
Audit Report

Terra Blockchain – Columbus-5

July 23, 2021

1



Table of Contents

Table of Contents 2

Disclaimer 3

Introduction 4
Purpose of this Report 4

Codebase Submitted for the Audit 4

Methodology 5

Functionality Overview 5

How to read this Report 6

Summary of Findings 7
Code Quality Criteria 8

Detailed Findings 9
Human/canon address conversion allows attack that may halt block production 9

Code migration allows code creator to change behavior without contract admin’s
consent 9

Slash windows may be skipped, leading to higher miss counters and higher slashing10

Users might overpay for swap and swap send messages from Terra to Luna 10

Swap simulation may return different amount from actual swap 10

Voters that have not voted or abstained from voting for the reference rate are
excluded from the ballot 11

Getting vested or locked coins ignores multiple vesting schedules for the same
denomination 12

Usage of alpha and beta dependencies 12

Swaps between MNT and other Terra coins have a higher, undocumented Tobin tax 12

REST API does not allow delegating the oracle feeder to an address other than the
validator 13

REST API allows aggregate prevote without a hash, exchange rates and a salt 13

Oracle migration from v04 to v05 skips deprecated pre-votes and votes 14

Validators that are not in the active set can vote and pre-vote within oracle 14

Oracle’s tally function contains unnecessary storage calls 15

Sorting of vote targets in oracle is inefficient 15

Static slash window results in uneven slashing at window transition 16

Epoch state migration retains empty entries for cumulative epochs 16

Gov state migration retains empty entries for open tax rate and reward weight update
proposals 17

Code id provided in store code message is ignored 18

WASM gas parameters might allow DOS attacks 18

2



Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT
OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

This audit has been performed by

Philip Stanislaus and Stefan Beyer

Cryptonics Consulting S.L.
Ramiro de Maeztu 7

46022 Valencia
SPAIN

https://cryptonics.consulting/
info@cryptonics.consulting

3

https://cryptonics.consulting/


Introduction

Purpose of this Report

Cryptonics Consulting has been engaged by Terraform Labs to perform a security audit of the
Terra blockchain implementation (Columbus-5 release) (https://www.terra.money/).

The objectives of the audit are as follows:

1. Determine the correct functioning of the system, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.

3. Determine smart contract bugs, which might lead to unexpected behavior.

4. Analyze whether best practices have been applied during development.

5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit
The audit has been performed on the following GitHub repository:

https://github.com/terra-money/core/tree/release/v0.5.x

Commit hash: 5ac5439e1d3ba17da0216181af9c09ca1155e63f

4

https://www.terra.money/
https://github.com/terra-money/core/tree/release/v0.5.x


Methodology
The audit has been performed in the following steps:

1. Gaining an understanding of the code base’s intended purpose by reading the
available documentation.

2. Automated source code and dependency analysis.
3. Manual line by line analysis of the source code for security vulnerabilities and use of

best practice guidelines, including but not limited to:
a. Race condition analysis
b. Under-/overflow issues
c. Key management vulnerabilities

4. Report preparation

Functionality Overview
The submitted code base implements the Cosmos SDK-based node software for the Terra
blockchain, in its Columbus-5 iteration.

5



How to read this Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

Minor A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged or Resolved.

Note that audits are an important step to improve the security of smart contracts and can find
many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
in the corresponding findings section.

Note that high complexity or lower test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than a security audit and vice
versa.

6



Summary of Findings

No Description Severity Status

1 Human/canon address conversion allows attack
that may halt block production

Critical Resolved

2 Code migration allows code creator to change
behavior without contract admin’s consent

Critical Acknowledged

3 Slash windows may be skipped, leading to higher
miss counters and higher slashing

Major Resolved

4 Users might overpay for swap and swap send
messages from Terra to Luna

Major Resolved

5 Swap simulation may return different amount from
actual swap

Minor Acknowledged

6 Voters that have not voted or abstained from voting
for the reference rate are excluded from the ballot

Minor Acknowledged

7 Getting vested or locked coins ignores multiple
vesting schedules for the same denomination

Minor Resolved

8 Usage of alpha and beta dependencies Minor Acknowledged

9 Swaps between MNT and other Terra coins have a
higher, undocumented Tobin tax

Informational Resolved

10 REST API does not allow delegating the oracle
feeder to an address other than the validator

Informational Resolved

11 REST API allows aggregate prevote without a hash,
exchange rates and a salt

Informational Resolved

12 Oracle migration from v04 to v05 skips deprecated
pre-votes and votes

Informational Acknowledged

13 Validators that are not in the active set can vote
and pre-vote within oracle

Informational Resolved

14 Oracle’s tally function contains unnecessary
storage calls

Informational Resolved

15 Sorting of vote targets in oracle is inefficient Informational Resolved

16 Static slash window results in uneven slashing at Informational Acknowledged

7



window transition

17 Epoch state migration retains empty entries for
cumulative epochs

Informational Resolved

18 Gov state migration retains empty entries for open
tax rate and reward weight update proposals

Informational Resolved

19 Code id provided in store code message is ignored Informational Resolved

20 WASM gas parameters might allow DOS attacks Informational Acknowledged

Code Quality Criteria

Criteria Status Comment

Code complexity Medium -

Code readability and clarity High -

Level of Documentation Medium Documentation is outdated and
diverges from the implementation in
several places (e. g. in
x/market/spec/* and
x/oracle/spec/*)

