.io/eLCgFHT3QEKre9bf_nyCOA?view#Governance-Brainstorming


 

4. Assessment 
 
The new governance feature, implemented in the GovernorAlpha.sol and Timelock.sol smart 
contracts, is based on Compound’s governance model implementation. However, the 
scheme was modified by Sovryn to incorporate weighted voting power based on staking. 
 
The contracts are compiled with Solidity version 0.5.17. A few compile warnings are emitted 
at build time, most of them related to shadowed variables and the use of ABIEncodeV2, 
which was experimental for that Solidity release. Several tests were added for the new 
functionality, all of these 233 new tests included in the repository pass. Coinspect observed 
the visibility of some public functions could be changed to external in order to optimize gas 
usage. 
 
The following sections explore each of new features, and provide a brief description and              
audit notes for each of them. 
 
4.1 Governance 
 
The governance model is based on Compound’s system. Executable governance proposals 
can be made by anybody with voting power above a certain threshold. These proposals are 
voted, and if approved, queued in the Timelock contract which allows executing them after a 
period of time.  
 
Votes can be delegated, and are calculated based on the staking voting power taking into 
account a proposal’s start block and start time. 
 
Sovryn’s implementation allows the governance guardian role to veto any proposal.  
 
A mechanism for the guardian to abdicate his role is provided. 
 
4.2 Staking 
 
The staking contract allows users to deposit tokens for a period of time, in exchange for                
voting power and fees sharing rights. This contract allows users to delegate their stake to               
another account. Also, it is possible to stake with a certain schedule, this functionality is used                
by the vesting contract. 
 
The weightedStaking.sol contract is responsible for voting power calculations for any point in             
time. In order to save gas and prevent attacks, this is implemented via a checkpointing               
mechanism with a 2 weeks period. 
 
It is worth noting, users are allowed to withdraw their vested tokens before time with a                
cost proportional to the time remaining until the original stake finish date. The slashed              
amount is transferred to the fee sharing contract. The following output from one of the tests                
provided shows how this punishment mechanism works: 

© 2021 Coinspect         4       



 

 
Staked amount: 10000 

lock date: 2 (weeks), slashed amount: 360 ( 3.6% ) 

lock date: 20 (weeks), slashed amount: 930 ( 9.3% ) 

lock date: 40 (weeks), slashed amount: 1500 ( 15% ) 

lock date: 60 (weeks), slashed amount: 1950 ( 19.5% ) 

lock date: 80 (weeks), slashed amount: 2340 ( 23.4% ) 

lock date: 100 (weeks), slashed amount: 2640 ( 26.4% ) 

lock date: 120 (weeks), slashed amount: 2850 ( 28.5% ) 

lock date: 140 (weeks), slashed amount: 2970 ( 29.7% ) 

lock date: 156 (weeks), slashed amount: 3000 ( 30% ) 

 

As a consequence, 30% of the staked amount gets slashed when the depositor decides to               
withdraw 156 weeks before the stake period is due, this is the maximum staking period and                
its punishment. 
 

The Staking contract owner, governance, has the ability to allow any address to             
withdraw anytime without being punished through a vesting whitelist which is used in the              
governanceWithdrawVesting function. 
 
Additionally, there is an irreversible unlock all tokens flag that can be enabled by the contract                
owner and disables slashing for all stakes. 
 
A staking proxy contract is also included in the repository, which allows the proxy owner to                
upgrade the staking contract implementation. 
 
4.3 Vesting 
 
The Vesting contracts enforce two kinds of vesting schedules: one is intended for investor’s 
tokens and the other one for the team’s tokens. 
 
Team vesting is implemented in Vesting.sol, the vested tokens get staked in the staking 
contract with a determined schedule (cliff, duration and period) via the stakeBySchedule 
function. As time passes, vested tokens get unlocked according to the vesting schedule. The 
SOV token owner and the Vesting contract owner are the only ones allowed to 
withdraw tokens. The withdraw function only allows withdrawing tokens that have been 
unlocked. There is one  exception to this rule: the Staking contract is allowed to withdraw 
all tokens anytime, including locked ones, through the withdrawGovernance function. 
 
Investor’s vesting is implemented in DevelopmentVesting.sol. In this case, vested tokens do            
not get staked, the vesting contract just locks the tokens. As a consequence, the investors               
who deposit tokens in this contract do not get voting or fee sharing rights. Tokens can get                 
deposited or vested in this contract: deposited tokens can be withdrawn anytime, vested             
tokens are locked in for a period of time. In addition to the contract owner, the token owner is                   
allowed to withdraw tokens from this vesting contract. The withdraw functions can only             
withdraw unlocked vested tokens or those that were deposited. 
 
