
Tether Token Audit

JANUARY 3, 2018 | IN SECURITY AUDITS | BY OPENZEPPELIN SECURITY

The Tether team asked us to review and audit their Tether Token contracts. We looked at the code and now, publish our results.

A previous version of the code was audited by Philip Daian. See his full report here, which includes an overview of the application.
The audited code is located in the tetherto/ether-contracts repository. The version used for this report is commit 9718de4da7b571c1acf822 . We
restricted our audit only to the Tether and the Zeppelin contracts, without including the ConsenSys multisig wallet.
Following are our assessment and recommendations, in order of importance.

 Announcements Security Audits Events Perspectives Website

https://blog.openzeppelin.com/category/security-audits/
https://blog.openzeppelin.com/author/openzeppelin-security/
https://tether.to/
https://stableset.com/audits/tether_audit_v1/tether_audit_v1.pdf
https://github.com/tetherto/ether-contracts/tree/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts
https://github.com/tetherto/ether-contracts/tree/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts
https://blog.openzeppelin.com/announcements/
https://blog.openzeppelin.com/security-audits/
https://blog.openzeppelin.com/ozevents/
https://blog.openzeppelin.com/perspectives/
https://openzeppelin.com/
https://blog.openzeppelin.com/

Update: The Tether team has followed our recommendations and updated the Tether Token contract. The new version is at commit
0e2e2ddda17ed4ed20c1d89015906d8276fb38ba .

Critical severity

No critical severity issues were found.

High severity

No high severity issues were found.

Medium severity

Install OpenZeppelin via NPM and Update

Contactable , Pausable , SafeMath , Ownable , ERC20Basic , ERC20 , BasicToken , and StandardToken were copied from the OpenZeppelin
repository.

This violates OpenZeppelin’s MIT license, which requires the license and copyright notice to be included if its code is used, and makes it difficult
and error-prone to update to a more recent version.

Moreover, the contracts were copied from an old unspecified version (earlier than June 2017, based on the Solidity version pragma). Since then,
there have been multiple fixes to the included contracts, which are missing from the Tether repository.
Some of these fixes include:

Fire an event to signal Ownership transfer (see PR424)

Remove incorrect short address attack checks (see PR277)

Check that destination of token transfers is not 0x0 (see PR415)

Add boolean return flags to ERC20 methods to conform to the standard (see PR308)

Use require checks for token preconditions (see PR466)

A user can send to themselves more than their current balance (see PR377)

Consider following the recommended way to use OpenZeppelin contracts, which is via the zeppelin-solidity NPM package, and update to the
latest version (1.4.0 at the time of this writing). This allows for any bugfixes to be easily integrated into the codebase.

https://github.com/tetherto/ether-contracts/tree/0e2e2ddda17ed4ed20c1d89015906d8276fb38ba/contracts
https://github.com/tetherto/ether-contracts/tree/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/zeppelin
https://github.com/OpenZeppelin/zeppelin-solidity/commit/6ede3d9001dcb07e35a38333cb7d6d10bb1a77f8
https://github.com/OpenZeppelin/zeppelin-solidity/pull/424
https://github.com/OpenZeppelin/zeppelin-solidity/pull/277
https://github.com/OpenZeppelin/zeppelin-solidity/pull/415
https://github.com/OpenZeppelin/zeppelin-solidity/pull/308
https://github.com/OpenZeppelin/zeppelin-solidity/pull/466
https://github.com/OpenZeppelin/zeppelin-solidity/pull/377
https://github.com/OpenZeppelin/zeppelin-solidity#getting-started
https://www.npmjs.com/package/zeppelin-solidity

Update: OpenZeppelin version 1.4.0 is imported via NPM as of commit ce34f14d05 . However, due to this issue in the library, a change is needed in
the StandardToken contract as described in the README. Instead of requiring the developer to manually perform the change, consider forking the
library in GitHub and changing it there, or commit a patch diff file to automate the change.

