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Summary

Runtime Verification, Inc. have formally verified the Tezos Dexter Liquidity Baking (Dexter LB

or Dexter, when clear from context) and Liquidity Token FA1.2 (LQT) smart contracts.  The

work was completed by Stephen Skeirik and Nishant Rodrigues from June 21, 2021 to July 30,

2021 in two phases. An automated formal verification of the functional correctness of each

entrypoint was conducted from June 21, 2021 to July 9, 2021.  Subsequently, a manual proof of

some important safety properties of the system was done from July 12, 2021 to July 30, 2021.

All mechanized proofs were done in the K Framework using our existing K Michelson semantics.

We note that, however, since parts of our proof have not been fully mechanized, they become

part of our trust base.  We leave the full mechanization of all proofs as future work.

Scope

The target of the formal verification is the following smart contract source and bytecode files at

git-commit-id 8a5792a5:

● dexter.liquidity_baking.mligo: Liquidity baking contract source file written in LIGO

● dexter.liquidity_baking.mligo.tz: Compiled Michelson bytecode for FA1.2

● lqt_fa12.mligo: Liquidity token (LQT) contract source file written in LIGO

● lqt_fa12.mligo.tz: Compiled Michelson bytecode for the liquidity token contract

The formal verification is limited in scope within the boundary of the smart contract source only.

Off-chain and client-side portions of the codebase as well as deployment and upgrade scripts are

not in the scope of this engagement.

Approach

We adopted a refinement-based verification approach to reduce verification effort as follows.

We formalized baseline properties for each contract entrypoint, that specify the storage updates

and the sequence of operations emitted.  These baseline properties were written based on our

understanding of the LIGO source code, but they were verified against the compiled Michelson

bytecode using the K Michelson semantics.  This way, we could ensure that the contract source

code was faithfully compiled to the Michelson bytecode, and that the compiler does not

introduce into the bytecode any new behaviors that were not originally intended in the source

code.

Then, we formulated safety properties of Dexter Liquidity Baking over any sequence of arbitrary

operations including non-Dexter operations.  One of the most critical properties is liquidity

share value security which states that (the geometric mean of) the XTZ and tzBTC reserves per
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share never decreases.  The share value preservation property implies that there is no way to

illegally drain funds from the liquidity pool, and thus liquidity providier's funds are safe

(provided that certain conditions are met, as described in the Assumptions section).  Another

important property is operation safety, i.e., do Dexter LB operations execute within reasonable

time and exchange-rate bounds?

Lastly, we verified the safety properties.  To reduce verification effort for the safety properties,

we first translated the baseline properties over an abstract configuration to abstract away certain

details that are irrelevant to the safety properties. This enabled us to prove the safety properties

using the abstract baseline properties.  See our Safety Property Verification section for details on

the abstraction and properties proved.

Trust base

The verification of the baseline properties have been fully mechanized in the K framework on

top of the K Michelson semantics.  The trust base includes the K framework as well as the K

Michelson semantics.  However, the LIGO-to-Michelson compiler is not in our trust base, since

the verification was conducted against the compiled bytecode.

K Framework

The K Framework is a rewriting-based executable semantic framework based on matching logic

for defining and reasoning about systems (e.g., programming languages and type systems).  K

semantic specifications are based on structured configurations and rewrite rules which map

configurations to new configurations.  The K theorem prover is based on reachability logic

(parameterized over the matching logic theory which defines the transition relation for the

semantics), a logic that subsumes both Hoare logic and separation logic and which allows for

reasoning inductively about any terminating behavior of a program.

K Michelson

K Michelson is a formal executable semantics for the Michelson language implemented using

the K Framework. It also provides a unit-test and verification framework for Michelson

programs. We gain confidence in the correctness of this semantics by cross-validating a

comprehensive set of unit-tests against the reference Michelson implementation. Since the

verification framework is derived from the same semantics, our confidence carries over to this as

well. While the K Michelson semantics formally describes the semantics of the Michelson

language, it does not yet model blockchain operations and interactions between contracts.

