
29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 1/211

A CONSENSYS DILIGENCE AUDIT REPORT

Thesis - tBTC and Keep

Date February 2020

Lead Auditor Martin Ortner

Co-auditors Alexander Wade

1 Executive Summary
In January 2020, Thesis asked us to conduct a security assessment of tBTC: a
trust-minimized, redeemable, Bitcoin-backed ERC20 token. tBTC utilizes and
builds on functionality provided by Summa and the Keep Network.

We performed this assessment from February 03 to March 27, 2020. The
assessment primarily focused on tBTC alongside its associated components.
The engagement was conducted by Martin Ortner and Alexander Wade over
the course of twelve person-weeks.

In addition to the review of tBTC, a review was performed of the
cryptographic constructions and algorithms used in the Keep Network. A
complete report of this portion of the engagement can be found here.

1.1 Scope

https://tbtc.network/
https://github.com/summa-tx/bitcoin-spv
http://keep.network/
https://consensys.net/diligence/audits/2020/03/thesis-cryptographic-review/
https://pages.consensys.net/diligence-1-day-spot-check

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 2/211

We analyzed code located in the following repositories at the provided
commits:

Repository Audit Revision

keep-network/tbtc
#dcb1148025d6a1238b49a80fd56d8ca0be
b93781

summa-tx/bitcoin-spv
#f5e4da091a1c97e6432c2d70eba434edb18
9f919

keep-network/keep-
tecdsa
– keep-network/sortition-
pools

#c69871d252378c63ab47ab3f652de0a63b0
9eea5
#32523a74bb5fa51345de05f756ca8a9ecf24
6282

keep-network/keep-core
#b76b418f04bc94030d10aff18220d8e560a
2ab09

Third party dependencies not explicitly mentioned in the above list (e.g.
summa-tx/relay-sol) were out of scope for the audit.

tBTC interacts with the Keep Network via customized interfaces from
keep-network/keep-tecdsa , which itself uses keep-network/sortition-pools . The keep

random beacon used for signer group election (keep-network/keep-core) builds
on an implementation of BLS signatures on the altbn128 curve. The source
code is located in �ive repositories with the following dependencies as seen
from the tBTC solution:

keep-network/tbtc

summa-tx/bitcoin-spv

keep-network/keep-tecdsa

keep-network/sortition-pools

keep-network/keep-core

keep-network/keep-core (independent solution)

Together with the client, it was established that the main focus for the review
would be the smart contracts in the listed repositories, with a secondary
focus on reviewing the keep client (located in keep-core).

A complete list of �iles in scope can be found in the Appendix.

https://github.com/keep-network/tbtc/commit/dcb1148025d6a1238b49a80fd56d8ca0beb93781
https://github.com/summa-tx/bitcoin-spv/commit/f5e4da091a1c97e6432c2d70eba434edb189f919
https://github.com/keep-network/keep-tecdsa/commit/c69871d252378c63ab47ab3f652de0a63b09eea5
https://github.com/keep-network/sortition-pools/commit/32523a74bb5fa51345de05f756ca8a9ecf246282
https://github.com/keep-network/keep-core/commit/b76b418f04bc94030d10aff18220d8e560a2ab09

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 3/211

1.2 Objectives

Given the limited time available and ongoing development on some
components in scope, we elected to begin with a top-down approach
centered around tBTC as the focal point. We started by understanding the
architecture and design of high-risk components �irst, before diving into
various system components to verify security assumptions.

Our primary objectives were to:

�. Ensure that the system is implemented consistently with the intended
functionality, and without unintended edge cases.

�. Identify known vulnerabilities particular to smart contract systems, as
outlined in our Smart Contract Best Practices, and the Smart Contract
Weakness Classi�ication Registry.

�. Ensure that there is no way to break the TBTC-BTC peg and that it is as
di�icult as possible to abscond with deposited funds for the backing
ECDSA keep.

We also sought opportunities to improve the quality of the code either by
reducing the complexity, or improving clarity and readability.

1.3 Audit Log - Phase 1

The primary engagement (Feb 03 - Feb 28) was scheduled as follows:

Week 1 Week 2 Week 3 Week 4

- ramp up tbtc

- review
bitcoin-spv

- bitcoin-spv

- tBTC
Deposits

- tBTC
Deposits
- ramp up
keep

- keep
- keep-tecdsa

-
sortition-pools

Week 1

During the �irst week, our efforts were directed towards tBTC: understanding
the intention of its design and how it uses bitcoin-spv to validate spv proofs
and other Bitcoin transaction information. This involved de�ining key risk
factors and potential vulnerabilities requiring further investigation. Key
�indings were shared with the client in an end-of-week sync meeting.

https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 4/211

By the end of the �irst week, the tBTC codebase was modi�ied from its initial
audit commit to the revision v1-audit. The client also provided a frozen
codebase for keep-network/keep-core. keep-network/keep-tecdsa was still
undergoing changes.

Week 2

During the second week, we reviewed changes made to tBTC during the
previous week. We also began a more detailed review of the tBTC codebase;
in particular, tBTC Deposit �lows and the investigation of potential
vulnerabilities. Key �indings were shared with the client in an end-of-week
sync meeting and �iled in the client repository where applicable. keep-
network/keep-tecdsa was still undergoing changes by the end of week two.

The audit team informed the client that given the size and complexity of the
audit there might not be enough time to cover all parts of the initial scope.
Together with the client, it was determined that we would spend the next
week �inishing the review of tBTC Deposit �lows before transitioning our
review to keep-core .

Week 3

During the third week, we reviewed tBTC Deposit �lows and started
transitioning from tBTC to keep-core , maintaining a focus on the functionality
of keep-core that was most relevant to tBTC.

The audit revision for the keep-tecdsa codebase was provided in the second
half of the week and tagged as keep-tecdsa#v0.8.0. Additionally, the
sortition-pools#v0.1.1 repository referenced by keep-tecdsa was added to the
audit’s scope.

The cryptographic review that was planned to start this week had to be
delayed due to availability problems with our cryptographer. The review of
the keep client was temporarily set out of scope to ensure su�icient attention
was given to the smart contracts. Key �indings and questions were shared
immediately via the client collaboration channel and discussed in an end-of-
week sync meeting.

Week 4

https://github.com/keep-network/tbtc/commit/d399557c2ee18bc7260e879e23f665b7e842038f
https://github.com/keep-network/tbtc/commit/dcb1148025d6a1238b49a80fd56d8ca0beb93781
https://github.com/keep-network/keep-core/commit/b76b418f04bc94030d10aff18220d8e560a2ab09
https://github.com/keep-network/keep-tecdsa
https://github.com/keep-network/keep-tecdsa
https://github.com/keep-network/keep-tecdsa/commit/c69871d252378c63ab47ab3f652de0a63b09eea5
https://github.com/keep-network/sortition-pools/commit/32523a74bb5fa51345de05f756ca8a9ecf246282

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 5/211

During the fourth week, we focused on keep-core and the now frozen
keep-tecdsa implementation. The week was kicked off by the client providing a

walkthrough of the relevant code of keep-tecdsa . Key �indings and questions
were shared immediately via the client collaboration channel and discussed
in an end-of-week sync meeting. The preliminary report outlining
recommendations and �indings was prepared towards the end of the week
targeting delivery for the following Monday.

Two-week hiatus

A two-week hiatus allowing the client to address discussion points,
recommendations, and issues found during the audit was planned from
March 02 to March 13.

The engagement was scheduled to be continued for a �inal two-week review
from March 16 to March 27.

1.4 Audit Log - Phase 2

The �inal phase of the engagement was scheduled as follows:

Week 1 Week 2

- review �ixes made during
hiatus
- review keep-core

- surface-level review of keep-core

client
- �inalize report

Week 1

During the �irst week after providing the initial report, we focused on
continuing our efforts with keep-core and reviewing the feedback and �ixes
that were provided for the initial report. A secondary goal was to start
reviewing the client implementations in keep-core . The client provided a high-
level walkthrough of the keep client codebase and the audit team shared the
sources for the tBTC state diagram (see Security - tBTC). The audit codebase
was updated to the following revisions:

tbtc : �bb2018c41456d19ec20eb28a17070ee2b10eb5d (noted above)

keep-tecdsa : 2aab1f755e437d6e816c34a4fd354025cea5de3a (v0.10.0-rc)

keep-core : 9f8b13fe54cc627548746d7e64b77d6aa50b94e1 (v0.11.0-rc)
(provided on friday)

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 6/211

sortition-pools : no update provided

bitcoin-spv : no update provided

Week 2

During the second week, we continued with our focus on keep-core and
started reviewing the client logic that is interacting with the smart contracts.
The �inal report outlining recommendations and �indings including client
feedback and a review of provided �ixes was prepared towards the end of the
week targeting delivery for the following Monday. In addition to that the
cryptographic review was �inalized and prepared for the delivery on Monday.

2 Recommendations
During the course of our review, we identi�ied a few possible improvements
that are not security issues but can bring value to the developers and the
people who want to interact with the system.

2.1 Perform extensive system simulation and integration
tests prior to release

UPDATE: This recommendation has been addressed with the
following statement: Manual system testing is currently underway,
with automated testing to follow as we solidify structure.
Automated system tests are captured at a high level in issues
https://github.com/keep-network/tbtc/issues/339,
https://github.com/keep-network/keep-ecdsa/issues/382, and
https://github.com/keep-network/keep-core/issues/1556 for the
respective components of the system.

Any highly-complex system bene�its massively from integration testing. tBTC
and the Keep Network are no exception: the two products tie together
multiple different technologies (Bitcoin, Ethereum, sMPC, …) using mission-
critical smart contracts. What’s more, the smart contracts in question
implement strict timing windows for operations as well as steep penalties if
those windows are missed.

Due in part to ongoing development on the codebase under review, no
integration tests existed for the duration of this engagement. Although
components of the system can be examined in relative isolation, the ability to

https://consensys.net/diligence/audits/2020/03/thesis-cryptographic-review/
https://github.com/keep-network/tbtc/issues/339
https://github.com/keep-network/keep-ecdsa/issues/382
https://github.com/keep-network/keep-core/issues/1556

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 7/211

review the system as a coherent whole is invaluable. By mimicking a
production environment, integration testing helps uncover (among other
things) simple issues that might otherwise only be discovered in production:
miscon�igurations, incorrect system-wide constants, and more.

Integration testing may also be used to simulate system behavior under a
wide variety of network conditions. Due to this system’s heavy reliance on
coordination between multiple off-chain networks, preparation for release
should not be considered complete until the system is stress-tested in
multiple non-ideal environments.

2.2 Consider reducing tBTC Deposit term or locking stake
when in-use

UPDATE: This recommendation has been addressed with the
following statement: We are moving to lock stakes during keep-
ecdsa lifetimes if they exceed undelegation time in issue
https://github.com/keep-network/keep-core/issues/1490. We
consider this the more generic and future-proof of the
recommended solutions.

A tBTC deposit reaches its term after 180 days. During this 180 day period,
signers must maintain custody of the backing BTC. Should they attempt to
commit fraud, they are punished in two ways: 1. Their bonds are seized. In the
case of tBTC, this should be roughly equivalent to 150% of the value of the
backing BTC, in ETH. 2. Their stake is slashed.

Token stake can be undelegated and withdrawn in only 90 days. Although
the security model of tBTC is mostly reliant on the seizing of signer bonds
(rather than stake slashing), this will almost certainly be abused if a signer
acts maliciously.

Consider either disallowing undelegation when a signer is a member of an
active keep, or reducing tBTC deposit term to under 90 days.

2.3 Disallow overfunding of tBTC Deposits

UPDATE: This recommendation has been addressed with the
following statement: Unfortunately, there isn’t a simple way to
disable mistaken funding in an economically sound way. We are

https://github.com/keep-network/keep-core/issues/1490

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 8/211

considering adding a purely social, unguaranteed “please return my
UTXO” function for funders, which would have no repercussions for
signers but would return their bond and, request that they return
the UTXO. Such a solution would have no on-chain enforcement.
This possibility is tracked in issue https://github.com/keep-
network/tbtc/issues/550.

All deposits have an associated lot size, or amount of BTC. When initially
funding a deposit, the funder is expected to send the entire lot-size-worth of
BTC in a single transaction. In other words, funding a deposit over the course
of two transactions is not supported and will result in a loss of funds.

However, overfunding a deposit is allowed: a funder can send more than the
lot-size-worth of BTC to the deposit address. Consider disallowing this
behavior, as it encourages users to circumvent the provided UI.

2.4 Improve error handling in bitcoin-spv

Several of our �indings detailed potential error states in bitcoin-spv . Overall,
the bitcoin-spv libraries tend to “fail silently,” returning “garbage” values when
error states are achieved, rather than reverting. This tendency places a larger
burden on the library’s users, requiring them to understand more about the
library’s function to use it safely. While this is a valid expectation, it is typically
not realistic.

Additionally, implementing error handling in bitcoin-spv will allow for more
negative test cases, improving overall code quality and test coverage.

2.5 Simplify the deposit flow

UPDATE: This recommendation has been addressed with the
following statement: The deposit �low has been simpli�ied as part of
recommendation 2.6, and issue 5.9 below; see those for more
information.

Deposit �low is highly complicated, so simplifying it wherever possible should
be a priority. If possible, reduce the number states and transitions a TDT
tracked deposit can be in. This also reduces the number of interactions with
the deposit and therefore saves users gas. Avoid adding states for the sole

https://github.com/keep-network/tbtc/issues/550

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 9/211

purpose of tracking what path a deposit came from and deduplicate
redundant states (LIQUIDATION).

