
Swarm Markets
Nifty Minter
Security Analysis

by Pessimistic

This report is public

March 28, 2022

Abstract ...2

Disclaimer ...2

Summary ..2

General recommendations ...2

Project overview ...3

Project description ..3

Code base update ...3

Procedure ...4

Manual analysis ..5

Critical issues ..5

Medium severity issues ...6

M01. ERC20 standard violation (fixed) ..6

M02. Overpowered roles ...6

M03. Documentation issue (fixed) ...7

M04. Tests issue (fixed) ...7

Low severity issues ...8

L01. Code quality ..8

L02. Code quality (fixed) ...8

L03. Code quality (fixed) ...8

L04. Code quality (fixed) ...8

L05. Misleading NatSpec comment (fixed) ..8

L06. Typo (fixed) ..9

Notes ...10

N01. Gas consumption ..10

Blockchain Security Analysis by Pessimistic 1

Abstract
In this report, we consider the security of smart contracts of Swarm Markets Nifty Minter
project. Our task is to find and describe security issues in the smart contracts of the platform.

Disclaimer
The audit does not give any warranties on the security of the code. A single audit cannot be
considered enough. We always recommend proceeding with several independent audits and
a public bug bounty program to ensure the security of smart contracts. Besides, a security
audit is not investment advice.

Summary
In this report, we considered the security of Swarm Markets Nifty Minter smart contracts. We
performed our audit according to the procedure described below.

The initial audit showed four issues of medium severity: ERC20 standard violation,
Overpowered roles, Documentation issue and Tests issues. Also, several low-severity issues
were found.

After the initial audit, the code base was updated. The developers fixed most of the issues
and provided comments.

General recommendations
We recommend using multisig wallets for important roles.

Blockchain Security Analysis by Pessimistic 2

https://swarm.markets/
https://swarm.markets/

Project overview

Project description
For the audit, we were provided with Swarm Markets Nifty Minter project on a private GitHub
repository, commit 5948df7eb71200890347ea14173ed9e78d76e671.

The scope of audit included only the following files:

AuthorizeManager.sol

RoleManager.sol

RoyaltyDistributor.sol

SX1155NFT.sol

The developers provided the documentation with a brief description of a system (NFT Minter
spec for auditor.docx file, sha1sum acee40d98b4939c198f35e9c501a26f26620522e). The
code base has detailed NatSpec comments.

All 34 tests pass, the overall code coverage is 44.83%.

The total LOC of audited sources is 346.

Code base update
After the initial audit, the code base was updated. For the recheck we were provided with
commit ccf56bc286756c16c97d060a32a34209a3fd603a.

In this update, most of the issues were fixed. Also, developers provided additional description
and comments regarding the update.

The developers implemented new tests. As a result, all 50 tests were passed and overall
code coverage increased to 83.33%.

Blockchain Security Analysis by Pessimistic 3

https://github.com/swarmmarkets/nft-minter-contracts/
https://github.com/swarmmarkets/nft-minter-contracts/tree/5948df7eb71200890347ea14173ed9e78d76e671
https://github.com/SwarmMarkets/nft-minter-contracts/commit/ccf56bc286756c16c97d060a32a34209a3fd603a

Procedure
In our audit, we consider the following crucial features of the code:

1. Whether the code is secure.

2. Whether the code corresponds to the documentation (including whitepaper).

3. Whether the code meets best practices.

We perform our audit according to the following procedure:

Automated analysis

We scan the project’s code base with the automated tool Slither.

We manually verify (reject or confirm) all the issues found by the tool.

Manual audit

We manually analyze the code base for security vulnerabilities.

We assess the overall project structure and quality.

Report

We reflect all the gathered information in the report.

Blockchain Security Analysis by Pessimistic 4

https://github.com/crytic/slither

Manual analysis
The contracts were completely manually analyzed, their logic was checked. Besides, the
results of the automated analysis were manually verified. All the confirmed issues are
described below.

Critical issues
Critical issues seriously endanger project security. They can lead to loss of funds or other
catastrophic consequences. The contracts should not be deployed before these issues are
fixed.

The audit showed no critical issues.

Blockchain Security Analysis by Pessimistic 5

Medium severity issues
Medium issues can influence project operation in the current implementation. Bugs, loss of
potential income, and other non-critical failures fall into this category, as well as potential
problems related to incorrect system management. We highly recommend addressing them.