The vesting contract owner can unlock all tokens anytime by setting the vesting schedule              
parameters to zero. 
 

© 2021 Coinspect         5       



 

4.4 Rewards and fee sharing 
 
The RSOV token (Sovryn Reward Token) goal is to allow users to get rewards through the 
generation of protocol fees. The mint function accepts SOV tokens and mints the same 
amount of RSOV tokens. When burning RSOV tokens, the user gets 1/14th of the tokens 
sent back to him and the rest get staked in the user’s behalf with a schedule of 4 weeks cliff 
and period and 1 year duration. 
 
The FeeSharingProxy contract is intended to be set as the protocol fee collector. Anybody 
can invoke the withdrawFees function which uses protocol.withdrawFees to obtain 
available fees from operations on a certain token, these fees are deposited in the 
corresponding loanPool. Also, the staking contract sends slashed tokens to this contract. 
When a user calls the withdraw function, the contract transfers the fee sharing rewards in 
proportion to the user’s weighted stake since the last withdrawal. 
 
4.4 Miscellaneous modifications 
 
The following changes were introduced by the same pull request and were reviewed by 
Coinspect: 

1. Added new admin and pauser roles, separate from the contract owner, to the 
LoanToken contracts. 

2. Added new admin role to State.sol and ProtocolSettings.sol smart contracts. 
3. Solidity version bump from ^0.4.15 to ^0.5.17 for MultiSigWallet.sol and the 

required modifications to support the newer version 
4. New events were added. 
5. withdrawFees function added to ISovryn protocol interface 

  

© 2021 Coinspect         6       



 

5. Conclusions and Recommendations 
 
No high risk vulnerabilities were found during this assessment. The source code reviewed 
was found to be correct and only minor suggestions are made in this report in order to 
improve code quality. 
 
Even though the main goal of the new features is to offer the protocol users a more 
decentralized governance model and more participation in decision making, it is worth noting 
the system will not be fully decentralized when deployed and there are mechanisms in place, 
such as the guardian’s veto right, that allow certain roles to maintain control of governance, 
such as the veto mechanism. This is intended by design, and the mechanisms to forfeit 
centralized control are in place for when the moment comes for the Sovryn team to switch to 
a completely decentralized governance model. 
 
Another important design decision that should be taken into account is the users ability to 
withdraw their stakes, with a penalization, after proposing and/or voting an executable 
governance proposal. 
 
The following list sums up the most important recommendations from this audit: 
 

1. Review visibility of functions to make sure all functions that can be declared as 
external are declared that way in order to save gas. 

2. Clearly document the roles in the system and their rights to bypass locked tokens 
withdrawal schedules. 

3. Clearly document the ability of the guardian role to veto any governance proposal. 
The process for the guardian to monitor proposals and decide which ones should be 
vetoed should be documented. 

  

© 2021 Coinspect         7       



 

6. Summary of Findings 
 

  

© 2021 Coinspect         8       

ID Description Risk Fixed 

SVN-014 Incorrect ecrecover return value checks  Low ✘ 

SVN-015 Shadowed declarations Info ✘ 

SVN-016 Incorrect revert error message strings in Checkpoints.sol Info ✘ 



 

8. Findings 
 

 

Description 

In the RSK blockchain implementation, ecrecover’s precompiled contract return value in           
error scenarios is the value 0xdcc703c0E500B653Ca82273B7BFAd8045D85a470 in contrast        
with Ethereum’s implementation which returns the 0 address for errors. 
 
The castVoteBySig function in the GovernorAlpha smart contract checks the return value            
is not address 0: 
 
   function castVoteBySig(uint proposalId, bool support, uint8 v, bytes32 r, bytes32 s) public { 

bytes32 domainSeparator = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(NAME)),      

getChainId(), address(this))); 
       bytes32 structHash = keccak256(abi.encode(BALLOT_TYPEHASH, proposalId, support)); 
       bytes32 digest = keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); 
       address signatory = ecrecover(digest, v, r, s); 
       require(signatory != address(0), "GovernorAlpha::castVoteBySig: invalid signature"); 
       return _castVote(signatory, proposalId, support); 

 
As a consequence, it is possible to cast a vote using an invalid signature. However, in the                 
current implementation, the invalid voter would not have any voting power associated            
because he would lack the staking required.   
 