2.6 Remove funding fraud states in Deposit

UPDATE: This recommendation has been addressed with the
following statement: This refactor was done while addressing issue
5.9 below in GitHub issue https://github.com/keep-
network/tbtc/issues/494. The details of the change differ slightly
from this recommendation: rather than use the same fraud path
used in active deposits, fraud during funding always sends the full
signer bond to the funder.

Deposit �low includes two types of fraud-proof. The �irst is submitted during
the AWAITING_BTC_FUNDING_PROOF state and punishes signers for fraud committed
during the funding stage. The second is submitted during most other states
and punishes signers for fraud committed outside the funding stage.

Because the punishment differs across these two fraud-proof submission
methods, there is occasionally incentive to commit fraud in the funding
stage, advance the deposit state to post-funding, and submit a fraud-proof
using the post-funding fraud-proof functions. In particular, post-funding
fraud-proofs award the fraud-proof initiator with a cut of the bonds seized
from signers, whereas funding fraud-proofs do not.

Rather than include additional complexity with different incentives, merge
the two fraud submission methods and make them available throughout
Deposit �low.

2.7 Improve signer bond seize efficiency

UPDATE: This recommendation has been addressed with the
following statement: We are considering pull payments across the
system as part of issue https://github.com/keep-
network/tbtc/issues/551, which is focused on the broader problem
of ensuring an incorrect payment recipient cannot prevent
disbursals and state transitions from completing.

BondedECDSAKeep.seizeSignerBonds iterates over a keep’s members, queries each
member’s bond amount, and seizes each member’s bond individually -

https://github.com/keep-network/tbtc/issues/494
https://github.com/keep-network/tbtc/issues/551

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 10/211

netting 2 * members.length external calls:

 function seizeSignerBonds() external onlyOwner onlyWhenActive {
 markAsClosed();

 for (uint256 i = 0; i < members.length; i++) {
 uint256 amount = keepBonding.bondAmount(
 members[i],
 address(this),
 uint256(address(this))
);

 keepBonding.seizeBond(
 members[i],
 uint256(address(this)),
 amount,
 address(uint160(owner))
);
 }
 }

Additionally, keepBonding.seizeBond makes another external call to
address payable destination for a total of 3 * members.length calls. If any of these

fail, the entire call fails and signer bonds cannot be seized.

Because this function is so crucial to the security properties of tBTC, consider
switching to a pull payment system.

2.8 Improve TBTCSystem lot size updates

UPDATE: This recommendation has been addressed with the
following statement: We are intending to make the remainder of this
change, tracked in issue https://github.com/keep-
network/tbtc/issues/552.

TBTCSystem currently tracks allowed BTC lot sizes in an array, lotSizesSatoshis .
Tracking lot sizes with an array is highly ine�icient, as updates and queries
require costly iteration.

Remove the array and replace it with a mapping from
uint lotSize => bool supported . Use a setter function to allow updates of

supported lot sizes. Use a getter function to query currently-allowed lot sizes.

https://github.com/keep-network/tbtc/issues/552

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 11/211

Additionally, the setter function should include strict checks to determine
whether a lot size is valid:

1 BTC should always be allowed

0 should not be allowed

A reasonable minimum should be enforced. One potential option is
0.001 BTC

A reasonable maximum should be enforced. One potential option is
10 BTC .

2.9 Explicitly track current and previous state/flow instead
of deriving it from side-effects

UPDATE: This recommendation has been addressed with the
following statement: Of the two listed examples, only one is valid
(purchaseSignerBondsAtAuction uses tdtHolder solely to
implement the mechanic of “sending TBTC to the vending machine
should be equivalent to burning that TBTC” e�iciently; the two
branches are effectively the same, except that the vending machine
does not have a built-in way to handle an incoming token transfer
and implement the “burn” mechanic itself). The second listed note,
startSignerFraudLiquidation’s use of the auction amount to
determine that it originated in redemption, is being tracked as
https://github.com/keep-network/tbtc/issues/553.

We recommend explicitly tracking the origin �low/state or even the transition
history in the deposit instead of deriving it from side-effects or assuming
other variables contain certain values.

purchaseSignerBondsAtAuction uses the tdtHolder address to distinguish
whether a liquidation was started for an active deposit or not.

if(tdtHolder == _d.VendingMachine){
_tbtcToken.burnFrom(msg.sender, lotSizeTbtc); // burn minimal amount to
}
else{
_tbtcToken.transferFrom(msg.sender, tdtHolder, lotSizeTbtc);
}

https://github.com/keep-network/tbtc/issues/553

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 12/211

startSignerFraudLiquidation derives the origin �low from the
acutionTTBTCAmount()

if (_d.auctionTBTCAmount() == 0) {
// we came from the redemption flow
_d.setLiquidated();
_d.redeemerAddress.transfer(_seized);
_d.logLiquidated();
return;
}

2.10 Consider emitting events for security-critical actions

UPDATE: This recommendation has been addressed with the
following statement: All security-critical actions now emit events
and are implemented in two phases with a delay (see 2.15 below).

Events can be an easy way to produce an audit trail for security-critical
actions performed on the contract system. Furthermore, these events can be
used to build a custom monitoring and intrusion detection system that
alarms the operators of a potential upcoming attack campaign or misuse of
the system and may allow cutting reaction time ensuring the safety of the
system.

2.11 Review all comments

UPDATE: This recommendation has been addressed with the
following statement: This is being tracked as issue
https://github.com/keep-network/tbtc/issues/554.

As developers, we often forget to update comments when making changes
because comments do not affect us immediately. However, the presence of
TODO’s in code implies that the codebase is not yet ready for production.
This can be an oversight or a sign that code is still undergoing changes.

Make sure to review all of the comments after the code was frozen.

2.12 Review and update the specification and
documentation

https://github.com/keep-network/tbtc/issues/554

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 13/211

UPDATE: This recommendation has been addressed with the
following statement: This is being tracked alongside 2.11 in
https://github.com/keep-network/tbtc/issues/554.

During an audit, we typically verify that a system complies with its design and
speci�ication documents. Our review of tBTC uncovered multiple
inaccuracies between the code and details in the documentation of both tbtc
and keep/random-beacon. Most of these inaccuracies likely stem from recent
changes to the codebase that have not yet been updated in the
documentation.

We have shared a list of inconsistencies for tBTC with the client, some of
which were:

non-existent state SIGNER_MARGIN_CALLED mentioned in the speci�ication

transitions to FRAUD_LIQUIDATION_IN_PROGRESS

The speci�ication states that provideECDSAFraudProof and provideSPVFraudProof

transitions from the following states, which is inconsistent with the
implementation:

from AWAITING_SIGNER_SETUP
AWAITING_BTC_FUNDING_PROOF
ACTIVE
AWAITING_WITHDRAWAL_SIGNATURE
AWAITING_WITHDRAWAL_PROOF
SIGNER_MARGIN_CALLED
to
FRAUD_LIQUIDATION_IN_PROGRESS

the state SIGNER_MARGIN_CALLED does not exist

the fraud-proof methods cannot be used to transitions from
AWAITING_SIGNER_SETUP , AWAITING_BTC_FUNDING_PROOF to
FRAUD_LIQUIDATION_IN_PROGRESS

LIQUIDATION_IN_PROGRESS is reachable via fraud-proof

The speci�ication mentions that in the redemption �low the state
LIQUIDATION_IN_PROGRESS is reachable via an ECDSA or BTC fraud-proof .

https://github.com/keep-network/tbtc/issues/554
http://docs.keep.network/tbtc/#Appendix
http://docs.keep.network/random-beacon/
http://docs.keep.network/tbtc/#_external_transitions_3
http://docs.keep.network/tbtc/#_states_2

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 14/211

Reachable exterior states
LIQUIDATION_IN_PROGRESS
via an ECDSA or BTC fraud-proof
via a state timeout

However, the correct state after providing a fraud-proof from redemption
should be FRAUD_LIQUIDATION_IN_PROGRESS .

2.13 Review all constants and avoid changing them for
testing purposes

UPDATE: This recommendation has been addressed with the
following statement: The nature of testing and the time frames used
in the system is such that time constants are hard not to adjust for
testing purposes; that said, the con�iguration of test-speci�ic
constants to only be set in stub contracts dedicated to testing is
being taken up as part of issue https://github.com/keep-
network/tbtc/issues/555.

Multiple system constants have been tuned for testing and were not reset to
production values for the frozen audit commits. We strongly recommend
avoiding permanently changing system variables for testing. Instead, test
classes and mock contracts should override constants where applicable.

Note, too, that changing important system variables for testing creates a gap
where the actual system con�iguration for production might not receive as
much testing as an arti�icial test scenario.

2.14 Avoid overlapping phases when using timed periods

UPDATE: This recommendation has been addressed with
https://github.com/keep-network/keep-core/issues/1443.

Where possible, states should be clearly distinguished from each other with
no overlap. It should be avoided that objects can be in two states at the same
time.

uint256 public constant DEPOSIT_TERM_LENGTH = 180 * 24 * 60 * 60; // 180 day
uint256 public constant TX_PROOF_DIFFICULTY_FACTOR = 1; // TODO: decreased f

https://github.com/keep-network/tbtc/issues/555
https://github.com/keep-network/keep-core/issues/1443

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 15/211

For example, in keep-core/TokenStaking , stake can be in the initializationPeriod ,
active , or active_and_waiting_for_undelegation .

cancelStake checks that the stake is within the initializationPeriod like so:

eligibleStake veri�ies a stake is not in initializationPeriod like so:

In the case when
block.number == operators[_operator].createdAt.add(initializationPeriod) , stake

creation time satis�ies both of these conditions and is in two states at the
same time.

2.15 Follow best practices when upgrading and changing
system variables

UPDATE: This recommendation has been addressed with the
following statement: Two-step timelocked upgrades were
implemented as part of issues https://github.com/keep-
network/tbtc/issues/493, https://github.com/keep-network/keep-
ecdsa/issues/296, and https://github.com/keep-network/keep-
core/issues/1423.

Changing the behavior of system components via upgrading the smart
contracts or modi�ication of shared settings should be transparent and
predictable for users and allow them to act on forthcoming changes.
Changes that take effect immediately may allow for manipulation
opportunities for the party executing the change by front-running other
transactions or by setting and resetting parameters for their own pro�it.

We recommend implementing a time-lock that informs users of planned
changes and gives them su�icient time to react to an unwanted change. It is

require(
 block.number <= operators[_operator].createdAt.add(initializationPeriod)
 "Initialization period is over"
);

bool isActive = block.number >= operator.createdAt.add(initializationPeriod)

https://github.com/keep-network/tbtc/issues/493
https://github.com/keep-network/keep-ecdsa/issues/296
https://github.com/keep-network/keep-core/issues/1423

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 16/211

also recommended to use a multisig contract or other transparent
governance mechanisms to initiate changes.

2.16 Initialization of proxy contracts

UPDATE: This recommendation has been addressed with the
following statement: This recommendation was implemented as
part of issues https://github.com/keep-network/keep-
ecdsa/issues/296 and https://github.com/keep-network/keep-
core/issues/1423.

Ensure that implementations for proxy contracts are either initialized in the
constructor when being deployed or the initialization method (and storage-
changing functionality) is protected from being called by anyone. Consider
rejecting calls to state reading/writing methods for contracts that are
pending initialization.

It should generally be technically enforced that contracts are initialized in the
same transaction as they are deployed or upgraded. This is especially true if
the initialization method cannot be protected and may be called by third
parties.

Ensure the existing storage layout does not change when upgrading the
implementation.

2.17 Keep group should prove that they are capable of
signing a message

UPDATE: This recommendation has been addressed with the
following statement: Note that funders are now refunded in case of
keep signature setup failure as part of https://github.com/keep-
network/tbtc/issues/495, and all remaining bonds are returned to
the signers. The remaining issue, of ensuring that the signers can
indeed sign with the key they are publishing, does not signi�icantly
differ from one of the signers being unavailable when a signature is
requested from them, which is a scenario that is already handled by
the system.

When a new keep is formed members start the DKG process and prove to the
BondedECDSAKeep contract that they are capable of participating in signing

https://github.com/keep-network/keep-ecdsa/issues/296
https://github.com/keep-network/keep-core/issues/1423
https://github.com/keep-network/tbtc/issues/495

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 17/211

requests by submitting the public key to the contract. The fact that the keep
formation succeeded is visible to consumers of the keep by checking the
contracts publicKey state variable which is only set if all members con�irmed
the pubkey.

While this proves that all members submitted the same on-chain observable
value pubKey , it does not prove that the group is capable of signing data. For
example, once members con�irm the public key, the funder in tBTC is able to
move her deposit to the next state, sending BTC to the keep address. Given
that funds are at risk we would recommend ensuring the funder (or any other
consumer of the keep) that the keep group is indeed willing and capable of
ful�illing signing requests. This could be accomplished by providing a
message (e.g. keep owner address) signed for the funder.

The process of forming a keep group may also be susceptible to a minority
attack where at least one member blocks the setup of the keep group by not
con�irming or con�irming a wrong pubkey. The keep cannot recover from this
attack, the member submitting the wrong pubKey cannot re-submit a valid
one again, the key generation will time out without a pubKey being set for the
keep. The keep is not activated and unable to perform signing requests.
There are only three ways to proceed:

no action, bonds stay locked in the keep

signer bonds are seized by the owner (deposit)

keep is closed by the owner (deposit) in which case the member bonds
are released

In tBTC one would call notifySignerSetupFailure on the deposit now to terminate
it. In any case the funder the tBTC side loses the initial payment to the keep
because the keep setup was blocked and the signer bonds are not seized. On
the keep side of things, all keep members bonds are locked up as the tBTC
deposit does not close the keep freeing the bonds. This scenario presents a
case where by investing one member bond, this member can cause the tBTC
funder and the rest of the keep members to lose funds (keep payment,
bonds).