Hence, those parts of our audit must be conducted manually.
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Verification Artifacts

Our proof artifacts contain the full details of our formal verification process.  Though we have

made significant efforts to keep our proof scripts readable, given the amount of details which we

must encode to complete our proofs, reading the raw proof scripts may still require concentrated

effort.

Reproducibility

Interested users may wish to run our mechanized proofs on their own machines to better

understand our tooling and approach.  Since our mechanized proofs were performed using the K

Framework and the K-Michelson semantics, both of these tools must be installed first.  To install

these tools, use your favorite Git client to check out our K-Michelson Git repository and then

consult our installation guide.  Then, to reproduce our mechanical proofs, run the following

command:

$ make lb-prove lqt-prove

Structure

All of the proof artifacts are included in our K-Michelson Git repository under the

tests/proofs/liquidity-baking and tests/proofs/lqt directories:

● tests/proofs/liquidity-baking/lb-compiled.md

● tests/proofs/liquidity-baking/lb.md

● tests/proofs/liquidity-baking/lb-spec.md

● tests/proofs/lqt/lqt-compiled.md

● tests/proofs/lqt/lqt.md

● tests/proofs/lqt/lqt-spec.md

Where:

- *-compiled.md files contain the Michelson source code of the corresponding contract

- *.md files contain notation and definitions which enable writing the proofs compactly

- *-spec.md files contain the actual K proof scripts
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Disclaimer

This report does not constitute legal or investment advice.  The preparers of this report present

it as an informational exercise documenting the due diligence involved in the secure

development of the target contract only, and make no material claims or guarantees concerning

the contract's operation post-deployment.  The preparers of this report assume no liability for

any and all potential consequences of the deployment or use of this contract.

Smart contracts are still a nascent software arena, and their deployment and public offering

carries substantial risk.  This report makes no claims that its analysis is fully comprehensive,

and recommends always seeking multiple opinions and audits.

This report is also not comprehensive in scope, excluding a number of components critical to the

correct operation of this system.

The possibility of human error in the manual review process is very real, and we recommend

seeking multiple independent opinions on any claims which impact a large quantity of funds.
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Functional Correctness of Contract Entrypoints

Summary

In this section, we survey our methodology for verifying functional correctness of Liquidity

Baking and Liquidity Token contract entrypoints. Our proof scripts include automatically

verified claims for each of the entrypoints in the two contracts, and consist of two pieces:

1. The Michelson code corresponding to the contracts

2. High-level descriptions of each entrypoint derived from their LIGO code

Each script relates the high-level entrypoint description to the low-level Michelson code.

Because we perform our proofs directly over Michelson code, we avoid the need to assume the

correctness of the LIGO compiler.

Each functional description of a contract entrypoint specifies: (a) the conditions under which

the transaction will succeed as well as how the storage gets updated; and (b) the conditions

under which the transaction will fail (leading the Michelson VM to revert).  These entrypoint

descriptions as well as the proofs relating them to the Michelson code are contained in the

*-spec.md files listed in the Verification Artifacts section.

Reachability Proof Claim Structure

Before we proceed, we define the basic structure of a claim.  A claim has four parts with the

following syntax:

claim Start_State => Target_State
requires Precondition
ensures  Postcondition

The parts are (in order):

1. The start state - an abstract starting state (i.e. a term with variables that describes a

potentially infinite number of concrete states)

2. The target state - an abstract target state (as defined above)

3. The precondition - narrows the abstract start state by throwing away all concrete

instances which do not satisfy it

4. The postcondition - narrows the abstract target state by throwing away all concrete

instances which do not satisfy it
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The claim is satisfiable whenever, for each concrete state ConcS which is an instance of our

abstract start state AbsS that satisfies the precondition and for each execution path P starting

from ConcS, we know that path P either:

1. reaches a state ConcT that is a concrete instance of our abstract target state AbsT such

that ConcT satisfies the postcondition, or

2. is infinite.

In other words, the claim is not satisfied if and only if there is a finite execution path starting

from our constrained abstract start state that does not intersect our constrained abstract target

state.