M01. ERC20 standard violation (fixed)
ERC-20 standard states:

Callers MUST handle false from returns (bool success). Callers MUST
NOT assume that false is never returned!

However, in RoyaltyDistributor contract, the returned value from transfer call is not
checked at line 62.

The issue has been fixed and is not present in the latest version of the code.

M02. Overpowered roles
The project has roles with excessive powers.

1. The ISSUER_ROLE can:

Grant and revoke other roles to any address.

Mint tokens to any address.

2. The AGENT_ROLE is able to set authorization contracts. These contracts apply
restrictions to token transfers.

3. The Owner of RoyaltyDistributor contract can add/remove beneficiaries without any
restrictions.

In the current implementation, the system depends heavily on these roles. Thus, there are
scenarios that can lead to undesirable consequences for the project and its users, e.g., if
private keys for any of these roles become compromised. We recommend designing
contracts in a trustless manner or implementing proper key management, e.g., setting up a
multisig.

Comment from the developers: Not addressed, required multi-sig support.

Blockchain Security Analysis by Pessimistic 6

https://eips.ethereum.org/EIPS/eip-20#methods

M03. Documentation issue (fixed)
The documentation states:

ContractURI is set once per token and contains fixed attributes.

However, the code allows changing ContractURI at any moment to any value.

The issue has been fixed and is not present in the latest version of the code. ContractURI
variable can be set once per contract and cannot be changed afterwards.

M04. Tests issue (fixed)
The project has tests. However, the overall code coverage is only 44.83%. Testing is crucial
for the security of the project, and the audit does not replace tests in any way. We highly
recommend covering the code with tests and ensuring that all tests pass and the code
coverage is sufficient.

The developers have implemented additional tests. There are 83.33% of branches covered in
the latest version of the code.

Blockchain Security Analysis by Pessimistic 7

Low severity issues
Low severity issues do not directly affect project operation. However, they might lead to
various problems in future versions of the code. We recommend fixing them or explaining
why the team has chosen a particular option.

L01. Code quality
The RoleManager contract implements functions for granting and revoking roles. However,
the contract inherits from AccessControl contract of OpenZeppelin library that already
includes this functionality. Consider using grantRole and revokeRole functions directly.

Not addressed, role grant can be done by only issuer, but openzeppelin code does have
control on this, so overriding.

L02. Code quality (fixed)
In SX1155NFT contract, mintBatch, burnBatch and _beforeTokenTransfer functions
consider that arrays passed to these functions as arguments have the same lengths. We
recommend adding proper checks to these functions that will verify that the lengths of the
arrays match.

The issue has been fixed and is not present in the latest version of the code.

L03. Code quality (fixed)
In SX1155NFT contract, mint and mintBatch functions should verify that quantity
arguments are greater than 0. Otherwise, these functions can mint empty tokens with non-
empty metadata.

The issue has been fixed and is not present in the latest version of the code.

L04. Code quality (fixed)
Consider declaring id argument of the TokenAuthContractSet event as indexed to
ease any contract integrations and simplify single token tracking.

The issue has been fixed and is not present in the latest version of the code.

L05. Misleading NatSpec comment (fixed)
In SX1155NFT contract, setTokenAuthContract function has a misleading NatSpec
comment. The comment states that only ISSUER can call this function. However, the function
has onlyAgent modifier.

The issue has been fixed and is not present in the latest version of the code.

Blockchain Security Analysis by Pessimistic 8

L06. Typo (fixed)
In RoyaltyDistributor.sol, the word beneficiary is misspelled throughout the contract.

The issue has been fixed and is not present in the latest version of the code.

Blockchain Security Analysis by Pessimistic 9

Notes

N01. Gas consumption
In RoyaltyDistributor contract, distributeRoyalty function iterates over
benificiaries array. Note that the function can exceed the block gas limit when this array
reaches a certain length.

Blockchain Security Analysis by Pessimistic 10

This analysis was performed by Pessimistic:

Evgeny Marchenko, Senior Security Engineer
Pavel Kondratenkov, Security Engineer
Nikita Kirillov, Junior Security Engineer
Boris Nikashin, Analyst
Irina Vikhareva, Project Manager

March 28, 2022

Blockchain Security Analysis by Pessimistic 11