There is no recommended mitigation for this other than ensuring that keeps
never fail to setup. The tBTC funder cannot be reimbursed for their loss as
creating a keep incurs costs. The honest majority of keep members could be
reimbursed but that might open up other attack vectors. A possible solution

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 18/211

could be to dynamically match members to a keep until all of them were able
to prove that they are capable of signing for the keep but that might require
major changes to the system.

2.18 Improve Input validation

UPDATE: This recommendation has been addressed with the
following statement: These issues have been addressed where
reasonable and feasible across the codebases.

Input validation checks should be explicit and well documented as part of the
code’s documentation. This is to make sure that smart-contracts are robust
against erroneous inputs and reduce the potential attack surface for
exploitation.

It is good practice to verify the method’s input as early as possible and only
perform further actions if the validation succeeds. Methods can be split into
an external or public API that performs initial checks and subsequently calls
an internal method that performs the action.

There is a lack of input validation throughout the codebases under audit. For
example, during the audit, we suggested implementing more restrict input
validation for bitcoin-spv to make error conditions more explicit. Methods
receiving addresses should check whether the address is valid before storing
it especially if it cannot be changed afterward (optionally checking
EXTCODESIZE). Known upper and lower bounds for variables must be
enforced. For example, it should not be allowed to create a keep group of
size zero, zero amount stake or withdraw zero eth from the staking contract.
We recommend designing methods to explicitly fail early for unexpected
input to allow better error handling and reduce the potential attack surface.
The Checks-Effects-Interactions pattern should be used for methods and
implicit error handling should be avoided (e.g. method throws because of out
of bounds access in array).

2.19 Client - Add Security Linting step to CI pipeline

UPDATE: This recommendation has been addressed with the
following statement: The tbtc codebase has had linting installed
since very early on; Solidity linting was added to keep-ecdsa as part
of https://github.com/keep-network/keep-ecdsa/issues/42. Go

https://solidity.readthedocs.io/en/develop/security-considerations.html?highlight=check%20effects#use-the-checks-effects-interactions-pattern
https://github.com/keep-network/keep-ecdsa/issues/42

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 19/211

linting has been running as part of pre-commit hooks across both
keep-ecdsa and keep-core, but will be added to CI as part of
https://github.com/keep-network/keep-ecdsa/issues/358 and
https://github.com/keep-network/keep-core/issues/1551.

It is recommended to add a security-linting step to keep-core and keep-
ecdsa making sure that minimum security requirements are enforced for
every changeset.

The golangci-lint project is a convenient linter-aggregator that can be used
for this purpose.

keep-core

pkg/beacon/relay/group/message_filter.go:86:2: S1008: should use 'return <ex
 if message.SenderID() == memberIndex {
 ^
cmd/start.go:23:2: `bootstrapFlag` is unused (varcheck)
 bootstrapFlag = "bootstrap"
 ^
pkg/chain/ethereum/utility.go:49:5: ineffectual assignment to `err` (ineffas
 _, err = euc.keepRandomBeaconServiceContract.WatchRelayEntryRequeste
 ^
pkg/chain/ethereum/lib.go:53:6: `errorCallback` is unused (deadcode)
type errorCallback func(err error) (eout error)
 ^
pkg/chain/ethereum/lib.go:56:6: `sum256` is unused (deadcode)
func sum256(data []byte) (digest [32]byte) {
 ^
pkg/beacon/relay/dkg/result/signing.go:12:6: `dkgResultSignature` is unused
type dkgResultSignature = []byte
 ^
config/config.go:15:7: G101: Potential hardcoded credentials (gosec)
const passwordEnvVariable = "KEEP_ETHEREUM_PASSWORD"
 ^
pkg/beacon/relay/gjkr/gjkr.go:22:29: Error return value of `channel.Register
 channel.RegisterUnmarshaler(func() net.TaggedUnmarshaler {
 ^
pkg/beacon/relay/gjkr/gjkr.go:25:29: Error return value of `channel.Register
 channel.RegisterUnmarshaler(func() net.TaggedUnmarshaler {
 ^
pkg/beacon/relay/gjkr/gjkr.go:28:29: Error return value of `channel.Register
 channel.RegisterUnmarshaler(func() net.TaggedUnmarshaler {
 ^
pkg/beacon/relay/gjkr/protocol.go:83:37: Error return value of `sm.evidenceL
 sm.evidenceLog.PutEphemeralMessage(ephemeralPubKeyMessage)
 ^
pkg/beacon/relay/gjkr/protocol.go:312:39: Error return value of `cvm.evidenc

id L P tP Sh M (h M)

https://github.com/keep-network/keep-ecdsa/issues/358
https://github.com/keep-network/keep-core/issues/1551
https://github.com/keep-network/keep-core/blob/12926fdcd94654da344ced867642b18ddf54c658/.circleci/config.yml
https://github.com/keep-network/keep-ecdsa/blob/master/.circleci/config.yml
https://github.com/golangci/golangci-lint

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 20/211

 cvm.evidenceLog.PutPeerSharesMessage(sharesMessage)
 ^
pkg/net/libp2p/channel.go:330:35: Error return value of `c.pubsub.Unregister
 c.pubsub.UnregisterTopicValidator(c.name)
 ^
pkg/chain/ethereum/lib.go:58:9: Error return value of `h.Write` is not check
 h.Write(data)
 ^
pkg/chain/ethereum/utility.go:36:15: Error return value of `promise.Fail` is
 promise.Fail(err)
 ^
pkg/chain/ethereum/utility.go:41:15: Error return value of `promise.Fail` is
 promise.Fail(err)
 ^
pkg/chain/ethereum/utility.go:56:64: Error return value of `euc.keepRandomBe
 euc.keepRandomBeaconServiceContract.WatchRelayEntryG

pkg/chain/ethereum/utility.go:58:21: Error return value of `promise.Fulfill`
 promise.Fulfill(&event.EntryGenerate
 ^
pkg/chain/ethereum/utility.go:76:15: Error return value of `promise.Fail` is
 promise.Fail(err)
 ^
pkg/internal/dkgtest/dkgtest.go:104:45: Error return value of `(github.com/k
 chain.ThresholdRelay().OnDKGResultSubmitted(
 ^
pkg/internal/entrytest/entrytest.go:110:46: Error return value of `(github.c
 chain.ThresholdRelay().OnRelayEntrySubmitted(
 ^
pkg/beacon/beacon.go:65:34: Error return value of `relayChain.OnRelayEntryRe
 relayChain.OnRelayEntryRequested(func(request *event.Request) {
 ^
pkg/beacon/beacon.go:91:36: Error return value of `relayChain.OnGroupSelecti
 relayChain.OnGroupSelectionStarted(func(event *event.GroupSelectionS
 ^
pkg/beacon/beacon.go:130:30: Error return value of `relayChain.OnGroupRegist
 relayChain.OnGroupRegistered(func(registration *event.GroupRegistrat
 ^
cmd/network.go:78:26: Error return value of `stakeMonitor.StakeTokens` is no
 stakeMonitor.StakeTokens(key.NetworkPubKeyToEthAddress(
 ^
cmd/network.go:81:26: Error return value of `stakeMonitor.StakeTokens` is no
 stakeMonitor.StakeTokens(key.NetworkPubKeyToEthAddress(
 ^
pkg/beacon/relay/node.go:21:2: `mutex` is unused (structcheck)
 mutex sync.Mutex
 ^
pkg/net/libp2p/channel.go:45:17: SA1019: peerstore.Peerstore is deprecated:
 peerStore peerstore.Peerstore
 ^
pkg/net/libp2p/channel.go:184:9: SA1019: c.pubsub.Publish is deprecated: use
 return c.pubsub.Publish(c.name, messageBytes)

^

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 21/211

pkg/net/libp2p/channel_manager.go:25:12: SA1019: peerstore.Peerstore is depr
 peerStore peerstore.Peerstore
 ^
pkg/net/libp2p/channel_manager.go:96:14: SA1019: cm.pubsub.Subscribe is depr
 sub, err := cm.pubsub.Subscribe(name)
 ^
pkg/net/libp2p/libp2p.go:159:17: SA1019: peer.IDB58Decode is deprecated: Use
 peerID, err := peer.IDB58Decode(connectedPeer)
 ^
pkg/net/libp2p/libp2p.go:181:17: SA1019: peer.IDB58Decode is deprecated: Use
 peerID, err := peer.IDB58Decode(peerHash)
 ^
pkg/net/libp2p/libp2p.go:435:51: SA1019: peerstore.PeerInfo is deprecated: u
func extractMultiAddrFromPeers(peers []string) ([]peerstore.PeerInfo, error)
 ^
pkg/net/libp2p/libp2p.go:436:18: SA1019: peerstore.PeerInfo is deprecated: u
 var peerInfos []peerstore.PeerInfo
 ^
pkg/net/libp2p/libp2p.go:443:20: SA1019: peerstore.InfoFromP2pAddr is deprec
 peerInfo, err := peerstore.InfoFromP2pAddr(ipfsaddr)
 ^
pkg/net/libp2p/unicast_channel_manager.go:141:21: SA1019: peer.IDB58Decode i
 remotePeer, err := peer.IDB58Decode(peerID.String())
 ^
pkg/beacon/relay/node.go:128:2: S1023: redundant `return` statement (gosimpl
 return
 ^
pkg/beacon/relay/node.go:68:6: S1004: should use bytes.Equal(selectedStaker,
 if bytes.Compare(selectedStaker, n.Staker.Address()) == 0 {
 ^
pkg/beacon/relay/dkg/result/states.go:76:10: S1004: should use bytes.Equal(p
 return bytes.Compare(phaseMessage.publicKey, msg.SenderPubli
 ^
pkg/net/watchtower/watchtower.go:53:2: S1005: should write `checking := g.pe
 checking, _ := g.peerCrossList[peer]
 ^
cmd/relay.go:81:2: S1000: should use a simple channel send/receive instead o
 select {
 ^
cmd/start.go:125:2: S1000: should use a simple channel send/receive instead
 select {
 ^
pkg/chain/ethereum/ethereum.go:215:3: S1000: should use for range instead of
 for {
 ^
pkg/chain/ethereum/ethereum.go:420:3: S1000: should use for range instead of
 for {
 ^
pkg/beacon/relay/group/group.go:139:17: func `(*Group).isThresholdSatisfied`
pkg/beacon/relay/group/group.go:132:17: func `(*Group).eliminatedMembersCoun

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 22/211

keep-ecdsa

pkg/chain/eth/local/local.go:62:15: G404: Use of weak random number generato
 handlerID := rand.Int()
 ^
pkg/chain/eth/local/local.go:83:15: G404: Use of weak random number generato
 handlerID := rand.Int()
 ^
internal/config/config.go:13:7: G101: Potential hardcoded credentials (gosec
const passwordEnvVariable = "KEEP_ETHEREUM_PASSWORD"
 ^
pkg/ecdsa/tss/message.go:43:38: Error return value of `broadcastChannel.Regi
 broadcastChannel.RegisterUnmarshaler(func() net.TaggedUnmarshaler {
 ^
pkg/ecdsa/tss/message.go:46:38: Error return value of `broadcastChannel.Regi
 broadcastChannel.RegisterUnmarshaler(func() net.TaggedUnmarshaler {
 ^
pkg/ecdsa/tss/message.go:49:38: Error return value of `broadcastChannel.Regi
 broadcastChannel.RegisterUnmarshaler(func() net.TaggedUnmarshaler {
 ^
pkg/ecdsa/tss/network.go:266:14: Error return value of `b.broadcast` is not
 b.broadcast(ctx, protocolMessage)
 ^
pkg/ecdsa/tss/network.go:279:12: Error return value of `b.sendTo` is not che
 b.sendTo(destinationTransportID, protocolMessage)
 ^
pkg/ecdsa/tss/network.go:294:26: Error return value of `broadcastChannel.Sen
 if broadcastChannel.Send(ctx, msg); err != nil {
 ^
pkg/client/client.go:105:40: Error return value of `ethereumChain.OnBondedEC
 ethereumChain.OnBondedECDSAKeepCreated(func(event *eth.BondedECDSAKe
 ^
pkg/node/node.go:136:2: lostcancel: the monitoringCancel function is not use
 monitoringCtx, monitoringCancel := context.WithTimeout(
 ^
pkg/node/node.go:157:2: lostcancel: this return statement may be reached wit
 return signer, nil
 ^
cmd/start.go:163:2: S1000: should use a simple channel send/receive instead
 select {
 ^
pkg/ecdsa/tss/protocol_announce.go:77:3: S1023: redundant `return` statement
 return
 ^
pkg/ecdsa/tss/protocol_ready.go:82:3: S1023: redundant `return` statement (g
 return
 ^

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 23/211

2.20 Client - Ensure nodes cannot be booted off the
network

UPDATE: This recommendation has been addressed with the
following statement: Fuzzing is being tracked alongside broader
system testing in https://github.com/keep-network/keep-
core/issues/1556 and https://github.com/keep-network/keep-
ecdsa/issues/382.

A major threat to the system is that an actor may be able to boot nodes off
the network by causing a panic while interacting with them. Someone who is
able to permanently or temporarily reduce the amount of responsible nodes
in the system may be able directly harm the network or turn things to their
favor. The threat scenario is somewhat similar to the one the go-ethereum
project is facing. We therefore recommend to design the software with
security zones in mind, ensuring that sub-routines that are handling
untrusted input cannot terminate the application e.g. because a panic
condition has been triggered. We also recommend to set-up a fuzz-testing
instance with go-fuzz especially for parts that are parsing/handling untrusted
input, in an effort to �ind yet uncaught potentially triggerable panic
conditions. Where feasible, we recommend to safeguard critical functionality
that is handling untrusted data by trying to recover from panic events instead
of terminating the application while still logging the error condition.

