
 

Security Audit Report 

StakeWise Contract 

Delivered: December 23th, 2020 

Updated: January 14th, 2021 

 

 

 

 

 

Prepared for StakeWise by 

 



 

Summary 

Disclaimer 

Assumptions 

Findings 

A01: Flaws in StakedTokens contract implementation 

A02: Error in RewardEthToken._transfer() implementation 

A03: Off-by-one error in consensus condition for balance reporting oracles 

A04: Total supply of stETH/rwETH tokens could exceed the actual balance of the 
validator pool 

A05: StakedEthToken.balanceOf() could revert 

A06: Newly generated rewards are vulnerable to attack by malicious balance 
reporters 

Informative Findings & Recommendations 

B01: Rounding errors in instant penalty distribution 

B02: Precision losses in rewards distribution computation 

B03: StakedTokens.withdrawTokens() does not update token rewards when token is 
disabled 

B04: Permission for RewardEthToken.updateRewardCheckpoint() 

B05: No service fees are refunded in penalty distribution 

B06: Gas optimization suggestion 

B07: Access control analysis 

B08: Non-systematic uses of nonReentrant modifier 

B09: Potential arithmetic overflows 

Bytecode Test Coverage Analysis 

Appendix: Contract Diagram 
  

1 



 

Summary 
Runtime Verification, Inc. conducted a security audit on the StakeWise smart contracts. 

The first iteration of the audit was conducted by Daejun Park over the course of two 
calendar weeks.  This focused on reviewing the business logic of the contracts and 
identifying any logical loopholes that could cause the system to malfunction or be 
exploited. 

Updated (Jan 12): The second iteration was conducted by Daejun Park and Yi Zhang 
over the course of two person-weeks.  This focused on reviewing the lower level details 
of both source code and bytecode.  This also included reviewing the code changes for 
fixing the issues found in the first iteration. 

The audit led to six findings and nine informative findings and recommendations.  The 
six findings include four implementation errors (A01, A02, A03, and A05) and two 
business logic flaws (A04 and A06).  The nine informative findings and 
recommendations are about arithmetic (B01, B02, and B09), access controls (B03, B04, 
B07, and B08), business logic (B05), and gas optimization (B06).  All findings have 
been fixed by the StakeWise team, and all informative findings and recommendations 
were acknowledged or adopted. 

Scope 

The target of the audit is the smart contracts source files at git-commit-id 
19da824f44079c2b94c8cca84de77f5bdf3f0e54.  Below is the list of the source files: 

● contracts/BalanceReporters.sol 
● contracts/collectors/Pool.sol 
● contracts/collectors/Solos.sol 
● contracts/interfaces/*.sol 
● contracts/presets/OwnablePausable.sol 
● contracts/presets/OwnablePausableUpgradeable.sol 
● contracts/tokens/ERC20.sol 
● contracts/tokens/RewardEthToken.sol 
● contracts/tokens/StakedEthToken.sol 
● contracts/tokens/StakedTokens.sol 
● contracts/Validators.sol 

2 

https://runtimeverification.com/
https://stakewise.io/
https://github.com/stakewise/contracts/tree/19da824f44079c2b94c8cca84de77f5bdf3f0e54


 

The audit is limited in scope within the boundary of the Solidity contract only.  Off-chain 
and client-side portions of the codebase as well as deployment and upgrade scripts are 
not in the scope of this engagement. 

Moreover, in this engagement, we gave a higher priority to reviewing the internal logic of 
the contracts, rather than comprehensively identifying the potential behaviors of external 
interactions with liquidity providers such as Uniswap. 

Updated (Jan 12): In the second iteration of the audit, the additional code changes 
made up to f2d9985131fd6c3143a4b0df272fca62cbe0d464 were also independently 
reviewed.  However, the review focused more on the correctness of the code changes 
themselves rather than completely analyzing their impact on other parts of the 
contracts. 