Claim Configuration Syntax

The abstract start and target states are described using configurations in the K Framework.  A

configuration is an hierarchical, algebraic structure which contains all of the information about a

given concrete state in a system.  As an example, the configuration below describes a Michelson

interpreter which is about to execute the ADD instruction when the input stack contains just two

values: the integers 1 and 2.

<k> ADD </k>
<stack> [ int 1 ] ; [ int 2 ] ; .Stack </stack>

The following claim describes how the above configuration executes:

<k> ADD => . </k>
<stack> [ int 1 ] ; [ int 2 ] ; .Stack => [ int 3 ] ; .Stack </stack>

That is, the current continuation, the ADD instruction, evaluates to the empty continuation, and

the two stack values evaluate to the single stack value 3.  Each piece of the configuration can

update independently.  Any cell of a configuration (e.g. <k>)  that does not contain an arrow (=>)

denotes that the abstract start and target states have an identical value for that particular cell.

Example

As an example, we illustrate a part of the functional correctness proof claim for the

%getBalance entrypoint of lqt_fa12.mligo.  The code in the diagram below defines the claim

which specifies half of the positive case (i.e., the contract succeeds and generates a callback

which contains the balance).
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claim

<k> #runProof(GetBalanceParams(Address, Callback)) => .K ... <k>
<stack> .Stack <stack>
<myamount> #Mutez(Amount) </myamount>
<nonce> #Nonce(Nonce => Nonce +Int 1) </nonce>

<tokens> Tokens <tokens>
<operations> _

=> [ Transfer_tokens
{Tokens[Address]}:>Int
#Mutez(0)
Callback
Nonce ]

;; .InternalList
</operations>

requires
Amount ==Int 0 andBool Address in_keys(Tokens)

As is usual when writing a proof claim, we use both the logical theory which is defined by our

system under evaluation (the system specification) as well as a more general logical theory

which allows us to define properties of interest over our system (the property specification).  In

this case, the system specification defines the Michelson semantics while the property

specifications describe how particular contract entrypoints transform the Michelson contract

storage and internal operations queue.

In the above example, #runProof is a proof-specific function that:

1. Consumes an abstract representation of the LQT contract parameters and storage values;

2. Constructs a proper initial stack for the LQT contract based values from (1);

3. Executes the LQT code from the given starting stack to produce the final stack value;

4. Updates the operations stack and contract storage based on the values from (3).

So, to summarize, what this claim says is: when the LQT contract receives a valid input on its

%getBalance entrypoint, if the amount paid to the contract is 0 and there exists a map entry

keyed by Address in the Tokens map, then the whole state is unchanged except for:

1. the current continuation (e.g. the <k> cell) becomes empty,

2. the nonce is incremented once for the emitted internal operation,

3. a single operation is emitted onto the operation stack.
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Conclusion

Given that we believe our proof scripts are fairly declarative, as in the example above, we do not

summarize them any further here and instead refer the reader to our proof claim descriptions

located in the K Michelson source tree at:

For the Liquidity Baking contract:

https://github.com/runtimeverification/michelson-semantics/blob/master/tests/proofs/liquidi

ty-baking/lb-spec.md

For the LQT contract:

https://github.com/runtimeverification/michelson-semantics/blob/master/tests/proofs/lqt/lqt

-spec.md

Note that, unlike Coq/Isabelle/etc, proofs using the K Framework are typically done in a

one-shot, fully automated fashion.  This means that, when we use K, we don't have proof scripts

in the usual sense, i.e., a list of proof tactics that takes us from A to B.  Rather, we list our proof

claims and let the proof engine discharge them automatically for us.  Currently, we do not have a

fully-fledged proof checker, but such a proof checker is under development.  By virtue of this,

our proofs are typically quite short.
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Safety Property Verification

Summary

Building on our functional correctness proofs, we state and manually prove two important safety

properties:

1. Liquidity share value security: the exchange value of a liquidity share never decreases.

Formally, when we speak of the exchange value of a liquidity share, we mean:

exchange value :=
𝑡ℎ𝑒 𝑋𝑇𝑍 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 * 𝑡ℎ𝑒 𝑡𝑜𝑘𝑒𝑛 𝑟𝑒𝑠𝑒𝑟𝑣𝑒

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 𝑠ℎ𝑎𝑟𝑒𝑠

Note that the exchange value of a share is different from its monetary value (an example

of the impermanent loss problem).