2.21 Review the Code Quality recommendations in
Appendix 1

UPDATE: This recommendation has been addressed with the
following statement: See remarks in Appendix 1 for more.

Other comments related to readability and best practices are listed in
Appendix 1

3 System Overview
This section describes the top-level contracts, their inheritance structure,
actors, permissions and contract interactions of the initial system under
audit, not including fundamental changes the system has undergone after

https://github.com/keep-network/keep-core/issues/1556
https://github.com/keep-network/keep-ecdsa/issues/382
https://github.com/ethereum/go-ethereum
https://github.com/dvyukov/go-fuzz

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 24/211

providing the initial report. Please refer to Section 4 - Security Speci�ication
for a security-centric view on the system.

3.1 tBTC

Inheritance Structure (without usingFor)

DepositLog

Deposit

DepositFactoryAuthority

DepositLiquidation DepositStates DepositUtils TBTCConstants

ITBTCSystem

tokenRecipientTBTCToken

ERC20Detailed ERC20VendingMachineAuthority

FeeRebateToken

ERC721Metadata

OutsourceDepositLogging DepositFundingTBTCSystem

Ownable

VendingMachine

TBTCSystemAuthority

TBTCDepositToken DepositFactory

CloneFactoryIBTCETHPriceFeed

DepositRedemption IMedianizerBTCETHPriceFeed

Inheritance graph

Call Graph

Function call graph and contract interaction

System Overview

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/tbtc_surya_inheritance.svg
https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/tbtc_surya_graph_overall.svg

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 25/211

owner

KeepRegistry
ownable

setVendor

(v) getVendor

DepositFactory
TBTCSystemAuthority

CloneFactory

__constr__

setExternalDependencie

createDeposit

Deposit (prx)

__constr__

createNewDeposit

(v) getCurrentState

(v) inActive

(v) remainingTerm

(v) signerFee

(v) lotSizeSatoshis

(v) lotSizeTbtc

(v) utxoSize

Redemption Flow

requestRedemption

transferAndRequestRede

(v) getRedemptionTbtcR

(v) getOwnerRedemption

provideRedemptionSigna

increaseRedemptionFee

provideRedemptionProof

notifySignatureTimeout

notifyRedemptionProofT

Funding Flow

notifySignerSetupFailu

retrieveSignerPubkey

notifyFundingTimeout

provideFundingECDSAFra

notifyFraudFundingTime

provideFraudBTCFunding

provideBTCFundingProof

Active -> Fraud

provideECDSAFraudProof

provideSPVFraudProof

Active -> Liquidation

purchaceSignerBondsAtA

notifyCourtesyCall

exitCourtesyCall

notifyUndercollaterali

notifyCourtesyTimeout

notifyDepositExpiryCou

__fallback__

Deposit (impl)
(masterDepositAddress)

__constr__

delegatecall

mint DOT to msg.sender

[DATA] struct Deposit

TBTCSystem

TBTCToken

TBTCDepositToken

FeeRebateToken

VendingMachine

lotSizeSatoshis

currentState

signerFeeDivisor

undercollateralizedThr

severelyUndercollatera

set on Fraud

liquidationInitiated

courtesyCallInitiated

liquidationInitiator

set when keep requested

keepAddress

signingGroupRequestedA

set when keep returned

fundingProofTimerStart

signingGroupPubkeyX

signingGroupPubkeyY

set by redemption flow

redeemerAddress

redeemerOutputScript

initialRedemptionFeed

withdrawalRequestTime

lastRequestedDigest

set when funded

utxoSizeBytes

fundedAt

utxoOutpoint

approved digests

approvedDigests

struct Deposit

usingFor

TBTC System

- deployer is owner
- sets priceFeed, relay
- sets keepVendor (no more registry being used)
- enables deposits (on initialize; can pause for 10 days) - can frontrun
- sets signer fee deposits (can be called multiple times) - frontrun
- sets log sizes allowed (1BTC should always be available) - frontrun
- sets collateralization params - frontrun

- anyone can request new keep even with hzero value?
- funds stay in TbTCSystem and are note forwarded to keep?

TBTCSystem owner

TBTCSystem
Ownable

DepositLog

__constr__

initialize

(v) getAllowNewDeposit

emergencyPauseNewDepos

resumeNewDeposits

(v) getRemainingPauseT

setSignerFeeDivisor

(v) getSignerFeeDiviso

setLotSizes

(v) getAllowedLotSizes

(v) isAllowedLotSize

setCollateralizationTh

(v) getUndercollateral

(v) getSeverelyUnderco

(v) getInitialCollater

(v) fetchBitcoinPrice

(v) fetchRelayCurrentD

(v) fetchRelayPrevious

requestNewKeep

DepositLog

(v) approvedToLog

logCreated

logRedemptionRequested

logGotRedemptionSignat

logRegisteredPubkey

logSetupFailed

logFraudDuringSetup

logFunded

logCourtesyCalled

logStartedLiquidation

logRedeemed

logLiquidated

logExitedCourtesyCall

approvedToLog

approvedToLog
approvedToLog

approvedToLog
approvedToLog

approvedToLog

approvedToLog
approvedToLog

approvedToLog
approvedToLog

approvedToLog

approvedToLog

approvedToLog is true for everyone atm (not implemented)

owner

owner

owner

owner

owner

onlyOnce

onlyOnce

pauses for 10 days
must be resumed by someone

otherwise stays paused

PriceFeed (Oracle)

owner

BTCETHPriceFeed
ownable

__constr__

initiailze

(v) getPrice

IMedianizer (BTC)
foreign

read

IMedianizer (ETH)
foreign

read

- deployer is owner
- can set arbitrary address of price feed (people should verify this is actually a imedianizer)

- provides BTC2ETH price calculations
- no slippage control
- getPrice can be called without contract being initialized (throws random error)
- problem if BTC ETH flips

PriceFeed Owner

KeepRegistry & Vendor & ECDSA Keeps

Ownable

(v) owner

(v) isOwner

renounceOwnership

transferOwnership
- deployer is owner
- can upgrade, takes effect immediately
- registers Factories
- defines main entry to openKeep

- registerFactory just stores factory address in local arrayVendor Owner

BondedECDSAKeepVendorImplV1
ownable

initialize

(v) initialized

registerFactory

(v) selectFactory

(v) initialized

onlyOperatorCohntractUpgrader

ownable from prxy contract
can be initialized by anyone

-- constructor
!isInitialized

owner

proxy BondedECDSAKeepVendor
ownable

__constructor__

__fallback__

(v) implementation

upgradeTo

delegatecall

KeepBonding

__constructor__

(v) availableUnbondedV

deposit

withdraw

createBond

(v) bondAmount

reassignBond

freeBond

seizeBond

authorizeSortitionPool

(v) hasSecondaryAuthor

stakingContract.authorizer

(clone) prxy -> keep

initialize

....

BondedECDSAKeepFactory
CloneFactory

__constructor__

__fallback__

createSortitionPool

(v) getSortitionPool

registerMemberCandidat

(v) isOperatorRegister

(v) isOperatorUpToDate

updateOperatorStatus

(v) openKeepFeeEstimat

openKeep

setGroupSelectionSeed

deploys new keep from clone()

BondedECDSAKeep

initialize

submitPublicKey

(v) getPublicKey

(v) checkBondAmount

seizeSignerBonds

submitSignatureFraud

sign

(v) isAwaitingSignatur

submitSignature

closeKeep

distributeETHToMembers

distributeERC20ToMembe

(V) getMemberETHBalanc

withdraw

calls

delegatecall

Keep Owner

Keep Member

onlyMember

This is the deposit contract

set on init (array of members)

!! funds sent to randombeacon contract?
 --> sends all ffunds

DepositFactory

onlyTbtcSystem
DepositCreator

deployer sets tbtcsystem address

tbtcsystem:
 - sets implementation for proxies
 - sets tbtcsystem, tbtctoken, DOT, FRT, VendingMachine, KeepThreshhold, keepSize
- creates a clone of Deposit() (prx) and calls createNewDeposit() on it
- mints a TBTCDepositToken == ERC721 to deposit creator with .id = deposit address
- createDeposit forwards all funds to Deposit (prx).createNewDeposit

Deposit Libraries

DepositRedemption

transferAndRequestRede

requestRedemption

provideRedemptionSigna

increaseREdemptionFee

(v) checkRelationshipT

provideRedemptionProof

(v) redemptionTransact

notifySignatureTimeout

notifyRedemptionProofT

DepositFunding

fundingTeardown

fundingFraudTeardown

createNewDeposit

partiallySlashForFraudInFund

distributeSignerBondsToFunde

notifySignerSetupFailure

retrieveSignerPubkey

notifyFundingTimeout()

provideFundingECDSAFraudProo

notifyFraudFundingTimeout

provideFraudBTCFundingProof

provideBTCFundingProof

DepositUtils

(v) currentBlockDiffic

(v) previousBlockDiffi

(v) evaluateProofDiffi

(v) checkProofFromTxd

(v) findAndParseFundin

(v) validateAndParseFu

(v) remainingTerm

(v) actionValue

(v) signerFee

(v) beneficiaryReward

(v) redemptionTBTCAmou

(v) liquidationTBTCAmo

(v) auctionTBTCAmount

(v) determineCompressi

(v) compressPubkey

(v) signerPubkey

(v) signerPKH

(v) utxoSize

(v) fetchBitcoinPrice

(v) fetchBondAmount

(v) bytes8LEToUint

(v) wasDigestApprovedF

(v) feeRebateTokenHold

(v) depositHolder

redemptionTeardown

seizeSignerBonds

distributeFeeRebate

pushFundstoKeepGroup

OutsourceDepositLogging

logCreated

logRedemptionRequested

logGotRedemptionSignat

logRegisteredPubkey

logSetupFailed

logFraudDuringSetup

logFunded

LogCourtesyCalled

logStartedLiquidation

logRedeemed

logLiquidated

logExitedCourtesyCall

inRedeemableState

inAwaitingWithdrawalSignature

inAwaitingSignerSetup

inAwaitingSignerSetup

inFraudAwaitingBTCFundingProof

inFraudAwaitingBTCFundingProof
inAwaitingBTCFundingProof

inAwaitingBTCFundingProof
inAwaitingBTCFundingProof

DepositStates

(v) inFunding

(v) inFundingFailure

(v) inSignerLiquidation

(v) inRedemption

(v) inEndState

(v) inRedeemableState

(v) inStart

(v) inAwaitingSignerSetup

(v) inAwaitingBTCfundingproof

(v) inFraudAwaitingBTCFunding

(v) inFailedSetup

(v) inActive

(v) inAwaitingWithdrawalSigna

(v) inAwaitingWithdrawalProof

(v) inRedeemed

(v) inCourtesyCall

(v) inFraudLiquidationInProgr

(v) inLiquidationInProgress

(v) inLiquidated

setAwaitingSignerSetup

setAwaitingBTCFundingProof

setFraudAwaitingBTCFundingPro

setFailedSetup

setActive

setAwaitingWithdrawalSignatur

setAwaitingWithdrawalProof

setRedeemed

setCourtesyCall

setFraudLiquidationInProgress

setLiquidationInProgress

setLiquidated

DepositLiquidation

submitSignatureFraud

(v) getCollateralizationPercentage

startSignerFraudLiquirdation

startSignerAbortLiquidation

provideECDSAFraudProof

provideSPVFraudProof

purchaseSignerBondsAtAuction

notifyCourtesyCall

exitCourtesyCall

notifyUndercollateralizedLiquidation

notifyCourtesyTimeout

notifyDepositExpiryCourtesyCall

not (funding | fundingFailure |
signerLiquidation | endState)

inSignerLiquidation

inActive
inCourtesyCall

inRedeemableState

inCourtesyCall

inActive

inRedeemableState

inAwaitingWithdrawalProof

inRedemption

inAwaitingWithdrawalSignature

inAwaitingWithdrawalProof

inStart

state not transitions not enforced when setting state

never used

never used

onlyFactory

- factory clones + initializes + createNewDepoist in one step
- anyone can call most of the methods
 - system kind of relies on that someone moves deposit to next state
- system variables are set. cannot be changed.
 - might create a state where some deposits refer an old tbtcsystem?

Signers

TBTCToken

TBTCToken
ERC20Detailed

ERC20
VendingMachineAuthority

__constr__

mint

burnFrom

burn

approveAndCall

VendingMachineAuthority

__constr__

ERC20Detailed

__constr__

(v) name

(v) symbol

(v) decimals

ERC20Detailed

(v) totalSupply

(v) balanceOf

transfer

(v) allowance

approve

transferFrom

increaseAllowance

decreaseAllowance

VendingMachine

- anyone can deploy
- vendingMachine address is set in constructor
- no ACL! - anyone can burn

onlyVendingMachine

sets vendingmachine address for ACL

caller provided
address

VendingMachine

VendingMachine
TBTCSystemAuthority

__constr__

setExternalAddresses

(v) isQualified

tbtcToDot

dotToBtc

unqualifiedDepositToTb

tbtcToBtc

Deployer

- Deployer sets system address
- TbtcSystem sets
 - tbtctoken
 - tbtcdeposittoken
 - feeRebateToken

onlyTbtcSystem

allowed vending machine for token

mints TBTCToken
burnsFrom TBTCToken

Deposit Owner Token & Fee Rebate Token

ERC721Metadata

__constr__

(v) name

(v) symbol

(v) tokenURI

ERC165

(v) supportsInterface

ERC721

__constr__

(v) balanceOf

(v) ownerOf

approve

(v) getApproved

(v) setApprovalForAll

(v) isApprovedForAll

transferFrom

safeTransferFrom

TBTCDepositToken
ERC721Metadata

__constr__

mint

(v) exists

approveAndCall

Fee Rebate Token
(FRT)

ERC721Metadata

__constr__

mint

(v) exists

onlyVendingMachine

onlyFactory
- minted by DepositFactory
- burned by DepositLiquidation

- minted by VendingMachine

caller provided
address

assuming this is s the entrypoint, who manages the system/token/etc addresses?

main entrypoint for user?