Methodology 

Although the manual code review cannot guarantee to find all possible security 
vulnerabilities as mentioned in Disclaimer, we have followed the following approaches 
to make our audit as thorough as possible.  First, we rigorously reasoned about the 
business logic of the contract, validating security-critical properties to ensure the 
absence of loopholes in the business logic and/or inconsistency between the logic and 
the implementation.  Second, we carefully checked if the code is vulnerable to known 
security issues and attack vectors.  Third, we symbolically executed the bytecode of the 
contract to systematically search for unexpected, possibly exploitable, behaviors at the 
bytecode level, that are due to EVM quirks or Solidity compiler bugs.  Finally, we 
employed Firefly to measure the test coverage at the bytecode level, identifying missing 
test scenarios, and helping to improve the quality of tests. 

  

3 

https://github.com/stakewise/contracts/compare/19da824f44079c2b94c8cca84de77f5bdf3f0e54..f2d9985131fd6c3143a4b0df272fca62cbe0d464
https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities
https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities
https://fireflyblockchain.com/


 

Disclaimer 
This report does not constitute legal or investment advice.  The preparers of this report 
present it as an informational exercise documenting the due diligence involved in the 
secure development of the target contract only, and make no material claims or 
guarantees concerning the contract's operation post-deployment.  The preparers of this 
report assume no liability for any and all potential consequences of the deployment or 
use of this contract. 

Smart contracts are still a nascent software arena, and their deployment and public 
offering carries substantial risk.  This report makes no claims that its analysis is fully 
comprehensive, and recommends always seeking multiple opinions and audits. 

This report is also not comprehensive in scope, excluding a number of components 
critical to the correct operation of this system. 

The possibility of human error in the manual review process is very real, and we 
recommend seeking multiple independent opinions on any claims which impact a large 
quantity of funds. 

  

4 



 

Assumptions 
This audit is based on the following assumptions and trust model. 

The authorized users (i.e., Owners, Admins, Pausers, Operators, and Reporters) are 
assumed to behave correctly and honestly, where they are given the following authority: 

● The Owners will initially deploy the contracts of the system, setting up all system 
parameters.  They only can upgrade the contracts later except Solos. 

● Only the Admins can change the system parameters via setter functions.  Only 
the Admins can add or remove Pausers, Operators, and Reporters, as well as 
other Admins.  Only the Admins can enable or disable LP tokens to be supported 
in StakedTokens. 

● Only the Pausers can pause or unpause the system contracts.  The Admins are 
not necessarily a Pauser. 

● Only the Operators can transfer users’ funds to the Ethereum 2.0 deposit 
contract and register validators for Solos and Pool.  The Admins are not 
necessarily an Operator. 

● Only the Reporters can update the total rewards via voteForTotalRewards(). 

The liquidity providers associated with StakedTokens are trusted to behave correctly 
and honestly.  Specifically, they are assumed to not transfer the collateralized 
stETH/rwETH tokens to others without approval from the users, nor mint their LP tokens 
without proper collateral. 

The deployment and upgrade scripts are assumed to be correct.  Specifically, they are 
assumed to correctly set up the system parameters and the addresses to the trusted 
external contracts and the other system contracts.  Also the upgrade scripts are 
assumed to be able to detect any inconsistencies between the old and new storage 
layouts, so that the existing storage is never corrupted in the upgrade process. 

The OpenZeppelin libraries are assumed to be correct.  Below is the list of 
dependencies: 

● @openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol 
● @openzeppelin/contracts-upgradeable/math/SafeMathUpgradeable.sol 
● @openzeppelin/contracts-upgradeable/proxy/Initializable.sol 
● @openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol 
● @openzeppelin/contracts-upgradeable/utils/CountersUpgradeable.sol 

5 



 

● @openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol 
● @openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol 
● @openzeppelin/contracts/access/AccessControl.sol 
● @openzeppelin/contracts/math/SafeMath.sol 
● @openzeppelin/contracts/token/ERC20/IERC20.sol 
● @openzeppelin/contracts/token/ERC20/SafeERC20.sol 
● @openzeppelin/contracts/utils/Address.sol 
● @openzeppelin/contracts/utils/Pausable.sol 
● @openzeppelin/contracts/utils/ReentrancyGuard.sol 
● @uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol 

Updated (Jan 12): The code changes include the following additional dependencies: 

● @openzeppelin/contracts-upgradeable/utils/SafeCastUpgradeable.sol 
● @openzeppelin/contracts-upgradeable/cryptography/ECDSA.sol 
● @openzeppelin/contracts-upgradeable/drafts/EIP712Upgradeable.sol 
● @openzeppelin/contracts-upgradeable/drafts/ERC20PermitUpgradeable.sol 

  

6 

https://github.com/stakewise/contracts/compare/19da824f44079c2b94c8cca84de77f5bdf3f0e54..f2d9985131fd6c3143a4b0df272fca62cbe0d464


 

Findings 
Findings presented in this section are issues that can cause the system to fail, 
malfunction, and/or be exploited, and need to be properly addressed. 