2. Operation safety: each operation executes within worst-case time and exchange-rate

bounds.  Formally, we mean that each operation carries arguments which bound:

- the time before which they are permitted to execute (deadline);

- the minimum value they receive in exchange for assets sent (either XTZ, tzBTC,

or LQT);

- the maximum value of additional assets they must send in exchange for receiving

some asset (tzBTC).

The last two bullets are examples of slippage protection, which protects liquidity

providers (LPs) and traders from too much variation in exchange rate due to the

asynchronous nature of transaction execution.

Note that the liquidity share value security property subsumes safety properties such as:

● Each entrypoint is functionally correct, never sending more assets than it should (e.g.,

due to rounding errors).

● It is not possible to earn “free” money by repeating token exchanges back and forth, or

adding and removing liquidity back and forth.

● No re-entrancy vulnerabilities exist.

We proved that the share price preservation property holds over any sequences of arbitrary

operations.  The proof is based on:

1. an abstracted Tezos blockchain environment which we describe below;

2. several key lemmas which we proved.
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We address each of these below.  For full details of the proofs, see:

https://github.com/runtimeverification/michelson-semantics/blob/master/tests/proofs/liquidi

ty-baking/lb-properties.md

Abstract Blockchain Environment

K Michelson does not yet provide a formal semantics for the Tezos blockchain environment.

This means we must develop an abstracted blockchain over which we manually prove our

high-level properties. Note that, in any case, we must abstract some details of the blockchain for

the proof to be useful, e.g., the proof cannot depend on a concrete snapshot of the blockchain at

some particular moment. That is, the proof must be parameterized over all possible blockchain

states that correspond to a possible evolution of the initial state in which Dexter LB was properly

deployed.  We give the details of this abstract environment below.

Global Assumptions. Globally, we assume several points about how Tezos operates:

● The evaluation order of operations is DFS.

● The state variables and XTZ balance of a smart contract account cannot be updated

without executing the contract code.
1

● A contract may only emit internal operations (i.e., operations whose source is not itself).

● All contract code is immutable.

● No runtime code execution is possible except where a contract entrypoint executes a

supplied lambda (but since this never occurs in our modelled contract interfaces, we can

safely ignore this case).

Contract Abstractions. Our abstract environment does not contain full details of all Tezos

contracts on the chain.  In particular, we only consider the following contracts:

● Dexter LB

● LQT

● tzBTC

● Other Dexter V2 contracts called via Dexter LB's %tokenToToken entrypoint

Operation Abstractions. We only consider operations sent to or from the Dexter LB, LQT,

or tzBTC contracts.

Behavior Abstractions. We model the behavior of the four contracts listed above abstractly,

as follows:

1
In other blockchain systems, (e.g. Ethereum) it is possible to send currency to a smart contract account

without ever executing the contract code (e.g. by designating the contract as the recipient of mining

rewards or selfdestruct rewards).
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● Dexter LB & LQT. Their behavior is given by high-level K specifications which we

formally verified are consistent with their Michelson source code (see more details in

Functional Correctness of Contract Entrypoints).

● tzBTC. Its behavior is assumed to conform to the FA1.2 specification in a generic way

but with some additional restrictions listed below (see the Additional Assumptions); note

that, in some sense, this is the best we can do, given that tzBTC contract is upgradable,

such that its behavior is not fully specified by a fixed Michelson source code string (i.e.,

its execution depends on lambda's in its storage).

● Other Dexter V2 contracts. Their behavior is given by high-level K specifications

which we previously formally verified are consistent with the Dexter V2 Michelson (see:

https://github.com/runtimeverification/publications/blob/main/reports/smart-contrac

ts/Tezos-Dexter.pdf).