Inherited Contract

(v) viewOnly method

stateChanging method

Proxied Contract
Delegatecall

(v) viewOnly method

stateChanging method

Library
inlined / delegatecall

(v) viewOnly method

stateChanging method

Contract
inherited contract

(v) viewOnly method

stateChanging method

External Contract
foreign / untrusted?

method

ACL/requirement

anyone can call this method

calls

refs
delegatecalls

Implementation

(v) viewOnly method

stateChanging method

LEGEND

bitcoin-spv

checkBitcoinSigsDelegate

(v) accountFromPubkey

(v) p2wpkhFromPubkey

(v) checkSig

(v) checkBitcoinSig

(v) isSha256Preimage

(v) isKeccak256Preimag

(v) oneInputOneOutputS

CheckBitcoinSigs

BTCUtilsDelegate

(v) determineVarIntDataLeng

(v) reverseEndianness

(v) bytesToUint

(v) lastBytes

(v) hash160

(v) hash256

(v) extractInputAtIndex

(v) isLegacyInput

(v) determineInputLength

(v) extractSequenceLELegacy

(v) extractSequenceLegacy

(v) extractScriptSig

(v) extractScriptSigLen

(v) extractSequenceLEWitnes

(v) extractOutpoint

(v) extractInputTxIdLE

(v) extractInputTxId

(v) extractTxIndexLE

(v) extractTxIndex

(v) determineOutputLength

(v) extractOutputAtIndex

(v) extractOutputScriptLen

(v) extractValueLE

(v) extractValue

(v) extractOpReturnData

(v) extractHash

(v) validateVin

(v) validateVout

(v) extractMerkleRootLE

(v) extractMerkleRootBE

(v) extractTarget

(v) calculateDifficulty

(v) extractPrevBlockLE

(v) extractPrevBlockBE

(v) extractTimestampLE

(v) extractTimestamp

(v) extractDifficulty

(v) _hash256MerkleStep

(v) verifyHash256Merkle

(v) retargetAlgorithm

BTCUtils

ValidateSPVDelegate

(v) getErrBadLength

(v) getErrInvalidChain

(v) getErrLowWork

(v) prove

(v) calculateTxId

(v) parseInput

(v) parseOutput

(v) parseHeader

(v) validateHeaderChain

(v) validateHeaderWork

(v) validateHeaderPrevHash

ValidateSPV

usingFor
bytes

mints FRT

- minted by VendingMachine
- burned by VendingMachine
- burned by DepositRedemption

keep-network

- pay back TBTC and receive DepositToken
- trade in DepositToken and receive TBTCToken
- qualify Deposit (spv proof) and mint TBTCToken
- redeem deposit by purchasing DepositToken with TBTCToken and use DepositToken tto redeem corresponding Deposit

notifyRedemptionProofTimeout

notifyRedemptionProofTimeout

!isInitialized

onlyOwner

onlyOwneronlyWhenActive

onlyMember

onlyOwneronlyWhenActive

onlyRandomBeacon

Vendor.selectFactory

Governance

- deployer is owner
- registers Vendors

- can frontrun
- no events on registry change
- can overwrite entries
- can set entries to 0

why payable?

ACL?

Sortition Pools

SortitionPoolFactory

createSortitionPool

SortitionPool

__constructor__

selectGroup

deploys

BondedSortitionPoolFactory

createSortitionPool

BondedSortitionPool

__constructor__

selectSetGroup

notused?

PanicButton

RegistryKeeper

tBTC System Outline

The following components are referencing contracts in one of the other
repositories that are in scope for the audit:

Contract Repository

DepositFunding bitcoin-spv

DepositLiquidation bitcoin-spv

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/tm_thesis_tbtc.svg

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 26/211

Contract Repository

DepositRedemption bitcoin-spv

DepositUtils bitcoin-spv

TBTCSystem keep-tecdsa

Deposits
Deposit

DepositFactoryAuthority

📚DepositRedemption for DepositUtils.Deposit
📚DepositFunding for DepositUtils.Deposit
📚DepositLiquidation for DepositUtils.Deposit
📚DepositUtils for DepositUtils.Deposit
📚DepositStates for DepositUtils.Deposit

DepositUtils.Deposit self

__constructor__()
💰__fallback__()
🔍getCurrentState()
🔍inActive()
🔍remainingTerm()
🔍signerFee()
🔍lotSizeSatoshis()
🔍lotSizeTbtc()
🔍utxoSize()
💰createNewDeposit()
requestRedemption()
transferAndRequestRedemption()
🔍getRedemptionTbtcRequirement()
🔍getOwnerRedemptionTbtcRequirement()
provideRedemptionSignature()
increaseRedemptionFee()
provideRedemptionProof()
notifySignatureTimeout()
notifyRedemptionProofTimeout()
notifySignerSetupFailure()
retrieveSignerPubkey()
notifyFundingTimeout()
provideFundingECDSAFraudProof()
notifyFraudFundingTimeout()
provideFraudBTCFundingProof()
provideBTCFundingProof()
provideECDSAFraudProof()
provideSPVFraudProof()
purchaseSignerBondsAtAuction()
notifyCourtesyCall()
exitCourtesyCall()
notifyUndercollateralizedLiquidation()
notifyCourtesyTimeout()
notifyDepositExpiryCourtesyCall()

DepositFactoryAuthority DepositRedemption DepositFunding DepositLiquidation DepositUtils DepositStates

DepositFactory

CloneFactory
TBTCSystemAuthority

address masterDepositAddress
address tbtcSystem
address tbtcToken
address tbtcDepositToken
address feeRebateToken
address vendingMachine
uint256 keepThreshold
uint256 keepSize

__constructor__()
setExternalDependencies()
💰createDeposit()

CloneFactory

createClone()
🔍isClone()

TBTCSystemAuthority

for DepositUtils.Deposit for DepositUtils.Deposit for DepositUtils.Deposit for DepositUtils.Deposit for DepositUtils.Deposit

deploys proxy

tBTC Deposit Contract

main entry point for users to mint TBTC by creating a TBTCDepositToken

tracked deposit.

deposits can be in various states starting with a funding �low that
ultimately reached the active state, handling, and reporting of timeouts
and frauds as well as undercollateralization. A deposit can also be
redeemed or liquidated.

TBTCSystem

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/tbtc_deposit.svg

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 27/211

keepVendor priceFeed

relay

TBTCSystem

Ownable
ITBTCSystem
DepositLog

📚SafeMath for uint256

bool _initialized
uint256 pausedTimestamp
uint256 pausedDuration
address keepVendor
address priceFeed
address relay
bool allowNewDeposits
uint256 signerFeeDivisor
uint128 initialCollateralizedPercent
uint128 undercollateralizedThresholdPercent
uint128 severelyUndercollateralizedThresholdPercent
uint256 lotSizesSatoshis

__constructor__()
initialize()
🔍getAllowNewDeposits()
emergencyPauseNewDeposits()
resumeNewDeposits()
🔍getRemainingPauseTerm()
setSignerFeeDivisor()
🔍getSignerFeeDivisor()
setLotSizes()
🔍getAllowedLotSizes()
🔍isAllowedLotSize()
setCollateralizationThresholds()
🔍getUndercollateralizedThresholdPercent()
🔍getSeverelyUndercollateralizedThresholdPercent()
🔍getInitialCollateralizedPercent()
🔍fetchBitcoinPrice()
🔍fetchRelayCurrentDifficulty()
🔍fetchRelayPreviousDifficulty()
createNewDepositFeeEstimate()
💰requestNewKeep()

Ownable ITBTCSystem DepositLog SafeMath

for uint256

tBTC System Contract

emits log events from Deposit contracts

holds system variables

is called when creating a new deposit to request a new keep (and pay the
keep)

Tokens

FeeRebateToken

ERC721Metadata
VendingMachineAuthority

__constructor__()
mint()
🔍exists()

ERC721Metadata VendingMachineAuthority

TBTCDepositToken

ERC721Metadata
DepositFactoryAuthority

__constructor__()
mint()
🔍exists()
approveAndCall()

tokenRecipient

receiveApproval()
receiveApproval()

DepositFactoryAuthority

TBTCToken

ERC20Detailed
ERC20
VendingMachineAuthority

__constructor__()
mint()
burnFrom()
burn()
approveAndCall()

ERC20DetailedERC20

receiveApproval

receiveApproval

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/tbtc_tbtcsystem.svg
https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/tbtc_tokens.svg

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 28/211

tBTC Token Contracts

TBTCDepositToken - a standard NFT (ERC721) that tracks a deposit to the tBTC

system. Can be exchanged for TBTCToken (ERC20). approveAndCall calls out
to token recipient.

FeeRebateToken - a standard NFT (ERC721) …

TBTCToken - a standard ERC20 token and the system currency. TBTC is
backed by BTC collateral. approveAndCall calls out to token recipient.

VendingMachine

VendingMachine

TBTCSystemAuthority

📚SafeMath for uint256

TBTCToken tbtcToken
TBTCDepositToken tbtcDepositToken
FeeRebateToken feeRebateToken

__constructor__()
setExternalAddresses()
🔍isQualified()
tbtcToTdt()
tdtToTbtc()
unqualifiedDepositToTbtc()
tbtcToBtc()

TBTCSystemAuthority SafeMath

for uint256

tBTC VendingMachine Contract

can be used to redeem TBTC for TBTCDepositToken .

can be used to redeem TBTCDepositToken for TBTC .

can be used to redeem BTC for TBTC via the deposit redemption �low.

Oracle

3.2 bitcoin-spv

Inheritance Structure (without usingFor)

BTCUtils BytesLib SafeMath BTCUtilsDelegate CheckBitcoinSigs CheckBitcoinSigsDelegate ValidateSPV ValidateSPVDelegate

Inheritance graph

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/tbtc_vendingmachine.svg
https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/btcspv_surya_inheritance.svg

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 29/211

Call Graph

BTCUtils (lib)

BytesLib (lib)

SafeMath (lib)

BTCUtilsDelegate (lib)

CheckBitcoinSigs (lib)

CheckBitcoinSigsDelegate (lib)

ValidateSPV (lib)

ValidateSPVDelegate (lib)

_pubkey

_proof

_input

_output

_header

_target

Legend

determineVarIntDataLength

reverseEndianness

reverseUint256

bytesToUint

lastBytes

slice

hash160
hash256

hash256View

extractInputAtIndex

determineInputLength

isLegacyInput

keccak256Slice

extractScriptSigLen

extractSequenceLELegacy

extractSequenceLegacy

extractScriptSig

extractSequenceLEWitnessextractSequenceWitness

extractOutpoint

extractInputTxIdLEextractInputTxId

toBytes32

extractTxIndexLEextractTxIndex

determineOutputLength

extractOutputAtIndex extractOutputScriptLen

extractValueLEextractValue

extractOpReturnData

extractHash

validateVin

validateVout

extractMerkleRootLEextractMerkleRootBE

extractTarget

calculateDifficulty

div

extractPrevBlockLEextractPrevBlockBE

extractTimestampLEextractTimestamp
extractDifficulty

_hash256MerkleStep

verifyHash256Merkle

retargetAlgorithm

sub

mul

concat

concatStorage

toAddress

toUint

equal

equalStorage

add

determineVarIntDataLength

reverseEndianness

bytesToUint

lastBytes

hash160

hash256

extractInputAtIndex

isLegacyInput

determineInputLength

extractSequenceLELegacy

extractSequenceLegacy

extractScriptSig

extractScriptSigLen

extractSequenceLEWitness

extractSequenceWitness

extractOutpoint

extractInputTxIdLE

extractInputTxId

extractTxIndexLE

extractTxIndex

determineOutputLength

extractOutputAtIndex

extractOutputScriptLen

extractValueLE

extractValue

extractOpReturnData

extractHash

validateVin

validateVout

extractMerkleRootLE

extractMerkleRootBE

extractTarget

calculateDifficulty

extractPrevBlockLE

extractPrevBlockBE

extractTimestampLE

extractTimestamp

extractDifficulty

_hash256MerkleStep

verifyHash256Merkle

retargetAlgorithm

accountFromPubkeyp2wpkhFromPubkey

slice

checkSig

checkBitcoinSig

isSha256Preimage

isKeccak256Preimage wpkhSpendSighash

wpkhToWpkhSighash

oneInputOneOutputSighash

accountFromPubkey

p2wpkhFromPubkey

checkSig

checkBitcoinSig

isSha256Preimage

isKeccak256Preimage

oneInputOneOutputSighash

getErrBadLength

getErrInvalidChain

getErrLowWork

prove

verifyHash256Merkle

calculateTxId

parseInput

extractSequenceLegacy

extractSequenceWitness

extractInputTxId

extractTxIndex

parseOutput

extractValue

extractOpReturnData

parseHeader

hash256

extractPrevBlockLE

extractMerkleRootLE

extractTimestamp

extractTarget

validateHeaderChain validateHeaderPrevHash

hash256View

calculateDifficulty

validateHeaderWork

getErrBadLength

getErrInvalidChain

getErrLowWork

prove

calculateTxId

parseInput

parseOutput

parseHeader

validateHeaderChain

validateHeaderWork

validateHeaderPrevHash

Internal Call
External Call

Defined Contract
Undefined Contract

Function call graph and contract interaction

Contracts

ValidateSPV

📚BTCUtils for uint256
📚BytesLib for bytes
📚SafeMath for uint256

uint256 ERR_BAD_LENGTH
uint256 ERR_INVALID_CHAIN
uint256 ERR_LOW_WORK

🔍getErrBadLength()
🔍getErrInvalidChain()
🔍getErrLowWork()
🔍prove()
🔍calculateTxId()
🔍parseInput()
🔍parseOutput()
🔍parseHeader()
🔍validateHeaderChain()
🔍validateHeaderWork()
🔍validateHeaderPrevHash()