A01: Flaws in StakedTokens contract implementation 

The rewardRates[] mapping in StakedTokens does not store the user's reward rate 
separately for each token, and thus StakedTokens._withdrawRewards() will not work 
correctly when there are multiple tokens. 

Recommendation 

Fix StakedTokens to store the reward rate for each (token, user) pair, as it does with 
balances[][]. 

More specifically, 

● Add a new field, say rewardRate, in the Token struct, that stores the token's 
reward rate. 

● Modify rewardRates[] to be a nested mapping like balances[][], and store the 
reward rate for each (token, user) pair. 

Status 

Fixed as recommended in the latest version. 

  

7 

https://github.com/stakewise/contracts/blob/df7224dc73339e0c3c4b3f87416362953af36d34/contracts/tokens/StakedTokens.sol#L212


 

A02: Error in RewardEthToken._transfer() implementation 

When their rwETH balance is negative, users can increase the balance from a negative 
value to zero by sending a transaction of RewardEthToken.transfer(recipient, 0) for any 
non-zero recipient address. 

This is because of a bug in the RewardEthToken._transfer() function, in which the 
balance of the sender is updated to balanceOf(sender).sub(amount), where 
balanceOf(sender) returns zero even when the sender’s balance is negative. 

Recommendation 

Revert when the sender’s balance is negative, or simply replace balanceOf(sender) with 
rewardOf(sender).toUint256(). 

Status 

Fixed as recommended in the latest version. 

  

8 

https://github.com/stakewise/contracts/blob/df7224dc73339e0c3c4b3f87416362953af36d34/contracts/tokens/RewardEthToken.sol#L106


 

A03: Off-by-one error in consensus condition for balance 
reporting oracles 

The amount of total rewards is periodically updated by oracles (called balance 
reporters) only when ⅔ of reporters agree on the same value.  The implementation of 
the consensus condition has an off-by-one error, allowing conflicting values to be 
updated on different chains in case of ⅓ of reporters being malicious under the 
asynchronous network condition.  The off-by-one error is critical because the total 
number of reporters is rather small, i.e., 3 to 5 in the initial phase of operation. 

Recommendation 

For the Byzantine fault tolerance (i.e., to be tolerant up to ⅓ of reporters being 
Byzantine failed), the consensus requires strictly more than ⅔ of reporters to agree on 
the same value. 

That is, fix the consensus condition to be simply as follows: 

candidates[candidateId].mul(3) > totalReporters.mul(2) 

In case that votesThreshold needs to be kept as a fraction of 10^18, fix it to be as 
follows: 

votesThreshold = 666666666666666667; 

(not 666666666666666666), and fix the consensus condition to be as follows: 

candidates[candidateId].mul(1e18) > totalReporters.mul(votesThreshold) 

Note that the condition requires > instead of >=, and no division is needed. 

Status 

Fixed as recommended in the latest version. 

  

9 

https://github.com/stakewise/contracts/blob/df7224dc73339e0c3c4b3f87416362953af36d34/contracts/access/BalanceReporters.sol#L151
https://github.com/stakewise/contracts/blob/df7224dc73339e0c3c4b3f87416362953af36d34/contracts/access/BalanceReporters.sol#L80


 

A04: Total supply of stETH/rwETH tokens could exceed the 
actual balance of the validator pool 

The total supply of stETH/rwETH tokens could exceed the actual balance of the 
validator pool, in case that there exist users whose balance of stETH/rwETH tokens falls 
below zero. 