Low severity

OpenZeppelin standard contracts were modified

Additionally to copying OpenZeppelin’s contracts instead of installing them via NPM, some of them were modified.
Fee management was added directly to BasicToken and StandardToken implementations, instead of implementing them in a new Token contract
that extends from StandardToken .
We concur with the original observations from Philip Daian in this point:

One change that would make the code substantially cleaner, more modular, and more upgradeable is the moving of the fee calculation
functions to the top-level TetherToken file. Currently, the fee calculation is done independently twice in StandardToken.sol and BasicToken.sol.
While the calculation has been verified and tested as working, this repetition of code minorly impacts the upgradeability of the token.
Furthermore, modifications directly to the Zeppelin library violate the boundaries drawn in the application diagram in the previous section,
potentially making future Zeppelin changes more difficult to integrate and more likely to introduce unintended side effects. While this change
has been verified as not security critical, it is our belief that such a change would improve the readability, testability and modularity of the
existing codebase.

Furthermore, non ERC20-compliant changes, such as using MAX_UINT as an eternal approval magic value, or forcing clients to reduce approval to
zero before changing it, were introduced in the StandardToken implementation. Note that, since 1.3.0, OpenZeppelin’s StandardToken has the
increaseApproval](https://github.com/OpenZeppelin/zeppelin-solidity/pull/224) and [decreaseApproval methods to mitigate the latter.

This is not the way OpenZeppelin standard contracts should be used. Making changes to open-source libraries, instead of using them as is, can be
dangerous and prevents from integrating bug-fixes into the codebase easily.
Consider extending StandardToken in a StandardTokenWithFees contract, that adds the fee calculation feature to the token.

Update: Fixed in commits ce34f14d05 and 0e2e2ddda1 .

Token allowances can be modified while the contract is paused

The method TetherToken#approve is missing a whenNotPaused modifier. This allows any user to change allowances while the token is paused. A
paused token should halt all state-changing operations, except for those to be run in emergency.

https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/OpenZeppelin/zeppelin-solidity/issues/434
https://github.com/tetherto/ether-contracts/blob/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/README.md
https://git-scm.com/docs/git-apply
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/zeppelin/token/BasicToken.sol
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/zeppelin/token/StandardToken.sol
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/zeppelin/token/StandardToken.sol#L37
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/zeppelin/token/StandardToken.sol#L61
https://github.com/OpenZeppelin/zeppelin-solidity/pull/224
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/tetherto/ether-contracts/tree/0e2e2ddda17ed4ed20c1d89015906d8276fb38ba/contracts
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L63

Consider adding the whenNotPaused modifier to the approve method, or simply using OpenZeppelin’s PausableToken contract, which integrates
the Pausable functionality into a StandardToken .

Update: Fixed in commit ce34f14d05 .

Solidity version

Current code specifies version pragma ^0.4.8 or ^0.4.9 , depending on the file. We recommend changing the solidity version pragma to the
latest version (^0.4.18) to enforce the use of an up to date compiler. The new compiler includes several bugfixes, including
SkipEmptyStringLiteral , to which the 0.4.9 compiled code is vulnerable.

Note that this implies updating constant modifiers to pure / view , and updating throw s to revert / require / assert as needed.

Update: Fixed in commit ce34f14d05 .

Unclear responsibilities for BlackList contract

The BlackList contract defines methods for adding and removing a user from a blacklist. It also allows the owner to destroy the funds of a
blacklisted user, which requires the contract to extend BasicToken , in order to access the balances.

However, the contract does not enforce that transfer methods cannot be executed by blacklisted users. This is manually implemented in
TetherToken L35 and L45. This is not a good design, violating the principle of separation of concerns and modularity.

Consider making the BlackList contract independent from token contracts, and implement the destroyBlackFunds function in the
TetherToken directly. Alternatively, consider changing BlackList into a TokenWithBlackList , extending from StandardToken , and adding all the

`require(!isBlackListed[msg.sender]) checks there.

Update: Fixed in commit ce34f14d05 .

Unchecked math operations

There are unchecked arithmetic operations in the functions issue and redeem in TetherToken.

Even though no overflow should occur due to the additional require guards in both functions, it’s always better to be safe and perform operations
with correctness assertions.