ValidateSPVDelegate

🔍getErrBadLength()
🔍getErrInvalidChain()
🔍getErrLowWork()
🔍prove()
🔍calculateTxId()
🔍parseInput()
🔍parseOutput()
🔍parseHeader()
🔍validateHeaderChain()
🔍validateHeaderWork()
🔍validateHeaderPrevHash()

CheckBitcoinSigsDelegate

🔍accountFromPubkey()
🔍p2wpkhFromPubkey()
🔍checkSig()
🔍checkBitcoinSig()
🔍isSha256Preimage()
🔍isKeccak256Preimage()
🔍oneInputOneOutputSighash()

CheckBitcoinSigs

📚BytesLib for bytes
📚BTCUtils for bytes

🔍accountFromPubkey()
🔍p2wpkhFromPubkey()
🔍checkSig()
🔍checkBitcoinSig()
🔍isSha256Preimage()
🔍isKeccak256Preimage()
🔍wpkhSpendSighash()
🔍wpkhToWpkhSighash()
🔍oneInputOneOutputSighash()

BTCUtilsDelegate

🔍determineVarIntDataLength()
🔍reverseEndianness()
🔍bytesToUint()
🔍lastBytes()
🔍hash160()
🔍hash256()
🔍extractInputAtIndex()
🔍isLegacyInput()
🔍determineInputLength()
🔍extractSequenceLELegacy()
🔍extractSequenceLegacy()
🔍extractScriptSig()
🔍extractScriptSigLen()
🔍extractSequenceLEWitness()
🔍extractSequenceWitness()
🔍extractOutpoint()
🔍extractInputTxIdLE()
🔍extractInputTxId()
🔍extractTxIndexLE()
🔍extractTxIndex()
🔍determineOutputLength()
🔍extractOutputAtIndex()
🔍extractOutputScriptLen()
🔍extractValueLE()
🔍extractValue()
🔍extractOpReturnData()
🔍extractHash()
🔍validateVin()
🔍validateVout()
🔍extractMerkleRootLE()
🔍extractMerkleRootBE()
🔍extractTarget()
🔍

callscalls

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/btcspv_surya_graph.svg
https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/btcspv_contract.svg

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 30/211

BytesLib

🔍concat()
concatStorage()
🔍slice()
🔍toAddress()
🔍toUint()
🔍equal()
🔍equalStorage()
🔍toBytes32()
🔍keccak256Slice()

SafeMath

🔍mul()
🔍div()
🔍sub()
🔍add()

BTCUtils

📚BytesLib for bytes
📚SafeMath for uint256

uint256 DIFF1_TARGET
uint256 RETARGET_PERIOD
uint256 RETARGET_PERIOD_BLOCKS

🔍determineVarIntDataLength()
🔍reverseEndianness()
🔍reverseUint256()
🔍bytesToUint()
🔍lastBytes()
🔍hash160()
🔍hash256()
🔍hash256View()
🔍extractInputAtIndex()
🔍isLegacyInput()
🔍determineInputLength()
🔍extractSequenceLELegacy()
🔍extractSequenceLegacy()
🔍extractScriptSig()
🔍extractScriptSigLen()
🔍extractSequenceLEWitness()
🔍extractSequenceWitness()
🔍extractOutpoint()
🔍extractInputTxIdLE()
🔍extractInputTxId()
🔍extractTxIndexLE()
🔍extractTxIndex()
🔍determineOutputLength()
🔍extractOutputAtIndex()
🔍extractOutputScriptLen()
🔍extractValueLE()
🔍extractValue()
🔍extractOpReturnData()
🔍extractHash()
🔍validateVin()
🔍validateVout()
🔍extractMerkleRootLE()
🔍extractMerkleRootBE()
🔍extractTarget()
🔍calculateDifficulty()
🔍extractPrevBlockLE()
🔍extractPrevBlockBE()
🔍extractTimestampLE()
🔍extractTimestamp()
🔍extractDifficulty()
🔍_hash256MerkleStep()
🔍verifyHash256Merkle()
🔍retargetAlgorithm()

🔍calculateDifficulty()
🔍extractPrevBlockLE()
🔍extractPrevBlockBE()
🔍extractTimestampLE()
🔍extractTimestamp()
🔍extractDifficulty()
🔍_hash256MerkleStep()
🔍verifyHash256Merkle()
🔍retargetAlgorithm()

for bytes for uint256

for uint256

for bytes for uint256for bytes

for bytes calls

bitcoin-spv Outline

bitcoin-spv is a low-level toolkit for working with Bitcoin from other
blockchains. It supplies a set of pure functions that can be used to

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/btcspv_contract.svg

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 31/211

validate almost all Bitcoin transactions and headers, as well as
higher-level functions that can evaluate header chains and
transaction inclusion proofs.

The bitcoin-spv project is utilized by tBTC deposits in the broader tBTC and
keep system. All contracts are library contracts and the contracts with the
*Delegate su�ix are used to ensure the library is deployed and delegatecall ’d

instead of having the compiler inline the functionality. There are three main
contracts, BTCUtils , CheckBitcoinSigs , and ValidateSPV .

3.3 keep-tecdsa

Inheritance Structure (without usingFor)

BondedECDSAKeep

IBondedECDSAKeep

BondedECDSAKeepFactory

IBondedECDSAKeepFactory CloneFactory

KeepBonding BondedECDSAKeepVendor

Ownable

BondedECDSAKeepVendorImplV1

IBondedECDSAKeepVendor

Inheritance graph

Call Graph

BondedECDSAKeep

BondedECDSAKeepFactory

KeepBonding

IBondedECDSAKeep

IBondedECDSAKeepFactory (iface)

CloneFactory

BondedECDSAKeepVendor

BondedECDSAKeepVendorImplV1

IBondedECDSAKeepVendor

dividend

_value

IERC20

TokenStaking

members

BondedSortitionPoolFactory BondedSortitionPool

IRandomBeacon

_bond

Registry

Legend

initialize

TokenStaking

submitPublicKey

hasKeyGenerationTimedOut

hasMemberSubmittedPublicKey

ConflictingPublicKeySubmitted

PublicKeyPublished

getPublicKey

checkBondAmount bondAmount

seizeSignerBonds

seizeBond

submitSignatureFraud

publicKeyToAddress

sign

isSigningInProgress

SignatureRequested

isAwaitingSignature

submitSignature

hasSigningTimedOut

SignatureSubmitted

closeKeep

freeMembersBonds

KeepClosed

freeBond

distributeETHToMembers

ETHDistributedToMembers

add

distributeERC20ToMembers

IERC20

div

mod

transferFrom

magpieOf

getMemberETHBalance

withdraw

onlyOwner

onlyMember

contains

onlyWhenActive

<Constructor> BondedSortitionPoolFactory

IRandomBeacon<Fallback>

createSortitionPool

IStaking

IBonding

SortitionPoolCreated

createSortitionPool

getSortitionPool

registerMemberCandidate

BondedSortitionPool

isOperatorInPool

joinPool

isOperatorRegistered

isOperatorRegistered

isOperatorUpToDate getSortitionPoolForOperator

isOperatorUpToDate

updateOperatorStatus

updateOperatorStatus

openKeepFeeEstimate

entryFeeEstimate

openKeep

newGroupSelectionSeed

createClone

BondedECDSAKeepCreated

createBond

add

setGroupSelectionSeed

onlyRandomBeacon

availableUnbondedValue

<Constructor>

Registry

TokenStaking

hasSecondaryAuthorization

isAuthorizedForOperator

isApprovedOperatorContract

deposit

withdraw

reassignBond

authorizeSortitionPoolContract

authorizerOf

getPublicKey

checkBondAmount

sign

distributeETHToMembers

distributeERC20ToMembers

seizeSignerBonds

submitSignatureFraud

openKeep

openKeepFeeEstimate

createClone

isClone

<Constructor> setImplementation

implementation<Fallback>

upgradeTo Upgraded

initialize

initialized

Registry

registerFactory

selectFactory

onlyOperatorContractUpgrader

operatorContractUpgraderForselectFactory

Internal Call
External Call

Defined Contract
Undefined Contract

Function call graph and contract interaction

Contracts

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/keep-tecdsa_surya_inheritance.svg
https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/keep-tecdsa_surya_graph.svg

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 32/211

keepFactoryregistryAddressstakingContractAddress operator bondCreator

authorizedSortitionPool destination holder

owner

BondedECDSAKeepVendor

Ownable

bytes32 implementationPosition

__constructor__()
🔍implementation()
setImplementation()
💰__fallback__()
upgradeTo()

Ownable

BondedECDSAKeepVendorImplV1

IBondedECDSAKeepVendor
Ownable

string=>bool _initialized
Registry registry
address keepFactory

initialize()
🔍initialized()
registerFactory()
🔍selectFactory()

IBondedECDSAKeepVendor

BondedECDSAKeepFactory

IBondedECDSAKeepFactory
CloneFactory

📚AddressArrayUtils for address
📚SafeMath for uint256

address masterBondedECDSAKeepAddress
address=>address candidatesPools
uint256 groupSelectionSeed
BondedSortitionPoolFactory sortitionPoolFactory
address tokenStaking
KeepBonding keepBonding
IRandomBeacon randomBeacon
uint256 minimumStake
uint256 minimumBond
uint256 callbackGas
uint256 subsidyPool

__constructor__()
💰__fallback__()
createSortitionPool()
🔍getSortitionPool()
registerMemberCandidate()
🔍isOperatorRegistered()
🔍isOperatorUpToDate()
updateOperatorStatus()
🔍getSortitionPoolForOperator()
🔍openKeepFeeEstimate()
💰openKeep()
newGroupSelectionSeed()
setGroupSelectionSeed()

IBondedECDSAKeepFactory CloneFactory

AddressArrayUtils SafeMath

KeepBonding

Registry registry
TokenStaking stakingContract
address=>uint256 unbondedValue
bytes32=>uint256 lockedBonds
address=>mapping address=>bool authorizedPools

__constructor__()
🔍availableUnbondedValue()
💰deposit()
withdraw()
createBond()
🔍bondAmount()
reassignBond()
freeBond()
seizeBond()
authorizeSortitionPoolContract()
🔍hasSecondaryAuthorization()

BondedECDSAKeep

IBondedECDSAKeep

📚AddressArrayUtils for address
📚SafeMath for uint256

bool isInitialized
address owner
address members
uint256 honestThreshold
bytes publicKey
bytes32 digest
bytes32=>bool digests
uint256 keyGenerationTimeout
uint256 keyGenerationStartTimestamp
uint256 signingTimeout
uint256 signingStartTimestamp
address=>bytes submittedPublicKeys
address=>uint256 memberETHBalances
bool isActive
TokenStaking tokenStaking
KeepBonding keepBonding

initialize()
submitPublicKey()
🔍hasKeyGenerationTimedOut()
🔍hasMemberSubmittedPublicKey()
🔍getPublicKey()
🔍checkBondAmount()
seizeSignerBonds()
submitSignatureFraud()
sign()
🔍isAwaitingSignature()
submitSignature()
🔍isSigningInProgress()
🔍hasSigningTimedOut()
closeKeep()
freeMembersBonds()
🔍publicKeyToAddress()
💰distributeETHToMembers()
distributeERC20ToMembers()
🔍getMemberETHBalance()
withdraw()

IBondedECDSAKeep

implementation

for address for uint256

for address for uint256

deploys (clonefactory)

createsBond

interacts

Contract System Outline

3.4 sortition-pools

Inheritance Structure (without usingFor)

Position StackLib

SortitionTree

Branch Leaf SortitionPoolFactorySortitionPool

AbstractSortitionPool

GasStation

RNG Interval DynamicArray IStaking BondedSortitionPoolFactoryBondedSortitionPool IBonding IBondedSortitionPool ISortitionPool

Inheritance graph

Call Graph

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/keep-tecdsa_contract_overview.svg
https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/sortition_pools_surya_inheritance.svg

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 33/211

Position (lib)

StackLib (lib)

SortitionTree

Branch (lib)

Leaf (lib)

SortitionPoolFactory

SortitionPool

AbstractSortitionPool

GasStation

RNG (lib)

Interval (lib)

DynamicArray (lib)

IStaking (iface)

Migrations

BondedSortitionPoolFactory

BondedSortitionPool

IBonding (iface)

IBondedSortitionPool (iface)