Scenario 

Suppose that Alice initially has (10 stETH, 0 rwETH) tokens at the beginning of the first 
month, and she is the sole staker for the validator pool.  Suppose that the validator pool 
gets penalties -1 rwETH over the first month, which in turn are given to Alice, and thus 
her balance at the end of the first month will be (10 stETH, -1 rwETH).  Suppose that 
she transfers 9 stETH to Bob at the beginning of the second month, thus Alice’s balance 
at that point will be (1 stETH, -1 rwETH), and Bob’s balance will be (9 stETH, 0 rwETH). 
Note that at that point, the total supply of stETH/rwETH tokens is 9, which is equal to 
the actual balance of the validator pool.  Now suppose that the validator pool gets 
further penalties of another -1 rwETH over the second month, which in turn are 
distributed to Alice and Bob proportionally, that is, -0.1 rwETH to Alice, and -0.9 rwETH 
to Bob.  Thus, at the end of the second month, Alice’s balance will be (1 stETH, -1.1 
rwETH), and Bob’s balance will be (9 stETH, -0.9 rwETH), which means that Alice’s 
balance falls below zero, and the total supply exceeds the actual balance.  In other 
words, Bob can request to redeem up to his 8.1 tokens but it cannot be fully paid back 
by the validator pool. 

Recommendation 

Invest sufficient effort for carefully (re-)designing and properly implementing the instant 
penalties distribution feature.  In the meantime, remove the feature. 

Status 

The instant penalties distribution feature has been removed in the latest version, and 
thus this issue is no longer applicable. 

  

10 



 

A05: StakedEthToken.balanceOf() could revert 

StakedEthToken.balanceOf() will revert (at the last toUint256() call) for an user whose 
balance of stETH + rwETH tokens falls below zero.  Since StakedEthToken is an 
ERC20 token, this behavior is problematic for any other contracts that interact with 
StakedEthToken expecting balanceOf() will never fail except the out-of-gas failure. 

Recommendation 

For the short term, return 0 when the actual balance is negative, being consistent with 
the other similar functions. 

For the long term, invest sufficient effort for carefully (re-)designing and properly 
implementing the instant penalties distribution feature.  In the meantime, remove the 
feature. 

Status 

The instant penalties distribution feature has been removed in the latest version, and 
thus this issue is no longer applicable. 

  

11 

https://github.com/stakewise/contracts/blob/df7224dc73339e0c3c4b3f87416362953af36d34/contracts/tokens/StakedEthToken.sol#L75


 

A06: Newly generated rewards are vulnerable to attack by 
malicious balance reporters 

Exploit scenario 

Suppose the total rewards update threshold is k.  A malicious balance reporter waits for 
k-1 votes to arrive, after which he immediately executes the following sequence of 
multiple contract calls in a single transaction: 

1. Flash loan/swap to borrow a sufficiently large amount of LP tokens, say n tokens. 
2. Stake the borrowed n LP tokens by calling StakedTokens.stakeTokens().  Let the 

total amount of staked LP tokens in StakedTokens be N. 
3. Cast the k-th vote by calling BalanceReporters.voteForTotalRewards(), which in turn 

will update the total reward by executing RewardEthToken.updateTotalRewards(). 
4. Withdraw the n LP tokens (staked in step 2) by calling 

StakedTokens.withdrawTokens(), which will distribute the newly generated rewards 
multiplied by n/N to the malicious reporter. 

5. Pay back the n LP tokens to the flash loan/swap provider (used in step 1). 

This allows the malicious balance reporter to earn free rewards without staking any LP 
tokens, by stealing (a large portion of) newly generated rewards that should have been 
distributed to other users.  Note that the malicious balance reporter does not need to 
violate any rules of the balance update protocol for this attack. 

A similar but simpler attack is also possible using stETH tokens.  In that case, the 
malicious balance reporter can simply borrow stETH tokens, make the k-th vote, and 
pay back the tokens, all in a single transaction, which doesn’t require the stake and 
unstake steps. 

Difficulty 

This attack vector requires the balance reporting role that is given only to a small 
number of authorized and trusted parties, thus is exploitable in rather limited 
circumstances. 

Recommendation 

Further investigate the practical impacts of this vulnerability, and other potential issues, 
if any, along this line. 

12 



 

Status 

The StakeWise team reported that PR 62 fixed this issue by disallowing token transfers 
during the total rewards update, but we have not comprehensively reviewed its impact 
on other parts of the contracts. 