Storage Abstractions. We ignore updates to storage cells which are irrelevant to proving the

safety property at hand.  More precisely, we ignore updates to:

● the allowances map in both the tzBTC and LQT contracts;

● the LQT balances of all addresses in the LQT contract;

● the tzBTC balances of all addresses in the tzBTC contract except Dexter LB's balance;

● the storage value of all contracts on the chain except Dexter LB, LQT, and tzBTC.

We further assume that all contract storages were properly initialized:

- Dexter LB's contract has been initialized to contain the correct addresses of the tzBTC

and LQT contracts and that its initial tokenPool and lqtSupply variables correspond to its

tzBTC balance and the total supply of LQT in the LQT contract;

- LQT's initial storage contains Dexter LB as the admin and LQT's total supply variable

corresponds to the total amount of all LQT minted belonging to all users at contract

creation.

Additional Assumptions. We make a small number of additional assumptions about the

behavior of our smart contracts listed above.

● Dexter tzBTC Transfer. We assume that only Dexter can spend its own tokens, and

no one else can.  Specifically, for example, there must not exist any authorized users who

are permitted to spend any Dexter-owned tokens in any cases.   There must not exist a

way to (even temporarily) borrow tokens from Dexter.

● tzBTC %transfer Behavior. We also assume that the token transfer operation must

update the balance before emitting continuation operations. For example, the token

contract must not implement the so-called “pull pattern” where the transfer operation

does not immediately update the balance but only allows the receiver to claim the

transferred amount later as a separate transaction.
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Key Lemmas

Our main safety properties follow from several lemmas that we proved:

- each Dexter state variable eventually is consistent with the underlying blockchain state

value it represents;

- The total supply of liquidity tokens equals the totalSupply variable in the LQT contract

storage;

- Only the mintOrBurn entrypoint can update the LQT contract's total supply of liquidity

token and only Dexter LB may call it.

Each lemma was proved by the induction on sequences of operations and case analysis over

different types of operations.  We divide these lemmas into two categories based on the contract

they describe.

Dexter Contract Lemmas

One of the critical invariants of Dexter is about the Dexter state variables.  In Dexter, the share

price as well as the token exchange rate are determined by the three state variables, XtzPool,

TokenPool, and LqtTotal, which keep track of the XTZ reserve size, the tzBTC reserve size, and

the total number of liquidity shares (LQT), respectively. However, while the Dexter entrypoint

functions immediately update these state variables, the actual amount of reserves or shares will

be updated later by the continuation operations emitted by the entrypoints.  Since another

Dexter entrypoint can potentially be re-entered during the execution of the current continuation

operations, and this re-entrance can be repeated, the gap between the state variables and the

actual reserves/shares is unbounded.

To deal with the potentially unbounded gap, we formulated the gap as a function of the

continuation operations, and used it to specify the invariant on the state variables.

LQT Contract Lemmas

To prove that the LqtTotal state variable reflects the actual liquidity shares we need two

important lemmas about how the number of liquidity shares may change.  The first states that

only the Dexter contract may update the total number of shares, and only through using the

%mintOrBurn entrypoint.  This requires a further lemma — the total number of shares recorded

in the LQT contract’s storage reflects the actual value i.e. the sum of the shares owned by each

shareholder.  The second is a liveness property — when the Dexter contract calls the

%mintOrBurn entrypoint (meeting certain preconditions) the total number of shares is actually

updated.
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Recommendations

In this section, we make several recommendations to prevent potential usability issues.  Due to

the similarity between this contract and the Dexter V2 contract, we will refer the reader to our

Dexter V2 contract audit report, available at the link below:

https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Tezo

s-Dexter.pdf

In that report, recommendations A01 and A04-A05 still apply.  Additionally, recommendation

A06 as it pertains to the tzBTC contract still applies.

A01: Unintended Mutez Overflow in token_to_xtz

When calculating the amount of XTZ purchased (less the portion burned), the code here is used

(reproduced below for the reader's convenience):

let xtz_bought = natural_to_mutez

(((tokensSold * fee * (mutez_to_natural storage.xtzPool)) /

(storage.tokenPool * 1000n + (tokensSold * fee))))

in

let xtz_bought_net_burn =

let bought = (xtz_bought * 999n) / 1000n in

if bought < minXtzBought

then (failwith error_XTZ_BOUGHT_... : tez)

else bought

Due to the fact that the variable xtz_bought has type mutez, the type of the variable bought

(and the intermediate values used to produce it), also have type mutez.