ISortitionPool (iface)

position

flaggedLeaf

parent

treeNode

newNode

_root

currentNode

currentPositionroot

leaf
RNG.State

DynamicArray.AddressArray

DynamicArray.UintArray

Legend

slot

parent

child

setFlag

unsetFlag

stackPeek

stackPush

stackPop

getSize

<Constructor>

isOperatorRegistered

getFlaggedOperatorLeaf

operatorsInPool

insertOperator
setLeaf

getEmptyLeaf

make

setFlag

removeOperator

removeOperatorLeaf

removeLeaf

unsetFlag

updateOperator

updateLeaf

weight

setWeight

slot

parent

setSlot

sumWeight

setSlot

pickWeightedLeafWithIndex

sumWeight

pickWeightedSlot

child

pickWeightedLeaf

leavesInStacktotalWeight

sumWeight

slotShift

getSlot

clearSlot

setSlot

sumWeight

pickWeightedSlot

operator

creationBlock

createSortitionPool

<Constructor> StakingParams

PoolParams

selectGroup

initializeSelectionParams

generalizedSelectGroup

SelectionParamsgetEligibleWeight

queryEligibleWeightdecideFate

operator

creationBlock

weight

operatorInitBlocks

isOperatorEligible getEligibleWeight

isOperatorInPool

isOperatorUpToDate

getPoolWeight

joinPool depositGas

updateOperatorStatus

releaseGas

generalizedSelectGroup

decideFate

initialize

addressArray

sumWeight

generateNewIndex

addSkippedInterval

reseed

removeInterval

arrayPush

gasDepositSize

depositGas

setDeposit

releaseGas

gasDepositSize

reseed

State

uintArray

retryIndex

generateNewIndex

skip

addSkippedInterval

insert

make

removeInterval

remapIndices

bitsRequired

truncate

getIndex

getUniqueIndex

convert

index

arrayPush

setIndex

opWeight

_allocateAddresses

AddressArray

_allocateUints

UintArray

arrayPush

_copy

_push

arrayPop _pop

eligibleStake

<Constructor>

restricted

setCompletedupgrade

createSortitionPool

<Constructor> StakingParams

BondingParams

PoolParams

selectSetGroup initializeSelectionParams SelectionParams

availableUnbondedValue

selectSetGroup

isOperatorEligible

isOperatorInPool

isOperatorUpToDate

joinPool

updateOperatorStatus

selectGroup

isOperatorEligible

isOperatorInPool

isOperatorUpToDate

joinPool

updateOperatorStatus

Internal Call
External Call

Defined Contract
Undefined Contract

Function call graph and contract interaction

Contracts

operatoraddr item operatorContract

bondCreator authorizedSortitionPool

BondedSortitionPoolFactory

createSortitionPool()

BondedSortitionPool

AbstractSortitionPool

📚DynamicArray for DynamicArray.AddressArray
📚RNG for RNG.State

BondingParams bonding

AbstractSortitionPool

📚DynamicArray for DynamicArray.AddressArray
📚RNG for RNG.State

BondingParams bonding

__constructor__()
selectSetGroup()
initializeSelectionParams()
🔍getEligibleWeight()
🔍decideFate()
__constructor__()
selectSetGroup()
initializeSelectionParams()
🔍getEligibleWeight()
🔍decideFate()

AbstractSortitionPool

SortitionTree
GasStation

📚Leaf for uint256
📚Position for uint256
📚DynamicArray for DynamicArray.AddressArray
📚RNG for RNG.State

uint256 INIT_BLOCKS
uint256 GAS_DEPOSIT_SIZE
StakingParams staking
PoolParams poolParams

🔍operatorInitBlocks()
🔍isOperatorEligible()
🔍isOperatorInPool()
🔍isOperatorUpToDate()
🔍getPoolWeight()
joinPool()
updateOperatorStatus()
generalizedSelectGroup()
🔍getEligibleWeight()
🔍decideFate()
🔍gasDepositSize()

DynamicArray

🔍uintArray()
🔍addressArray()
🔍convert()
🔍arrayPush()
🔍arrayPop()
🔍_allocateUints()
🔍_allocateAddresses()
🔍_copy()
🔍_push()
🔍_pop()

RNG

📚DynamicArray for DynamicArray.UintArray

uint256 SLOT_BITS
uint256 LEVELS
uint256 POSITION_BITS

🔍initialize()
🔍reseed()
🔍retryIndex()
🔍addSkippedInterval()
🔍removeInterval()
🔍generateNewIndex()
🔍bitsRequired()
🔍truncate()
🔍getIndex()
🔍getUniqueIndex()

GasStation

address=>mapping uint256=>uint256 gasDeposits

depositGas()
releaseGas()
setDeposit()
🔍gasDepositSize()

Leaf

uint256 SLOT_BITS
uint256 SLOT_COUNT
uint256 SLOT_WIDTH
uint256 SLOT_MAX
uint256 WEIGHT_WIDTH
uint256 WEIGHT_MAX
uint256 BLOCKHEIGHT_WIDTH
uint256 BLOCKHEIGHT_MAX

🔍make()
🔍operator()
🔍creationBlock()
🔍weight()
🔍setWeight()

Interval

📚DynamicArray for DynamicArray.UintArray

uint256 SLOT_BITS
uint256 SLOT_COUNT
uint256 SLOT_WIDTH
uint256 SLOT_MAX
uint256 WEIGHT_WIDTH
uint256 WEIGHT_MAX
uint256 START_INDEX_WIDTH
uint256 START_INDEX_MAX
uint256 START_INDEX_SHIFT

🔍make()
🔍opWeight()
🔍index()
🔍setIndex()
🔍insert()
🔍skip()
🔍remapIndices()

StackLib

🔍stackPeek()
stackPush()
stackPop()
🔍getSize()

Branch

uint256 SLOT_BITS
uint256 SLOT_COUNT
uint256 SLOT_WIDTH
uint256 LAST_SLOT
uint256 SLOT_MAX

🔍slotShift()
🔍getSlot()
🔍clearSlot()
🔍setSlot()
🔍sumWeight()
🔍pickWeightedSlot()

Position

uint256 SLOT_BITS
uint256 SLOT_POINTER_MAX
uint256 LEAF_FLAG

🔍slot()
🔍parent()
🔍child()
🔍setFlag()
🔍unsetFlag()

SortitionTree

📚StackLib for uint256
📚Branch for uint256
📚Position for uint256
📚Leaf for uint256

uint256 SLOT_BITS
uint256 LEVELS
uint256 SLOT_COUNT
uint256 SLOT_WIDTH
uint256 SLOT_MAX
uint256 POOL_CAPACITY
uint256 root
uint256=>mapping uint256=>uint256 branches
uint256=>uint256 leaves
address=>uint256 operatorLeaves
uint256 rightmostLeaf
uint256 emptyLeaves

__constructor__()
🔍isOperatorRegistered()
🔍operatorsInPool()
insertOperator()
removeOperator()
updateOperator()
removeOperatorLeaf()
🔍getFlaggedOperatorLeaf()
removeLeaf()
updateLeaf()
setLeaf()
🔍pickWeightedLeafWithIndex()
🔍pickWeightedLeaf()
getEmptyLeaf()
🔍leavesInStack()
🔍totalWeight()

IStaking

🔍eligibleStake()

IBonding

🔍availableUnbondedValue()

deploys

for DynamicArray.AddressArrayfor DynamicArray.AddressArray

for RNG.Statefor RNG.State

for DynamicArray.UintArray for DynamicArray.UintArray for uint256 for uint256for uint256 for uint256

for uint256for uint256for DynamicArray.AddressArray

for RNG.State

Contract System Outline

3.5 keep-core

Inheritance Structure (without usingFor)

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/sortition_pools_surya_graph.svg
https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/sortition_pools_contract_overview.svg

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 34/211

ServiceContract KeepRandomBeaconOperator

ReentrancyGuard DelayedWithdrawal

Ownable

TokenStaking

StakeDelegatable

AddressArrayUtils UintArrayUtils Registry BLS AltBn128 ModUtils GroupSelection Groups DKGResultVerification Reimbursements

KeepRandomBeaconService

OperatorContractKeepRandomBeaconServiceImplV1 tokenRecipient KeepToken

ERC20Burnable

tokenSender TokenGrant ThrowProxy

Inheritance graph

Call Graph

Function call graph and contract interaction

4 Security Specification
This section describes, from a security perspective, the expected behavior
of the system under audit. It is not a substitute for documentation. The
purpose of this section is to identify speci�ic security properties that were
validated by the audit team.

4.1 Oracles and Network Conditions

The project as a whole uses several sources of information for events external
to Ethereum. In particular, the following oracles are used:

Maker’s Medianizer price feed oracle is used to calculate the current
price of Bitcoin relative to Ether. This value is used to calculate collateral
ratios for new and existing deposits, as well as liquidation thresholds for
existing collateralized deposits.

A specialized Bitcoin di�iculty relay is provided by Summa (
summa-tx/relays). The relay ingests Bitcoin blockheaders and tracks the

di�iculty of Bitcoin proof of work over time. These values are used to

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/keep-surya_inheritance.svg
https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/keep-surya_graph.svg
https://github.com/summa-tx/relays

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 35/211

ensure SPV proofs for redeemed deposits are su�iciently “con�irmed.”
Note that the speci�ic behavior of the relay is out-of-scope for this audit,
but is mentioned here as it is a prominent external dependency.

The following two sources of information may not �it the strict de�inition of an
“oracle,” but are mentioned here because they each introduce an oracle-like
dependency on external networks:

The Keep Network acts as a random beacon. On request, this beacon
generates random numbers and supplies them to a smart contract within
the system. These random numbers are used to seed the group selection
algorithm, which determines which signers become custodians of each
Bitcoin deposit.

The aforementioned signers must communicate with each other, with
Bitcoin, and with the tBTC smart contracts in order to effectively manage
deposits.

Reliance on external sources of data often introduces several points of
failure. The e�icacy of the aforementioned systems may depend on several
factors:

Bitcoin network conditions: tBTC depends on the relative reliance of the
Bitcoin network during many stages of the deposit creation and
redemption process. Because many stages of the deposit process are
expected to happen within speci�ic windows of time, a period of high
stress in the Bitcoin network may impact the reliability of these timing
windows signi�icantly. The system may have di�iculty coping with
relatively longer con�irmation times for deposit creation and redemption,
as well as relatively higher transaction fees.

Ethereum network conditions:
Chain reorgs: Signing groups are only authorized to create
signatures when requested via tBTC smart contracts. In the event of
a chain re-org, signers may �ind their authorization for an already-
published signature removed by the re-org. In this case, it may be
possible to submit a no-longer-authorized signature for ECDSA
fraud, punishing the signing group.

Fluctuating block gas limit: Ethereum’s gas limit �luctuates over time
in response to slight adjustments by miners. Among its other effects,
gas limit �luctuation has a signi�icant impact on the size of Bitcoin

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 36/211

transactions that can be validated via SPV proof in the tBTC system
contracts. Measuring this impact is crucially important during
deposit creation and redemption, as even with conservative
estimates, only relatively smaller Bitcoin transactions can be veri�ied.
See this issue for details.

Fluctuating gas prices: Several components of the random beacon
attempt to estimate cost (in wei) of various on-chain operations. The
typical pattern used is a hardcoded gas amount multiplied by 30
GWei. The resulting amount is required to be passed in as CALLVALUE

to many functions in the random beacon contracts. Although 30
GWei is a conservative estimate during periods of low network
congestion, there is abundant historical evidence that gas prices
often rise well above this value. Using these functions during periods
of higher network congestion could result in participants receiving
service at a signi�icant discount. Conversely, it could result in
participants providing service with insu�icient compensation.

Changing opcode prices: As mentioned above, many gas values are
hardcoded. Should opcode prices change in a future fork, many
contracts may need to undergo a costly upgrade process - or
otherwise stop working correctly.

Keep network conditions: The integrity of the Keep Network is assumed
for many components of the system. Should the Keep Network cease
functioning correctly, random numbers may no longer be submitted to
the system contracts at expected intervals. In this case, it may become
possible to game the signer group selection process and create signing
groups comprised of a malicious majority of signers.

4.2 Staking Token Distribution

The keep random beacon’s purpose is in part to ensure that signers are not
able to manipulate group selection. Ideally, signers are geographically
distinct and do not know each other. A large factor in whether this is feasible
is the distribution method for the staking token required for signer eligibility.

In order to be eligible for selection, participants are required to stake tokens.
Currently, staking tokens are only available for purchase direct from Thesis,
making it highly likely that staking members have few degrees of separation
from each other. Although other distribution methods are planned in the

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 37/211

future, the �irst iteration of this system may be more prone to signer
collusion.

4.3 Signer collateral requirements

tBTC Deposits can stay active for up to 180 days, with a lot size maximum of 1
BTC. During a this active term, signers are required to lock away
approximately 150% of the backing BTC’s value in ETH. Should the system
experience higher-than-expected creation of Deposits, the amount of
collateral available to be locked up may be depleted and deposits will not be
able to be opened until others are redeemed.

4.4 Dependency - bitcoin-spv

The contract consuming the libraries functionality is expected to provide
well-formed data that was veri�ied by BTC nodes and is included in a block.
The SPV veri�ication itself involves complex security assumptions that are out
of scope for the library itself. The security and trust model needs to be
established with the consuming contract.