Test Coverage High -

8



Detailed Findings
1. Human/canon address conversion allows attack that may halt
block production

Severity: Critical

In x/wasm/keeper/api.go:13, the conversion function for canon to human addresses
returns a gas cost of 0 if the canon address is not in the correct address format. Similarly, the
human to canon address conversion function in x/wasm/keeper/api.go:21 returns a gas
cost of 0 if the human address is not valid Bech32. This allows an attacker to create, deploy
and instantiate a CosmWasm contract that does many invalid address conversions in a loop.
Such an attack may cause block production to halt.

Recommendation

We recommend returning a positive gas cost even in the error case of invalid address formats.

Status: Resolved

2. Code migration allows code creator to change behavior without
contract admin’s consent

Severity: Critical

The MigrateCode function in x/wasm/keeper/contract.go:66 can be used by the
code creator to migrate the code if the CodeHash is empty. The migration from v04 to v05
sets the CodeHash of all contracts to an empty slice in
x/wasm/legacy/v05/migrate.go:23, allowing all stored codes to be migrated. This is
a necessity due to breaking changes introduced by the upgrade of CosmWasm to v0.14.x. The
issue here is that the code creator can unilaterally migrate the code without the consent of
any of the admins that control contracts depending on that code. That could cause the code
creator to accidentally introduce breaking changes or bugs, but, more severely, it also allows
the code creator to intentionally add backdoors. Such bugs/backdoors might be unnoticed
until value has been lost.

Recommendation

We recommend changing the code migration process to require an explicit opt-in from
contract admins/deployers. Alternatively, we recommend supporting multiple CosmWasm
versions to remove the need to redeploy any code.

9



Status: Acknowledged

The Terra team acknowledges this issue but states that almost all projects deploy their own
contracts, which implies that there should be very few cases where this issue could pose a
security threat.

3. Slash windows may be skipped, leading to higher miss counters
and higher slashing

Severity: Major

In x/oracle/abci.go:21, the end blocker exits early if the VotePeriod is not ending in
the current block. In x/oracle/abci.go:106, slashing happens if the SlashWindow is
ending in the current block. If SlashWindow is not a multiple of VotePeriod, these
conditions imply that some slash windows are skipped, leading to higher miss counters and
higher slashing.

Recommendation

We recommend performing the check for an ending slash window in every block.

Status: Resolved

4. Users might overpay for swap and swap send messages from
Terra to Luna

Severity: Major

In x/market/keeper/params.go:17, the BurnBasePool method erroneously returns
the mint base pool, instead of the burn base pool. That causes wrong spreads to be
calculated, which leads to users potentially paying too much for their swaps.

Recommendation

We recommend correcting the param key from types.KeyMintBasePool to
types.KeyBurnBasePool.

Status: Resolved

5. Swap simulation may return different amount from actual swap

Severity: Minor

The implementation of decimal truncation differs between swap simulation and the actual
swap. In the swap simulation in x/market/keeper/swap.go:184, the swap amount is

10



truncated after applying the fee, while in the actual swap in
x/market/keeper/msg_server.go:103, truncation happens to the swap amount, then
the decimals are added to the fee, and then the fee is subtracted.

This difference in truncation may lead to a difference in the amount.

Example: swapCoin = 10.7, fee = 1.6. In the simulation, that would result in
truncate(10.7 - 1.6) = truncate(9.1) = 9, while in the actual swap, it would
result in truncate(10 - truncate(1.6 + 0.7)) = truncate(10 -
truncate(2.3)) = truncate(10-2) = 8.

Recommendation

We recommend using the same truncation method in both functions.

Status: Acknowledged

The Terra team acknowledges this difference but states that it is insignificant because it is
caused by decimal truncation only, and will be handled correctly in the actual swap.

6. Voters that have not voted or abstained from voting for the
reference rate are excluded from the ballot

Severity: Minor

The logic in x/oracle/types/ballot.go:56 implies that any voter that has either not
voted on the reference rate or abstained from voting on it is excluded from the ballot.

This implies a lower amount of turnout in the ballot, which could lead to less efficient voting
results.

Recommendation

We recommend allowing different reference rates to increase the information efficiency of
ballots.