Furthermore, the potential overflow in the issue function should be handled as a throw operation instead of a revert (see this article for more
info). Note that this would be handled automatically by using a checked addition, and by removing the existing require in that function.

https://github.com/OpenZeppelin/zeppelin-solidity/blob/v1.4.0/contracts/token/PausableToken.sol
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://etherscan.io/solcbuginfo
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/BlackList.sol
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/BlackList.sol#L30
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/BlackList.sol#L7
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L35
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L45
https://en.wikipedia.org/wiki/Separation_of_concerns
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/BlackList.sol#L30
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L104-L105
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L118-L119
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L101-L102
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L115-L116
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L100
https://media.consensys.net/when-to-use-revert-assert-and-require-in-solidity-61fb2c0e5a57

Additionally, there is an unchecked arithmetic operation in BlackList#destroyBlackFunds . While totalSupply should never fall below zero, using
a checked subtraction would prevent against potential errors in future upgraded implementations.

Consider using SafeMath for all arithmetic operations in the TetherToken and BlackList contracts.

Update: Fixed in commit ce34f14d05 .

Incomplete test coverage

Unit test coverage for the Tether deprecation features is quite incomplete. Only the transfer method is checked to be properly delegated to the
upgraded token.

Consider adding tests to also check the delegation of the transferFrom , balanceOf , approve , allowance and totalSupply methods.

Update: Consider adding tests for the delegation of the increaseApproval and decreaseApproval methods as well.

Notes & additional information

The project has no instructions as to how to run the tests, or the required versions for its dependencies. Consider adding a package.json file
with the dependencies (such as truffle and zeppelin-solidity), including a test script as well.
Update: zeppelin-solidity depdendency added in commit ce34f14d05 , consider adding Truffle as well.

Consider adding a README to the project describing its purpose, functionality, structure, architecture, and instructions for development.
Update: README added in commit ce34f14d05 , consider expanding on project architecture.

The short address attack check via the onlyPayloadSize modifier is not considered a correct mitigation for the attack, and even potentially
harmful when extending contracts. See this issue for more information. Consider removing all uses of the modifier from the codebase.
Update: Fixed in commit ce34f14d05 .

TetherToken defines the decimals public state variable to be uint, which defaults to uint256 . Consider changing this to uint8 to comply
with the ERC20 specification.
Update: Fixed in commit ce34f14d05 .

The ERC20 specification suggests emitting a Transfer event from the address 0x0 when minting new tokens. Consider emitting such event in
the TetherToken#issue function. Additionally, we suggest also emitting a Transfer event to the address 0x0 when burning the tokens in the
redeem and destroyBlackFunds functions.
Update: Fixed in commit ce34f14d0 for new tokens issued.

TetherToken defines methods for upgrading the contract, as well as for managing issuance and redeeming of tokens. Consider moving the
upgrade mechanism to a separate UpgradebleToken contract, and having TetherToken extend from it, as a means to separate concerns.

https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/BlackList.sol#L34
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/test/test_deprecation.js
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/test/test_deprecation.js#L14
https://github.com/tetherto/ether-contracts/blob/0e2e2ddda17ed4ed20c1d89015906d8276fb38ba/contracts/TetherToken.sol#L75
https://github.com/tetherto/ether-contracts/blob/0e2e2ddda17ed4ed20c1d89015906d8276fb38ba/contracts/TetherToken.sol#L83
https://docs.npmjs.com/files/package.json
https://www.npmjs.com/package/truffle
https://www.npmjs.com/package/zeppelin-solidity
https://docs.npmjs.com/misc/scripts
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L63
https://github.com/OpenZeppelin/zeppelin-solidity/issues/261
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L13
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md#decimals
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20-token-standard.md#transfer-1
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L100
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L114
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/BlackList.sol#L30
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L81
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L100
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L114

There are two magic numbers in TetherToken#setParams . Consider changing them into constants and define them at the contract level for
clarity.
Update: Fixed in commit ce34f14d05 .