The same scenario takes place in the delegateBySig function in Staking.sol:  
 
       bytes32 digest = keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); 
       address signatory = ecrecover(digest, v, r, s); 
       require(signatory != address(0), "Staking::delegateBySig: invalid signature"); 
 

Recommendation 

Coinspect recommends checking for ecrecover RSK specific error return value in order to 
prevent future mistakes;  for an example check RSKAddrValidator.sol.  

© 2021 Coinspect         9       

SVN-014 Incorrect ecrecover return value checks  

Total Risk 

Low 
 

Fixed  
✘ 

Impact 
Low 

 
Likelihood 

High 

Location 
Staking.sol 
GovernorAlpha.sol 
 
 

https://github.com/rsksmart/enveloping/blob/master/contracts/utils/RSKAddrValidator.sol#L12


 

 

 

Description 

The Staking.sol and GovernorAlpha.sol contracts emit warnings at compile time caused 
by shadowed declarations: 
 

Staking.sol:393:13: Warning: This declaration shadows an existing declaration. 

            uint96 currentBalance = currentBalance(account, i); 

 

Staking.sol:228:5: The shadowed declaration is here: 

    function currentBalance(address account, uint lockDate) internal view 

returns(uint96) { 

 

GovernorAlpha.sol:171:9: Warning: This declaration shadows an existing declaration. 

        uint96 proposalThreshold = proposalThreshold(); 

 

GovernorAlpha.sol:153:5: The shadowed declaration is here: 

    function proposalThreshold() public view returns (uint96) {  

 

Staking.sol:393:13: Warning: This declaration shadows an existing declaration. 

            uint96 currentBalance = currentBalance(account, i); 

 

Staking.sol:228:5: The shadowed declaration is here: 

    function currentBalance(address account, uint lockDate) internal view 

returns(uint96) { 

 

GovernorAlpha.sol:171:9: Warning: This declaration shadows an existing declaration. 

        uint96 proposalThreshold = proposalThreshold(); 

 

GovernorAlpha.sol:153:5: The shadowed declaration is here: 

    function proposalThreshold() public view returns (uint96) {  

 
Coinspect auditors reviewed these warnings and concluded they do not represent an 
immediate risk. 
 

Recommendation 

Even though this issue does not represent a security risk right now, Coinspect recommends              
modifying the variable names to improve code readability and avoid the compile time             
warnings.  

© 2021 Coinspect         10       

SVN-015 Shadowed declarations 

Total Risk 

Info 
 

Fixed  
✘ 

Impact 
None 

 
Likelihood 

None 

Location 
Staking.sol 
GovernorAlpha.sol 
 
 



 

 

 

Description 

The error strings used in several functions in the Checkpoints smart contract are incorrect, 
as the error is caused by an overflow in the stake amount and not in the stake date as the 
string indicates: 
 
   function _decreaseUserStake(address account, uint lockedTS, uint96 value) internal{ 
       uint32 nCheckpoints = numUserStakingCheckpoints[account][lockedTS]; 
       uint96 staked = userStakingCheckpoints[account][lockedTS][nCheckpoints - 1].stake; 
       uint96 newStake = sub96(staked, value, "Staking::_decreaseUserStake: stakedUntil underflow"); 

       _writeUserCheckpoint(account, lockedTS, nCheckpoints, newStake);  

 
The following error strings in Checkpoints.sol are incorrect: 
 

uint96 newStake = add96(staked, value, "Staking::_increaseUserStake: stakedUntil overflow"); 
uint96 newStake = sub96(staked, value, "Staking::_decreaseUserStake: stakedUntil underflow"); 
uint96 newStake = add96(staked, value, "Staking::_increaseDelegateeStake: stakedUntil 
overflow"); 

uint96 newStake = sub96(staked, value, "Staking::_decreaseDailyStake: stakedUntil underflow"); 
uint96 newStake = add96(staked, value, "Staking::_increaseDailyStake: stakedUntil overflow"); 
uint96 newStake = sub96(staked, value, "Staking::_decreaseDailyStake: stakedUntil underflow"); 

 

Recommendations 

Modify the revert error strings to indicate a newStake overflow/underflow was the cause. 
  

© 2021 Coinspect         11       

SVN-016 Incorrect revert error message strings in Checkpoints.sol 

Total Risk 

Info 
 

Fixed  
✘ 

Impact 
None 

 
Likelihood 

None 

Location 
Checkpoints.sol 
 
 



 

9. Disclaimer 
 
The present security audit does not cover the endpoint systems and wallets that             
communicate with the contracts, nor the general operational security of the company whose             
contracts have been audited. This document should not be read as investment advice or an               
offering of tokens. 

© 2021 Coinspect         12       