  

13 

https://github.com/stakewise/contracts/pull/62


 

Informative Findings & Recommendations 

B01: Rounding errors in instant penalty distribution 

In Solidity, the integer division rounds towards zero, which means that the negative 
result of division is rounded to a bigger value, e.g., “-5 / 3” results in “-1”.  Thus the use 
of the integer division could be problematic in a place where the flooring division is 
required, e.g., “-5 / 3” needs to be “-2”. 

Specifically, RewardEthToken.updateTotalRewards() computes rewardPerToken, the 
amount of new rewards (in wei) per token (in ether) to be distributed to users, by 
dividing the new rewards amount (periodRewards) by the total supply of tokens 
(totalDeposits), as follows (simplified for explanatory purpose): 

rewardPerToken = periodRewards.mul(1e18).div(totalDeposits()); 

Later, RewardEthToken.rewardOf() computes curReward, the amount of rewards to be 
distributed to an individual user, by multiplying the balance of the user (deposit) to 
rewardPerToken computed before, as follows (simplified for explanatory purpose): 

curReward = deposit.mul(rewardPerToken).div(1e18); 

When the new rewards amount is negative, i.e., periodRewards < 0, the 
rounding-towards-zero division could cause the sum of per-user reward reductions to be 
less than the total reward reductions (i.e., penalties), which means that the total supply 
of rwETH tokens could be bigger than the actual amount of rewards awarded to the 
validator pool.  Although each rounding error (for each user and each reward 
distribution) is small, they could be accumulated over a long period, being 
non-negligible. 

For example, suppose periodRewards is -1 ether, and totalDeposits is 30 ether. 

● When there are 3 users, each staking 10 ether:  the sum of the users’ curReward 
is 10 wei less than periodRewards.  In this case, the major factor is the inaccuracy 
of the rewardPerToken computation. 

● When there are 300 users, each staking 0.1 ether:  the sum of the users’ 
curReward is 100 wei less than periodRewards.  In this case, the major factor is the 
inaccuracy of the curReward computation. 

14 

https://github.com/stakewise/contracts/blob/df7224dc73339e0c3c4b3f87416362953af36d34/contracts/tokens/RewardEthToken.sol#L133
https://github.com/stakewise/contracts/blob/df7224dc73339e0c3c4b3f87416362953af36d34/contracts/tokens/RewardEthToken.sol#L91


 

Recommendation 

Use the flooring division instead of the rounding-towards-zero division. 

Note that Solidity does not natively support the flooring division, but it can be 
implemented using the rounding-towards-zero division.  The idea is to subtract 1 from 
the result, if the result is negative and non-exact, that is, if the signs of the arguments 
are different, and the numerator is not exactly divided by the denominator.  Below is an 
example implementation, following the Java Math.floorDiv() implementation.  (Note that 
the division-by-zero and signed-division-overflow are handled by the 
SignedSafeMath.div() function, which can be inlined to further save gas.) 

 

Status 

The negative rewards distribution feature has been removed in the latest version, and 
thus this issue is no longer applicable. 

  

15 

function floorDiv(int256 a, int256 b) returns (int256) { 

    int256 r = SignedSafeMath.div(a, b); 

    if ((a ^ b) < 0 && (r * b != a)) r--; 

    return r; 

} 

http://hg.openjdk.java.net/jdk/jdk/file/ee1d592a9f53/src/java.base/share/classes/java/lang/Math.java#l1169
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.3.0/contracts/math/SignedSafeMath.sol#L50-L57
https://gist.github.com/daejunpark/8b7e2042ec036be4f0a3c084391c969c


 

B02: Precision losses in rewards distribution computation 

Precision losses in the computation of individual rewards distributions can lead to 
distributing less amount of rewards to users.  Specifically, for any user who staked x 
ether (i.e., x * 10^18 wei) of ETH or LP tokens, each reward distribution (i.e., each 
RewardEthToken.updateRewardCheckpoint() or StakedTokens._withdrawRewards() call) could 
result in distributing at worst x wei less than the exact amount of rwETH tokens. 