Status: Acknowledged

In practice, most validators report prices most of the time, so information inefficiency is
insignificant. Additional detail on the change to use a reference rate has been provided in PR
#345.

11

https://github.com/terra-money/core/pull/345#issuecomment-645142148
https://github.com/terra-money/core/pull/345#issuecomment-645142148


7. Getting vested or locked coins ignores multiple vesting schedules
for the same denomination

Severity: Minor

In the GetVestedCoins function in x/vesting/types/vesting_account.go:77,
GetVestingSchedule is called, which returns the first entry in VestingSchedules that
matches a denom. Any additional entries for that denom are ignored. At the same time,
cmd/terrad/genaccounts.go:153 allows creation of multiple vesting schedules with
the same denom. That implies that users will be unable to access vested coins of any
additional entries with the same denomination. We classify this issue as minor, since it can
only be caused during genesis.

Recommendation

We recommend either changing the GetVestedCoins function to consider all vesting
schedules for the same denom, or changing vesting generation to prevent adding multiple
vesting schedules with the same denom.

Status: Resolved

8. Usage of alpha and beta dependencies

Severity: Minor

Terra Core depends on a beta release of Cosmos SDK
(github.com/cosmos/cosmos-sdk v0.43.0-beta1) and an alpha release of IBC
(github.com/cosmos/ibc-go v1.0.0-alpha2), which might still contain security
issues.

Recommendation

We recommend using only stable releases of dependencies to decrease the probability of
vulnerabilities.

Status: Acknowledged

The Terra team plans to upgrade those dependencies to stable releases in the near future.

9. Swaps between MNT and other Terra coins have a higher,
undocumented Tobin tax

Severity: Informational

Swaps between Terra coins have a default Tobin tax of 0.25% applied. There is one exception
in x/oracle/types/params.go:42, MNT, which has a Tobin tax of 2%, which is 8 times

12



the default Tobin tax. That difference is not mentioned in the documentation. Any swap
between MNT and another Terra coin will be subject to that higher Tobin tax.

The rationale for the higher tax for MNT swaps is a higher volatility of that currency.

This is not a security concern, but might be unexpected to users.

Recommendation

We recommend documenting any Tobin tax deviating from the default, or linking to the
current on-chain Tobin taxes in the documentation.

Status: Resolved

10. REST API does not allow delegating the oracle feeder to an
address other than the validator

Severity: Informational

In x/oracle/client/rest/tx.go:64, an error is returned from the REST handler for
feeder delegation if the feeder is different from the voter/validator. Consequently, only the
voter/validator can be set as the feeder.

This is a bug in the REST implementation, rather than a security concern, since feeders can be
delegated correctly via the CLI.

Recommendation

We recommend removing the condition in x/oracle/client/rest/tx.go:63.

Status: Resolved

11. REST API allows aggregate prevote without a hash, exchange
rates and a salt

Severity: Informational

The REST API for submitting an aggregate prevote in
x/oracle/client/rest/tx.go:79 does not return an error if there is no hash as well
as no exchange rates and no salt.

This is not a security concern, but rather an inconvenience for API users.

13



Recommendation

We recommend changing the else statement in x/oracle/client/rest/tx.go:112 to
} else if len(req.Hash) > 0 { and adding an additional else clause to return an
error if there is no hash provided.

Status: Resolved

12. Oracle migration from v04 to v05 skips deprecated pre-votes and
votes

Severity: Informational

In x/oracle/legacy/v05/migrate.go:26 the deprecated fields
ExchangeRatePrevotes and ExchangeRateVotes from v04 are skipped and not
added as entries to the v05 genesis fields AggregateExchangeRatePrevotes and
AggregateExchangeRateVotes. That implies that existing valid (albeit deprecated) votes
are lost in the migration.

Recommendation

We recommend adding existing votes in ExchangeRatePrevotes and
ExchangeRateVotes from v04 to the v05 genesis fields
AggregateExchangeRatePrevotes and AggregateExchangeRateVotes.

Status: Acknowledged

The Terra team acknowledges the missing migration for deprecated
ExchangeRatePrevotes and ExchangeRateVotes, but states that those votes are not
used anymore since they have long been deprecated.

13. Validators that are not in the active set can vote and pre-vote
within oracle

Severity: Informational

In x/oracle/keeper/msg_server.go:50 and 94, validators can pre-vote and vote for
aggregate exchange rates even if those validators are not in the active validator set.

This issue has been classified as informational since votes from those validators are not
considered in the oracle ballot process.

14



Recommendation

We recommend checking whether the validator is bonded to prevent any previous validators
to pre-vote or vote and hence reduce the amount of stored information on-chain.

