

Swarm Markets
Security Analysis

by Pessimistic

This report is public.

Published: April 15, 2021

Blockchain Security Analysis by Pessimistic 1

Abstract ..2

Disclaimer ..2

Summary ..2

General recommendations ...2

Project overview ...3

Project description ..3

Latest version of the code ...3

Procedure...4

Manual analysis..5

Critical issues..5

Medium severity issues ...6

Use of tx.origin (fixed) ...6

Typos (fixed) ...6

Underflow (fixed) ...6

Bug ...7

ERC20 standard violation ..7

Low severity issues ...8

Code quality ..8

Code logic ...9

Gas consumption ..9

Project management ... 10

https://pessimistic.io/

Blockchain Security Analysis by Pessimistic 2

Abstract

In this report, we consider the security of smart contracts of Swarm Markets project. Our task

is to find and describe security issues in the smart contracts of the platform.

Disclaimer

The audit does not give any warranties on the security of the code. One audit cannot be

considered enough. We always recommend proceeding with several independent audits and

a public bug bounty program to ensure the security of smart contracts. Besides, security

audit is not an investment advice.

Summary

In this report, we considered the security of Swarm Markets smart contracts. We performed

our audit according to the procedure described below.

The audit showed several issues of medium severity, including Use of tx.origin, Typos,

Underflow, Bug, and ERC20 standard violation, and many issues of low severity, mostly of

Code quality and Code logic types.

The project has the documentation.

After the audit, the code base was updated to the latest version. Most of the issues were

either fixed or commented.

General recommendations

We do not have any further recommendations.

https://pessimistic.io/
https://swarm.markets/
https://swarm.markets/

Blockchain Security Analysis by Pessimistic 3

Project overview

Project description

For the audit, we were provided with two projects on a private GitHub repository:

• Swarm Markets project, commit 01c9046eff8e378b70681b3f22fe974d260169e8.

• Balancer fork, commit 5205d06135006b0a5764e666c2af2690af5be8b0.

The project has tests and documentation. All tests pass without any issues, code coverage is

above 90%.

The scope of the audit included:

• swarm-markets-smart-contracts/contracts/token/*

• swarm-markets-smart-contracts/contracts/authorization/*

• swarm-markets-smart-contracts/contracts/balancer/BPoolProxy.sol

• swarm-markets-smart-contracts/contracts/balancer/ProtocolFee.sol

• swarm-markets-smart-contracts/contracts/permissioning/*

• swarm-markets-balancer-core/*

Latest version of the code

For the recheck, we were provided with two pull requests:

• https://github.com/Altoros/swarm-markets-smart-contracts/pull/55

• https://github.com/Altoros/swarm-markets-balancer-core/pull/7

https://pessimistic.io/
https://github.com/Altoros/swarm-markets-smart-contracts
https://github.com/Altoros/swarm-markets-smart-contracts/tree/01c9046eff8e378b70681b3f22fe974d260169e8
https://github.com/Altoros/swarm-markets-balancer-core/pull/5
https://github.com/Altoros/swarm-markets-balancer-core/tree/5205d06135006b0a5764e666c2af2690af5be8b0
https://github.com/Altoros/swarm-markets-smart-contracts/pull/55
https://github.com/Altoros/swarm-markets-balancer-core/pull/7

Blockchain Security Analysis by Pessimistic 4

Procedure

In our audit, we consider the following crucial features of the code:

1. Whether the code is secure.

2. Whether the code corresponds to the documentation (including whitepaper).

3. Whether the code meets best practices.

We perform our audit according to the following procedure:

• Automated analysis

o We scan project’s code base with automated tools: Slither and SmartCheck.

o We manually verify (reject or confirm) all the issues found by tools.

• Manual audit

o We manually analyze code base for security vulnerabilities.

o We assess overall project structure and quality.

• Report

o We reflect all the gathered information in the report.

https://pessimistic.io/
https://github.com/crytic/slither
https://github.com/smartdec/smartcheck

Blockchain Security Analysis by Pessimistic 5

Manual analysis

The contracts were completely manually analyzed, their logic was checked. Besides, the

results of the automated analysis were manually verified. All the confirmed issues are

described below.

Critical issues

Critical issues seriously endanger smart contracts security. We highly recommend fixing

them.

The audit showed no critical issues.

https://pessimistic.io/

Blockchain Security Analysis by Pessimistic 6

Medium severity issues

Medium issues can influence project operation in current implementation. We highly

recommend addressing them.

Use of tx.origin (fixed)

• In transfer() function of XToken contract, consider using msg.sender instead of

tx.origin at line 178 as tx.origin might not be sending tokens.

• unwrap() function of XTokenWrapper contract sends ether to tx.origin. If the

user uses smart wallet and sends meta-transactions via relayers, the function will

send ether to the relayer instead of the user.

Consider sending ether to msg.sender.

The issues have been fixed and are not present in the latest version of the code.

Typos (fixed)

There are a few typos in names of the functions, which results in wrong signatures:

• In authorization/Authorization.sol at line 145, there is setTradingLimint instead

of setTradingLimit.

• In balancer/ProtocolFee.sol at lines 138, 148, and 153, there is

toatlSwapFeeAmount instead of totalSwapFeeAmount.

• All over the code there is used word Setted instead of Set.

We recommend fixing these typos to avoid integration issues.

The issues have been fixed and are not present in the latest version of the code.

Underflow (fixed)

Using assets with decimals greater than 18 will result in an underflow in function

calculateAmount() of EurPriceFeed contract at line 181:

return _amount.mul(10**uint256(18 - assetDecimals)).mul(assetPrice);

In this case, the function will return 0.