Maximum fees cannot be defined as a fraction of a token, since the TetherToken#setParams function accepts a newMaxFee which is multiplied
by 10**decimals . Consider accepting the new maximumFee value directly, to allow for fraction of tokens to be used.

Contract UpgradedStandardToken extends StandardToken . Since it is used as an interface exclusively, consider extending from ERC20, which is
the interface implemented by StandardToken .

Consider marking the address parameter in all three blacklist events (DestroyedBlackFunds , AddedBlackList and RemovedBlackList) as
indexed , to allow a client to listen for changes to their own status.
Update: Fixed in commit ce34f14d05 .

Function BlackList# is unnecessary, since the mapping isBlackListed is already flagged as public. Consider removing the getter function,
or remove the public modifier in isBlackListed .

Function BlackList# getOwner is unnecessary, since the owner is already provided by the parent Ownable contract.
Update: Fixed in commit ce34f14d05 .

Consider adding a guard to TetherToken#deprecate to check that the upgradedAddress is not 0x0, to prevent potential mistakes. Furthermore,
consider adding a public flag isUpgradedToken to UpgradedStandardToken , and check that the code at upgradedAddress does contain that
flag.
Update: Added a check that address is not 0x0 in commit ce34f14d05 .

The getters in the BlackList contract are not tested. However, since these methods are unnecessary (for they are already automatically
generated by Solidity), consider removing them rather than adding tests for them.

Note that the check that new fees are below a maximum value in order to “ensure transparency” can be easily circumvented, since the token
can be upgraded to a version without those limits, and calls are automatically forwarded to the new one.

Given that decimals is parameterisable in a TetherToken , it is possible to update from a token with a number of decimals to another with a
different number. This could cause issues in client interfaces listing the tokens. Consider using a fixed amount of decimals, preferably 18 for
compatibility with ETH.
Update: A public property _totalSupply was added to the UpgradedStandardToken contract in commit ce34f14d05 . It is not required as part of
the interface. Consider removing it.

Update: Commit ce34f14d05 adds the interface PreviousTokenInterface with the oldBalanceOf method, which is implemented by
TetherToken. Consider having TetherToken explicitly inherit from PreviousTokenInterface if needed .

Audited contracts

Following are the MD5 hashes of the audited contracts:

https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L125-L126
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L129
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/UpgradedStandardToken.sol#L6
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/zeppelin/token/StandardToken.sol
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/zeppelin/token/ERC20.sol
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/BlackList.sol#L38
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/BlackList.sol#L10
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/BlackList.sol#L18
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/BlackList.sol#L14
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/zeppelin/ownership/Ownable.sol#L10
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L81
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/UpgradedStandardToken.sol
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/BlackList.sol#L10-L16
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L124-L126
https://github.com/tetherto/ether-contracts/blob/9718de4da7b571c1acf822bfde1f5300d1acc381/contracts/TetherToken.sol#L24
https://github.com/tetherto/ether-contracts/blob/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts/UpgradedStandardToken.sol#L9
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/tetherto/ether-contracts/tree/ce34f14d0590cb6bea2f3d33fe3f9584e4c72554/contracts
https://github.com/tetherto/ether-contracts/blob/0e2e2ddda17ed4ed20c1d89015906d8276fb38ba/contracts/UpgradedTokenTest.sol#L6
https://github.com/tetherto/ether-contracts/blob/0e2e2ddda17ed4ed20c1d89015906d8276fb38ba/contracts/TetherToken.sol#L60