Details 

Let R be the total amount of rewards to be distributed, D ≥ 0 be the total amount of user 
stakes, and d ≥ 0 denotes the amount of stakes for a given user.  Then, the best 
(fixed-point) approximation of the individual reward for the user is: 

X =  floor(R * d / D) 

In the code base, however, the individual reward distribution is computed over two 
separate function calls, and the result is essentially represented as follows: 

Y =  floor(floor(R * 10^n / D) * d / 10^n) 

Now, we have the following: 

If d < 10^n, then X - 1 ≤ Y ≤ X 

That is, if the max amount of per-user stakes is representable within the given precision 
(i.e., n decimal digits), then the actual computation of rewards distributions is 
guaranteed to be equal or only 1 wei less than the optimal value.  (For an example of Y 
= X - 1, if R = 98, d = 800, D = 900, and n = 3, then X = 87 but Y = 86.) 

The proof is as follows.  Let Z be floor(R * 10^n / D).  By the definition of the floor 
operation, we have: 

● X ≤ R * d / D < X + 1 
● Z ≤ R * 10^n / D < Z + 1 
● Y ≤ Z * d / 10^n < Y + 1 

Then we conclude as follows: 

● First, Y ≤ Z * d / 10^n ≤ R * d / D < X + 1.  Thus Y ≤ X, since both X and Y are an 
integer. 

16 



 

● Next, Y > Z * d / 10^n - 1 > (R * 10^n / D - 1) * d / 10^n - 1 = R * d / D - d / 10^n - 
1 > R * d / D - 2 ≥ X - 2.  Thus, Y ≥ X - 1, since both X and Y are an integer. 

Note that the key factor in the proof is “d / 10^n < 1”.  Otherwise, Y could be at worst (d / 
10^n) less than X.  For example, if n = 18 (as in the current code base), d = 8 ether, D = 
9 ether, and R = 0.98 ether, then the individual rewards for the user Y = 
871111111111111104, which is 7 wei less than the optimal amount of reward X = 
871111111111111111. 

Recommendation for RewardEthToken 

Use a higher precision in the computation of rewardPerToken and curReward. 

Specifically, it is recommended to use n = 27 instead of n = 18, because the total supply 
of ETH is less than 10^27 wei, and thus so is d.  Also, note that it will not lead to the 
multiplication overflow, because “|R| * 10^n” is less than 10^54, and “floor(|R| * 10^n / D) 
* d” is less than 10^63 assuming D is at least 10^18 (1 ether), where 2^255 > 10^76. 

Recommendation for StakedTokens 

Unlike RewardEthToken, it is not straightforward to fix the precision losses in 
StakedTokens, because the total supply and the decimals of LP tokens could be 
arbitrarily different from each other.  Thus, the optimal precision that minimizes the 
precision errors without causing potential multiplication overflows would be different for 
each LP token. 

For the short term, it is recommended to evaluate potential LP tokens to be supported, 
identify their total supply, and determine the best possible precision that works for all the 
potential LP tokens. Then, update StakedTokens to use the determined precision 
uniformly. 

For the long term, it is recommended to upgrade StakedTokens to employ different 
precisions for different LP tokens. 

Status 

The StakeWise team acknowledged the recommendations. 

  

17 



 

B03: StakedTokens.withdrawTokens() does not update token 
rewards when token is disabled 

StakedTokens.withdrawTokens() skips updateTokenRewards(_token) when token is 
disabled.  It makes the user receive less amount when they claim their rewards, even if 
the token keeps getting rewards even when it is disabled. 

For example, suppose (only) two users A and B stake the same amount of X token, and 
later, X is disabled on January 1st.  Suppose the user A withdraws all his tokens on 
February 1st, and later, X is enabled on March 1st.  Suppose that the token X gets N 
rewards for January, and another N rewards for February.  Then, even if the user A's 
tokens were staked during January, he doesn't get his share of the rewards, N/2, when 
he claims.  Instead, the user B will get the whole amount of rewards for the two months, 
2N, once X is enabled again. 

Recommendation 

Do not skip updateTokenRewards(_token) even if _token is disabled. 

Status 

Fixed as suggested in the latest version. 