Consider adding checks that arithmetical operations are safe.

The issue has been fixed and is not present in the latest version of the code.

https://pessimistic.io/

Blockchain Security Analysis by Pessimistic 7

Bug

In multihopBatchSwapExactIn() function of BPoolProxy contract, the condition at line

397 should be k >= 1 instead of k == 1 to prevent any leftovers for longer hop sequences.

Comment from developers: This was in the original contract version from Balancer. There is

a risk in changing this because there are no unit tests for this function, the code was taken

from the verified contract on etherscan. Although the specific behavior added to this function

is covered by unit test.

ERC20 standard violation

EIP-20 states:

Callers MUST handle false from returns (bool success). Callers MUST NOT

assume that false is never returned!

However, in BPoolProxy contract, the returned values of ERC20.approve() calls are not

checked.

We highly recommend following ERC20 standard to minimize integration issues.

Comment from developers: all ERC20 used within the BPoolProxy are going to be

xTokens, which implements the approve function with revert. Same case for utility token.

https://pessimistic.io/
https://etherscan.io/address/0x3E66B66Fd1d0b02fDa6C811Da9E0547970DB2f21#code
https://eips.ethereum.org/EIPS/eip-20

Blockchain Security Analysis by Pessimistic 8

Low severity issues

Low severity issues can influence project operation in future versions of code. We

recommend taking them into account.

Code quality

• Consider declaring functions as external instead of public where possible.

The issue has been fixed and is not present in the latest version of the code.

• In XToken contract, consider obtaining function signature via selector, e.g.

ERC20Pausable.transfer.selector.

The issue has been fixed and is not present in the latest version of the code.

• In BPoolExtend contract, consider using selectors (BPool.joinPool.selector)

instead of hardcoded values.

The issue has been fixed and is not present in the latest version of the code.

• Natspecs for setXTokenWrapper() and setOperationsRegistry() functions

of XTokenFactory contract are copied from setEurPriceFeed() function and

therefore are misleading.

The issue has been fixed and is not present in the latest version of the code.

• Natspec for swapSequences parameter of multihopBatchSwapExactOut()

function in BPoolProxy contract should mention that the parameter is restricted to

include only one- or two-hop sequences.

• There are many blocks of code with the following structure:

if (A) {return true;} else {return false;}

E.g., at lines 320–323 in _hasItem() function of PermissionManager contract.

Consider replacing such blocks with return A; expressions.

The issue has been fixed and is not present in the latest version of the code.

• Functions setEurPriceFeed(), allowAsset(), and disallowAsset() of

OperationsRegistry contract always return true which is never used. Also, internal

transferFrom(address, uint) function of BPoolProxy contract always returns

false and its return value is never checked.

Consider removing return value and returns (bool) part from these functions.

The issue has been fixed and is not present in the latest version of the code.

https://pessimistic.io/

Blockchain Security Analysis by Pessimistic 9

Code logic

• In BPoolProxy contract, consider using SafeERC20 library for transfers since many

tokens do not fully comply with ERC20 standard and do not return bool success

value, e.g. USDT.

Comment from developers: All ERC20 used within the BPoolProxy are going to be

xTokens, which implements safe transfer, returning true/false. Same case for

utility token.

• Internal transfer() function of BPoolProxy contract does not call

token.transfer(msg.sener, amount) and therefore does not emit ERC20

Transfer event if amount == 0. Thus, there might be fewer events than expected.

The issue has been fixed and is not present in the latest version of the code.

• Consider checking that _operationsRegistry, _permissionManager, and

_exchProxy are initialized prior to new BPool deployment in newBPool() function

of BFactory contract.

The issue has been fixed and is not present in the latest version of the code.

• In BToken contract, consider declaring name and symbol different from those of

Balancer contract.

The issue has been fixed and is not present in the latest version of the code.

Gas consumption

• The checks at lines 301–303, 349–351, 404–406, and 454–456 of BPoolProxy

contract do not protect from front-running attacks.

We recommend removing these lines and giving an infinite approve to the pool.

Comment from developers: This was in the original contract version from Balancer.

There is a risk in changing this because there are no unit tests for this function, the

code was taken from the verified contract on etherscan. Although the specific

behavior added to this function is covered by unit test.

• Consider comparing the second return value of viewSplitExactIn() call with

minTotalAmountOut value to save gas in case of revert in smartSwapExactIn()

and smartSwapExactOut() functions of BPoolProxy contract.

The issue has been fixed and is not present in the latest version of the code.

• Consider applying protocol fee getProtocolFeeAmount after the loop at line 120 in

batchFee() function of ProtocolFee contract to optimize gas consumption.

The issue has been fixed and is not present in the latest version of the code.

• In BToken contract, initialization of variables at lines 60–62 has no effect on pools.

https://pessimistic.io/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol
https://etherscan.io/address/0x3E66B66Fd1d0b02fDa6C811Da9E0547970DB2f21#code

Blockchain Security Analysis by Pessimistic 10

Project management

• The project compiles with warnings.

• Scripts in package.json require hardhat to be installed globally though it is used

inside devDependencies block.

https://pessimistic.io/

Blockchain Security Analysis by Pessimistic 11

This analysis was performed by Pessimistic:

Evgeny Marchenko, Senior Security Engineer

Vladimir Tarasov, Security Engineer

Daria Korepanova, Security Engineer

Boris Nikashin, Analyst

Alexander Seleznev, Founder

April 15, 2021

https://pessimistic.io/