dfc0c783ff7a782bbf415f4b4943cbfe contracts/TetherToken.sol

652103fa8d6b9c7d5952770a5abf5b96 contracts/UpgradedStandardToken.sol

3cf622b896dc0990d4f606d8ee9217f1 contracts/BlackList.sol

37e0a81e72f33831e41099c7f5ef4d88 contracts/UpgradedTokenTest.sol

e14829154a7c9bf9f750707692727a51 contracts/zeppelin/ownership/Ownable.sol

a9e3c69db6b3d594691c6f25b4ceec80 contracts/zeppelin/ownership/Contactable.sol

9165ac7dbad97414a00549eb6bb17cba contracts/zeppelin/lifecycle/Pausable.sol

0770d7b5b0bff5cc992e1ccd19b5672d contracts/zeppelin/token/StandardToken.sol

aa0786f69b28548bae8bf69b04f66475 contracts/zeppelin/token/ERC20Basic.sol

ef90a4ebcd66da85d3b0977e3b31f5ed contracts/zeppelin/token/ERC20.sol

5c56ca643931cab56bf1325fb0abdda7 contracts/zeppelin/token/BasicToken.sol

72a05c21bd9108344f9a4207a2223ef2 contracts/zeppelin/SafeMath.sol

Update: The MD5 hashes of the updated contracts corresponding to commit 0e2e2ddda1 are the following:

5d82de93b5c5fe047d7481d232f35901 BlackList.sol

c4173bcac5359d53c95dc393036c3cba StandardTokenWithFees.sol

12341f088134abc35ca9e504b03b3453 TetherToken.sol

158de41f417db1785ea4a5ed0136b6c9 UpgradedStandardToken.sol

Conclusion

No critical or high severity issues were found. Some changes were proposed to follow best practices and reduce potential attack surface.

Note that as of the date of publishing, the above review reflects the current understanding of known security patterns as they relate to the Tether
Token contracts. We have not reviewed the related Tether project. The above should not be construed as investment advice. For general information
about smart contract security, check out our thoughts here.

Security Audits

If you are interested in smart contract security, you can continue the discussion in our forum, or even better, join the team

https://github.com/tetherto/ether-contracts/tree/0e2e2ddda17ed4ed20c1d89015906d8276fb38ba/contracts
https://blog.zeppelin.solutions/onward-with-ethereum-smart-contract-security-97a827e47702
http://forum.openzeppelin.com/
http://openzeppelin.com/jobs

If you are building a project of your own and would like to request a security audit, please do so here.

RELATED POSTS

Metal Token Audit

The Metal team asked us to review and
audit their new Metal Token contract code.
We looked at their…

READ MORE

SECURITY AUDITS

by OpenZeppelin Security

ERC20 Element

Token Audit

The Element Group team asked us to review
and audit their ERC20 Element Token
contract. We looked…

READ MORE

SECURITY AUDITS

by OpenZeppelin Security

Bax Token Audit

The BABB team asked us to review and
audit their Bax Token contract. We looked at
the code and now…

READ MORE

SECURITY AUDITS

by OpenZeppelin Security

Products

Contracts

Defender

Security

Security Audits

Learn

Docs

Forum

Company

Website

About

http://openzeppelin.com/security-audits
https://blog.openzeppelin.com/metal-token-audit-d7e4dbf17bcf/
https://blog.openzeppelin.com/metal-token-audit-d7e4dbf17bcf/
https://blog.openzeppelin.com/metal-token-audit-d7e4dbf17bcf/
https://blog.openzeppelin.com/category/security-audits/
https://blog.openzeppelin.com/author/openzeppelin-security/
https://blog.openzeppelin.com/erc20-element-token-audit-2128b50e37cd/
https://blog.openzeppelin.com/erc20-element-token-audit-2128b50e37cd/
https://blog.openzeppelin.com/erc20-element-token-audit-2128b50e37cd/
https://blog.openzeppelin.com/category/security-audits/
https://blog.openzeppelin.com/author/openzeppelin-security/
https://blog.openzeppelin.com/bax-token-audit-85fe7b186c89/
https://blog.openzeppelin.com/bax-token-audit-85fe7b186c89/
https://blog.openzeppelin.com/bax-token-audit-85fe7b186c89/
https://blog.openzeppelin.com/category/security-audits/
https://blog.openzeppelin.com/author/openzeppelin-security/
http://openzeppelin.com/
http://openzeppelin.com/contracts
https://openzeppelin.com/defender
http://openzeppelin.com/security-audits
http://docs.openzeppelin.com/
http://forum.openzeppelin.com/
http://openzeppelin.com/
http://openzeppelin.com/about