  

18 

https://github.com/stakewise/contracts/blob/df7224dc73339e0c3c4b3f87416362953af36d34/contracts/tokens/StakedTokens.sol#L115-L118


 

B04: Permission for 
RewardEthToken.updateRewardCheckpoint() 

While only the StakedEthToken contract is allowed to execute 
RewardEthToken.updateRewardCheckpoint(), the same effect can be made by the self 
RewardEthToken.transfer() call.  In other words, 
RewardEthToken.updateRewardCheckpoint(x) and RewardEthToken.transfer(x, x, 0) have the 
same effect (as long as rewardOf(x) >= 0). 

Recommendation 

Remove the non-effective permission requirement that is not necessary. 

Status 

Fixed as suggested in the latest version. 

  

19 

https://github.com/stakewise/contracts/blob/df7224dc73339e0c3c4b3f87416362953af36d34/contracts/tokens/RewardEthToken.sol#L116


 

B05: No service fees are refunded in penalty distribution 

While the maintainers charge a service fee for each reward distribution, they do not 
return (a portion of) the fees when penalties are imposed to users even if it is the 
maintainers' fault, which is unfair from users’ perspective. 

Scenario 

Consider the following two cases: 

● Case 1:  The validator pool gets 1 ETH rewards in the first month, and another 1 
ETH rewards in the second month. 

● Case 2:  The validator pool gets 3 ETH rewards in the first month, and -1 ETH 
penalties in the second month. 

Suppose the maintainer fee is 0.1%.  The total amount of accumulated rewards is the 
same for the above two cases, which is 2 ETH, but the maintainers will end up charging 
more service fees in the second case (i.e., 0.002 ETH for the first case, and 0.003 ETH 
for the second case), while they should be the same for both cases to be fair. 

Recommendation 

Implement the maintainers to receive a “negative” service fee when the validator pool is 
penalized. 

Status 

The instant penalty distribution feature has been removed in the latest version, and thus 
this is no longer applicable. 

  

20 



 

B06: Gas optimization suggestion 

If stETH or rwETH tokens are provided as liquidity to Uniswap, the _transfer() function 
will be extremely frequently executed, and it would be desired to optimize the gas cost 
for that.  The dominating factor is the storage updates and reads. 

StakedEthToken._transfer() requires two checkpoints[] updates and two deposits[] 
updates, where each checkpoints[] update involves two storage updates, thus total 6 
storage updates for each StakedEthToken._transfer() call, which spends at least 30,000 
gas (= 6 * 5,000) for the storage updates.  Similarly, RewardEthToken._transfer() 
requires two checkpoints[] updates, which involves 4 storage updates, thus spends at 
least 20,000 gas (= 4 * 5,000).  Here, for each transfer, 10,000 gas (i.e., two storage 
updates) can be saved by packing the Checkpoint struct into a single word, that is, 
having rewardPerToken and reward to be of int128.  Since int128 can represent up to 
38 decimal digits,  it seems possible to refactor the code to use the smaller typed 
integer (although it should be carefully done to make sure no precision issues are 
introduced.)  Note that the 10,000 gas saving corresponds to ~10% of each transfer 
function’s gas cost. 

Regarding the storage read, rewardOf() can be gas-optimized to not read 
deposits[account] when rewardPerToken.sub(cp.rewardPerToken) is zero, which can 
save 800 gas.  Note that the case rewardPerToken.sub(cp.rewardPerToken) == 0 will 
happen very frequently, because the trade volume of the Uniswap pairs is very high. 
Also note that rewardOf() is executed three times per StakedEthToken._transfer(), and 
twice per RewardEthToken._transfer(), thus 2,400 gas and 1,600 gas can be saved 
respectively, by this optimization. 

On the other hand, rewardPerToken is read 5 times per StakedEthToken._transfer(), 
and 3 times per RewardEthToken._transfer(), which in theory, could be optimized to 
save 3,200 gas and 1,600 gas, respectively, but such a refactoring would significantly 
deteriorate the code readability and simplicity, so is not recommended. 

Status 

Fixed as suggested in the latest version. 

Updated (Jan 12): Further gas optimization suggestion was made and adopted in the 
latest version.  

21 

https://github.com/stakewise/contracts/issues/58


 

B07: Access control analysis 

Each of the contracts (i.e., Solos, Pool, StakedEthToken, RewardEthToken, 
StakedTokens, BalanceReporters, and Validators) can have their own admins, and can 
be only independently paused by their own pausers who may not be an admin. 