Status: Resolved

14. Oracle’s tally function contains unnecessary storage calls

Severity: Informational

The ballotIsPassing function called in x/oracle/tally.go:72 runs in a loop and
contains multiple storage queries to fetch the power reduction and the vote threshold. Both of
those values are independent of the items being looped over.

This is not a security concern, but causes unnecessary computation overhead.

Recommendation

We recommend moving the following lines out of the ballotIsPassing function to
x/oracle/tally.go:59:

totalBondedPower := sdk.TokensToConsensusPower(
k.StakingKeeper.TotalBondedTokens(ctx),
k.StakingKeeper.PowerReduction(ctx))

voteThreshold := k.VoteThreshold(ctx)
thresholdVotes := voteThreshold.MulInt64(

totalBondedPower).RoundInt()

Status: Resolved

15. Sorting of vote targets in oracle is inefficient

Severity: Informational

The ballot is sorted multiple times during the end blocker: The Tally function in
x/oracle/tally.go:14 is called once per denomination, and the WeightedMedian
function in x/oracle/types/ballot.go:78 is called three times per denomination.

This is not a security concern but causes unnecessary computation overhead.

15



Recommendation

We recommend sorting the ballot only once, ideally after creating it within the
OrganizeBallotByDenom function in x/oracle/keeper/ballot.go:11. That
change also removes the need to check whether the ballot is already sorted in various places.

Status: Resolved

16. Static slash window results in uneven slashing at window
transition

Severity: Informational

In the current implementation, slashing only happens at the end of the SlashWindow in
x/oracle/abci.go:106. That implies that validators that miss enough votes within the
slash window will be slashed, while validators that miss votes between windows will not be
slashed. For example, imagine we have a SlashWindow of 100 periods, with a
MinValidPerWindow fraction of 0.05. A validator that votes in the first 5 periods of slash
window 1, and then again in the last 5 periods of window 2 will miss 190 consecutive periods
without being slashed.

Recommendation

We recommend implementing a rolling slash window to ensure at least
MinValidPerWindow is voted on on an ongoing basis.

Status: Acknowledged

The Terra team plans to improve the slashing window implementation in a future update.

17. Epoch state migration retains empty entries for cumulative
epochs

Severity: Informational

In the treasury migration code for v05 in x/treasury/legacy/v05/migrate.go:33, a
slice is initialized with the length of tax rewards from v04:

epochStates := make([]v05treasury.EpochState,
len(treasuryGenState.TRs))

The previous tax rewards treasuryGenState.TRs are then iterated over, and the slice is
filled with values that come after cumulative rewards by direct assignment:

epochStates[i] = v05treasury.EpochState{ // …

16



This approach leaves slice elements 0 to cumulativeEpochs - 1 empty, which will cause
empty entries for epoch 0 in the store when init genesis runs in
x/treasury/genesis.go:34.

Recommendation

We recommend initializing the slice with:

epochStates := make([]v05treasury.EpochState, 0,
len(treasuryGenState.TRs))

And then appending to that slice instead of assigning values to skip cumulative values from
the migrated state.

Status: Resolved

18. Gov state migration retains empty entries for open tax rate and
reward weight update proposals

Severity: Informational

In the gov migration code for v05 in custom/gov/legacy/v043/migrate.go:181, a
slice is initialized with the length of proposals from v04:

newProposals := make([]v043gov.Proposal,
len(oldGovState.Proposals))

The previous proposals oldGovState.Proposals are then iterated over, and the slice is
filled with values except tax rate and reward weight update proposals by direct assignment:

newProposals[i] = v043gov.Proposal{ // …

This approach leaves slice elements that were former tax rate or reward weight proposals
empty, which will cause proposals with status nil to be inserted when init genesis runs as part
of Cosmos SDK.

Recommendation

We recommend initializing the slice with:

newProposals := make([]v043gov.Proposal, 0,
len(oldGovState.Proposals))

And then appending to that slice instead of assigning values to skip tax rate and reward
weight update proposals from the migrated state.

Status: Resolved

17



19. Code id provided in store code message is ignored

Severity: Informational

In the StoreCode function in x/wasm/keeper/msg_server.go:25, the code is stored
at the next available code id. The CodeID provided in MsgStoreCode is ignored.

Recommendation

We recommend removing CodeID from MsgStoreCode.

Status: Resolved

20. WASM gas parameters might allow DOS attacks

Severity: Informational

In x/wasm/types/params.go:45, WASM gas parameters are set. Those values are not
determined through benchmarks/simulations. This might lead to certain calls being mispriced,
such that their execution would be relatively cheap for the computation they need. If that is
the case, an attacker may be able to flood the with messages, causing congestion with
relatively low costs.

Recommendation

We recommend running benchmarks/simulations to determine adequate WASM gas
parameters.

Status: Acknowledged

The Terra team plans to run benchmarks in an upgrade in the future.

18