Thus, even though we know that:

bought = ((xtz_bought * 999n) / 1000n) <= xtz_bought

The intermediate value xtz_bought * 999n may overflow, leading to the strange result that we

cannot convert tzBTC to tez if the price after conversion is within ~1000 times of the maximum

representable mutez value.
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As far as we can tell, this issue does not lead to privilege escalation in the sense that the contract

would perform an unintended behavior.  Instead, this issue has the potential to prevent a user

from executing an intended behavior.

Recommendation

To avoid this issue, we recommend for all calculations which produce a mutez type that:

a. All mutez inputs are converted into number types before the calculation starts

b. The final result value is casted back into the mutez type after the calculation is complete

In this specific case, one possible solution is to apply a natural_to_mutez conversion to the

variable xtz_bought in the calculation of the bought variable.

Status

Client acknowledged the issue.  Both client and we agree that this issue is not a security issue but

rather a usability issue.  Client further noted, and we agree, that:

1. With the current codebase, it is still possible to execute large trades from tzBTC to tez

using the token_to_xtz entrypoint if the trade is broken up into multiple transactions.

2. The issue may be resolved in a forthcoming protocol amendment which would change

the representation of the mutez type internally from fixed to arbitrary precision

arithmetic such that overflow and underflow would become impossible.  In such a case,

our recommendation to convert mutez to a number type for intermediate calculations

would no longer apply.
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A02: Unintended Mutez Overflows in token_to_token

When calculating the amount of XTZ purchased (less the portion burned), the code here is used

(reproduced below for the reader's convenience):

let xtz_bought =
(tokensSold * fee * storage.xtzPool) /
(storage.tokenPool * 1000n + (tokensSold * fee))

in
let xtz_bought_net_burn = (xtz_bought * 999n) / 1000n

This code block contains two possible mutez overflows:

1. Since the value storage.xtzPool has type mutez, by the typing rules of the

multiplication operation, the intermediate value:

(tokensSold * fee * storage.xtzPool)

also has type mutez.  This means that if:

tokensSold * storage.xtzPool ~= mutez_max / 1000

the subcomputation will overflow.

2. By the typing rules of the multiplication and division operations, the variable

xtz_bought has type mutez. This means that the subcalculation xtz_bought * 999n

will overflow whenever:

xtz_bought ~= mutez_max / 1000

even though it is guaranteed that:

xtz_bought_net_burn <= xtz_bought.

As in A01, as far as we can tell, this issue does not lead to privilege escalation in the sense that

the contract would perform an unintended behavior. Instead, this issue has the potential to

prevent a user from executing an intended behavior.

Recommendation

Our overall recommendation is the same as in finding A01, with the slight difference being that

the mutez_to_natural conversion function should be applied to both storage.xtzPool and
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the xtz_bought values in this case.  This will require an extra natural_to_mutez at the end of

the calculation of xtz_bought to satisfy the typing rules.

Status

Client acknowledged the issue.  Both client and we agree that this issue is not a security issue but

rather a usability issue.  As noted above, a forthcoming protocol amendment may resolve this

issue entirely.
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A03: token_to_token Unusable If Contract Has Too Much XTZ

Using the mutez overflow from finding A02, we note that if the storage.xtzPool value is large,

then the mutez calculations in the token_to_token entrypoint will overflow.  In particular, this

means that this entrypoint cannot be used in that case, i.e., when the liquidity pool has lots of

XTZ through donations via default or else through liquidity contributions via add_liquidity.

Of course, we can still manually call token_to_xtz and then xtz_to_token from a different

Dexter contract.

Recommendation

Our recommendation is the same as in finding A02.

Status

Client acknowledged the issue.  Both client and we agree that this issue is not a security issue but

rather a usability issue.  As noted above, a forthcoming protocol amendment may resolve this

issue entirely.
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