When StakedEthToken is paused but Pool is not paused, new stETH tokens can 
continue to be minted. 

When RewardEthToken is paused but BalanceReporters is not paused, the total 
rewards as well as individual rewards can continue to be updated, meaning that new 
rwETH tokens can continue to be minted. 

When all contracts are paused, users can continue to approve spending of their 
stETH/rwETH tokens via approve(), increaseAllowance(), or permit(). 

When Solos is paused, users can continue to cancel their deposits. 

Status 

The StakeWise team acknowledged, and also said: 

“It is intentional to allow users to cancel their deposits even when Solos is 
paused. Otherwise, it causes the user to lose custody over the funds if we pause 
the contract and he won't be able to cancel his deposit.” 

  

22 



 

B08: Non-systematic uses of nonReentrant modifier 

Solos.addDeposit() is not annotated with nonReentrant.  This allows the caller of 
cancelDeposit() to re-enter Solos via addDeposit(), and so does other external contracts 
called by other contracts (i.e., the token contracts of StakedTokens, and the Uniswap 
pairs of BalanceReporters).  Although we could not find any exploits of this, it could be 
considered to add nonReentrant to addDeposit() as done with other public state-changing 
functions in other contracts, to be more systematic. 

Moreover, each contract has their own nonReentrant modifier that is not shared with 
other contracts.  This means that external contracts could re-enter to other contracts 
within the same transaction.  Although we could not find any exploits of this, it could be 
considered to have a single global nonReentrant modifier to lock all contracts from any 
external contract calls. 

However, any of these changes will cause additional gas usage, and the trade-offs need 
to be carefully evaluated before adopting the changes. 

Status 

Acknowledged by the StakeWise team. 

  

23 



 

B09: Potential arithmetic overflows 

In Solos, “block.timestamp + cancelLockDuration” could overflow, in case that 
cancelLockDuration is set to a very large value by mistake. 

In BalanceReporters, “getRoleMemberCount(REPORTER_ROLE) * 2” could overflow, in case 
that the library AccessControlUpgradeable contract somehow misbehaves due to 
hidden bugs. 

It is considered to be a better practice to systematically use SafeMath for every 
arithmetic. 

Status 

Fixed in PR 63. 

  

24 

https://github.com/stakewise/contracts/pull/63


 

Bytecode Test Coverage Analysis 
The bytecode-level test coverage analysis powered by Firefly revealed missing test 
scenarios.  Specifically: 

● Certain (auto-generated) getter functions are not tested. 
● Certain functions inherited from the dependencies are not tested. 
● Negative tests for certain require() assertions were missed, specifically: 

○ No tests for the case of “msg.sender != stakedTokens” in claimRewards(). 
● No tests for executing the external call of UniswapV2Pair.sync() inside 

voteForTotalRewards(). 
● No tests for the case when no rewards are newly generated in 

updateTotalRewards(). 
● No tests for rewardRateOf(). 

The coverage report for the later version 
11366ec5c772f098b70cbb966e9ae5fe50aa2801 is available here. 

Recommendation 

Add more tests to cover missing cases. 

Status 

Acknowledged by the StakeWise team. 

  

25 

https://fireflyblockchain.com/
https://github.com/stakewise/contracts/blob/11366ec5c772f098b70cbb966e9ae5fe50aa2801/contracts/tokens/RewardEthToken.sol#L192
https://github.com/stakewise/contracts/blob/11366ec5c772f098b70cbb966e9ae5fe50aa2801/contracts/BalanceReporters.sol#L139
https://github.com/stakewise/contracts/blob/11366ec5c772f098b70cbb966e9ae5fe50aa2801/contracts/tokens/RewardEthToken.sol#L168
https://github.com/stakewise/contracts/blob/11366ec5c772f098b70cbb966e9ae5fe50aa2801/contracts/tokens/StakedTokens.sol#L140-L142
https://github.com/stakewise/contracts/tree/11366ec5c772f098b70cbb966e9ae5fe50aa2801
https://fireflyblockchain.com/app/report.html?reportId=9dac1fc0-69c6-4114-a7c1-bcceb154e885


 

Appendix: Contract Diagram 
 

 

 

26 