4.5 Overview - tBTC

createNewDeposit

START

notifySignerSetupFailure

retrieveSignerPubkey

awaiting_signer_setup

failed_setup

provideFundingECDSAFraudProof
notifyFundingTimeout

provideFundingECDSAFraudProof

provideBTCFundingProof

awaiting_btc_funding_proof

notifyCourtesyCall
notifyDepositExpiryCourtesyCall

transferAndRequestRedemption
requestRedemption

notifyUndercollateralizedLiquidation

ACTIVE

provideRedemptionSignature

notifySignatureTimeout

awaiting_withdrawal_signature

provideRedemptionProof

increaseRedemptionFee

notifyRedemptionProofTimeout awaiting_withdrawal_proof

redeemed

exitCourtesyCall

notifyCourtesyTimeout
notifyUndercollateralizedLiquidation

transferAndRequestRedemption
requestRedemption

courtesy_call

fraud_liquidation_in_progress

purchaseSignerBondsAtAuction

liquidation_in_progress

liquidated

SIGNER LIQUIDATION REDEMPTIONFUNDING

provideFraudBTCFundingProof
notifyFraudFundingTimeout

fraud_awaiting_btc_funding_proof

provideECDSAFraudProof
provideSPVFraudProof

not
(funding) awaiting_signer_setup, awaiting_btc_funding_proof

(funding_failure) fraud_awaiting_btc_funding_proof
(signer_liquidation) liquidation_in_progress, fraud_liquidation_in_progress

(end_state) liquidated, redeemed, failed_setup

is (green)
start, active, courtesy_call

awaiting_withdrawal_signature, awaiting_withdrawal_proof

blacklist state check

provideRedemptionProof

unreachable state?

not sure if this should allow
green bubbles to traverse

directly to endstate liquidated

Keep Contract
Signers

3hrs

3hrs

3hrs

6hrs

2hrs

6hrs

not timeboxed
(severely undercollat)

180 days

24hrs timeout

start is not a valid state

Funder

funder creates new deposit
funds forwarded to keep

calls out to keep
retrieves pubkey

funder sends BTC
to keep address

(collateral)
+ proves deposit

Funder

TBTC can become undercollat
Requester

TBTC token holder

may withdraw TBTC
up to BTC collat amnt - reserved

Signers

provides BTC tx proof
provides redemption signature

liquidation seizes signer bond

seize bond

seize bond

seize bondseize bond

seize bond

seize bond --> funder

seize bond
--> 1/2 funder

--> 1/2 keep group

funder loses
keep setup fee

(caused by signing group)

no fraud punish

BTC/SVP proofs require min. x BTC blocks
delaying state transition

Funder deposit factory

TDT
(active)

redemption flow
(txfreAndRequestRedemption)

Vending Machine

TBTCTBTC
(signer fee)

DepositToken
to

TBTC (minted)
(may get FRT)

TBTC (burn)
to

DepositToken

TBTC

TDT
(active)

TBTCHolder
TBTC

TBTC (burn)
to

BTC (redemption)

FRT

TDT

TDT

4hrs

Redeemer

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/tm_thesis_tbtc_states.svg

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 38/211

tBTC Deposit States and Transitions

Actors

The relevant actors are as follows:

Funder

TBTCDepositTokenHolder

SigningGroup

VendingMachine

Other Accounts

tBTC Deposit Flow state transition incentives

createNewDeposit

START

notifySignerSetupFailure

retrieveSignerPubkey

awaiting_signer_setup

failed_setup

provideFundingECDSAFraudProof
notifyFundingTimeout

provideFundingECDSAFraudProof

provideBTCFundingProof

awaiting_btc_funding_proof

notifyCourtesyCall
notifyDepositExpiryCourtesyCall

transferAndRequestRedemption
requestRedemption

notifyUndercollateralizedLiquidation

ACTIVE

provideRedemptionSignature

notifySignatureTimeout

awaiting_withdrawal_signature

provideRedemptionProof
increaseRedemptionFee

notifyRedemptionProofTimeout awaiting_withdrawal_proof

redeemed

exitCourtesyCall

notifyCourtesyTimeout
notifyUndercollateralizedLiquidation

transferAndRequestRedemption
requestRedemption

courtesy_call

fraud_liquidation_in_progress

purchaseSignerBondsAtAuction

liquidation_in_progress

liquidated

provideFraudBTCFundingProof
notifyFraudFundingTimeout

fraud_awaiting_btc_funding_proof

provideECDSAFraudProof
provideSPVFraudProof

not
(funding) awaiting_signer_setup, awaiting_btc_funding_proof

(funding_failure) fraud_awaiting_btc_funding_proof
(signer_liquidation) liquidation_in_progress, fraud_liquidation_in_progress

(end_state) liquidated, redeemed, failed_setup

is (green)
start, active, courtesy_call

awaiting_withdrawal_signature, awaiting_withdrawal_proof

blacklist state check

provideRedemptionProof

unreachable state?

not sure if this should allow
green bubbles to traverse

directly to endstate liquidated

3hrs

3hrs

3hrs

6hrs

2hrs

6hrs

not timeboxed
(severely undercollat)

180 days

24hrs timeout

start is not a valid state

liquidation seizes signer bond

seize bond

seize bond

seize bondseize bond

seize bond

seize bond --> funder

seize bond
--> 1/2 funder

--> 1/2 keep group

no fraud punish

BTC/SVP proofs require min. x BTC blocks
delaying state transition

TDT holder) -
signing grp) o
other/malicious) o

TDT holder) ++
signing grp) o
other/malicious) o

TDT holder) +
signing grp) -
other/malicious) o

TDT holder) -
signing grp) +
other/malicious) o

TDT holder) +
signing grp) -
other/malicious) o

TDT holder) -
signing grp) +
other/malicious) o

TDT holder) +
signing grp) -
other/malicious) o

TDT holder) ++
signing grp) (+)
other/malicious) o

TDT holder) +
signing grp) o
other/malicious) o

Incentive for a party call a state changing transition on Deposit:

TDT holder) ++ (strong positive incentive to call method)
signing grp) o (no incentive)
other/malicious) - (incentive to make sure the method is not called)

TDT holder) +
signing grp) o
other/malicious) o

TDT holder) -
signing grp) o
other/malicious) +

TDT holder) -
signing grp) +
other/malicious) o

TDT holder) +
signing grp) -
other/malicious) o

TDT holder) o
signing grp) +
other/malicious) ++

TDT holder) o
signing grp) +
other/malicious) ++

TDT holder) o
signing grp) +
other/malicious) +
liquidationInitiator ++

TDT holder) +
signing grp) +
other/malicious) +

Redeemer ++
signing grp) -
other/malicious) o

TDT holder) o
signing grp) +
other/malicious) ++

TDT holder) o
signing grp) +
other/malicious) o

TDT holder) o
signing grp) +
other/malicious) o

4hrs
TDT holder) o
signing grp) +
other/malicious) o

tBTC Deposit States and Transition Incentives

This section analyzes the incentives of various actors in the system to
interact and spend gas on causing a state transition for a certain Deposit.

Part of the security in the deposit �low relies on the fact that someone
initiates state transitions (success path, timeout, erroneous or fraudulent
behavior) as they become available. For example, if the signing group fails to
form in time (3 hrs) someone is supposed to call notifySignerSetupFailure on the
deposit to move it to the failed_setup end-state. On the other hand, if the
signer setup succeeds, the funder is incentivized to push the deposit to the
next state (awaiting_btc_funding_proof) and proceed to send BTC collateral to
the address maintained by the signing group.

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/imgs/tm_thesis_tbtc_states_incentive.svg

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 39/211

There are various incentives for parties in the system to invest gas in moving
a deposit to another state as the transition becomes available, however, there
are also incentives for not causing a transition.

Transitions

Funding: notifySignerSetupFailure

While the TDT holders main objective for the funding �low is to push the
deposit to the active state as quickly as possible to redeem TBTC for TDT and
earn FRT , there is no incentive for the TDT holder to call out missing timed
milestones for her deposit. In one case the funder is even punished for the
signing group failing to provide a valid pubKey in time leading to the funder
losing the initial payment to the keep.

TDT Holder: counter incentive. may want to avoid losing the initial
payment to keep hoping the signing group returns a pubKey after the
timeout passed.

Signing Group: no incentive to spend gas.

Others/Malicious: no incentive to spend gas.

Unless someone (an automatism) spends gas on terminating the deposit
there is a good chance it may stay in this state even after the timeout passed.

Funding: retrieveSignerPubkey

There’s a strong incentive for the TDT holder to move forward being able to
deposit BTC in the signer group controlled address. The signer group may
provide keys to the keep contract while they have only little incentive (signer
fee) to spend gas on calling retrieveSignerPubkey . The funder might end up
having to call the method to proceed to the next stage.

TDT Holder: incentive to push the deposit to be active.

Signing Group: no incentive to spend gas. incentive for TDT is higher.

Others/Malicious: no incentive to spend gas.

Funding: notifyFundingTimeout

funding timeout passed.

TDT Holder: counter incentive. may want to avoid losing the initial
payment to keep or potential punishment for not funding in time.

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 40/211

Signing Group: honest signing group: no incentive to spend gas.
Unhonest signing group: might want to front-run an attempt of TDT
holder to call out provideFundingECDSAFraudProof by terminating the deposit
with notifyFundingTimeout .

Others/Malicious: no incentive to spend gas.

Funding: provideFundingECDSAFraudProof after funding timeout passed

Someone reports fraud of the signing group after the TDT holder fails to
provide collateral in time. The signing group is not punished for the fraud.
However, the code assumes punishment for the funder to not fund and not
report in time. Additionally, if the timeout passes and the funder reports fraud
but provided BTC collateral and was not able to call provideBTCFundingProof to
proceed to the next stage (Note: funding proof can only be called with a
delay as it requires su�icient accumulated di�iculty in the header chain - x
times BTC block time) the funder may lose both, the BTC collateral and can
get punished for not providing a proof in time.

TDT Holder: incentive to report fraud. However, TDT holder is punished
as well as the deposit is terminated. counter-incentive to actually call out
the fraud after timeout passed as the current code assumes punishment
of the funder. The funder is incentivized to call notifyFundingTimeout

instead which does not explicitly punish any party.

Signing Group: counter incentive. might want to front-run an attempt of
TDT holder to call out provideFundingECDSAFraudProof by terminating the
deposit with notifyFundingTimeout . However, the signing group is not
punished for potentially committing fraud. This might actually allow the
signing group to steal BTC collateral without being punished if the TDT
holder is late enough for not being able to successfully call
provideBTCFundingProof before the notifyFundingTimeout .

Others/Malicious: no incentive to spend gas.

Note: provideBTCFundingProof cannot be called immediately after entering
waiting_for_btc_funding_proof as it is implicitly delayed because it requires

accumulated work (x times BTC block time). In order to not lose funds, the
TDT holder must ensure that provideBTCFundingProof is called before
notifyFundingTimeout passes.

Note: This path does not emit logSetupFailed .

Funding: provideFundingECDSAFraudProof

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 41/211

The signing party committed fraud. Someone calls out the fraud in before

TDT Holder: incentive to report fraud to be compensated with the signer
bond to make up for the potentially lost funds. Ideally is able to recover
the complete signer bond when being able to provide BTC funding proof,
or otherwise recovers half of the funds.

Signing Group: counter incentive. incentive to call provideBTCFundingProof

in case the TDT holder actually funded the transaction to avoid
provideFundingECDSAFraudProof . Furthermore, they can try to call
provideECDSAFraudProof to also seize the signer bond before anyone else

does.

Others/Malicious: no incentive to spend gas. Not awarded any funds for
reporting fraud.

Note: The ideal time for signers to commit fraud is right at the time the
transition to provideBTCFundingProof becomes available. This way they avoid that
the funder gets exclusive rights to get the signer bond awarded and they can
try to report fraud themselves.

Funding: notifyFraudFundingTimeout

The signing party committed fraud. The TDT holder did not prove BTC
funding in time.

TDT Holder: counter incentive to call out the timeout. signer bond is
awarded 50% to funder, 50% to signer group.

Signing Group: incentive to call this transition before TDT holder calls
provideFraudBTCFundingProof to at least recover half of the signer bond.

Others/Malicious: no incentive to spend gas. Not awarded any funds for
reporting fraud.

Note: Even though committing fraud the signer group receives half of the
deposit. TDT holder is only partially compensated, losing funds if they
provided BTC without being able to prove it (timeout) and potentially winning
funds (depending on the keep payment) if they did not transfer BTC.

Note: Potential reward for a group of signers stealing the BTC collateral and
calling out the timeout before TDT holder does is BTC collateral + 50% signer
bond.

Funding: provideFraudBTCFundingProof

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 42/211

The signing party committed fraud. The TDT holder provided proof of
transferring at minimum lotSizeSatoshis BTC to the signer group address.

TDT Holder: incentive to get the complete signer bond awarded to cover
the losses from the BTC transfer.

Signing Group: counter incentive. Loses signer bond. favors
notifyFraudFundingTimeout .

Others/Malicious: no incentive to spend gas. Not awarded any funds for
reporting fraud.

Note: The BTC funding proof requires accumulated work to pass (x times BTC
block time). TDT holder must ensure to call this method before
notifyFraudFundingTimeout passes or otherwise signer group could at least

recover half of the signer bond.

Note: provideFraudBTCFundingProof does not verify the block timestamp of the
BTC transaction. Funding can also be provided after ECDSA fraud was called
to receive the full signer bond. This does not make a lot of sense as the TDT
holder does not pro�it from this scenario unless she also colludes in the
signing group and initially committed fraud.

Funding: provideBTCFundingProof

Deposit funding with collateral was proven. Deposit is in active state.

TDT Holder: strong incentive to move to active state to redeem tBTC for
TDT.

Signing Group: incentive to get deposit to active state (signer fee).
incentive to commit fraud after BTC deposit was made (backoff time for
submission depending on con�igured accumulated di�iculty) and report
fraud on the active deposit to be set as liquidationInitiator which would
not be possible in the funding �low.

Others/Malicious: no incentive to spend gas.

Note: Can be called even if funding timeout passed but not called out.

Active: notifyCourtesyCall

Deposit is undercollateralized.

TDT Holder: counter incentive to call out under-collateralization for own
deposit.

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 43/211

Signing Group: no incentive to spend gas.

Others/Malicious: no incentive to spend gas other than security the
system.

Note: Can be called even if the deposit term is reached.

Note: Undercollateralization can be due to oracle price slippage. (Oracle
Risk)

Active: notifyDepositExpiryCourtesyCall

Deposit is reaching end-of-term.

TDT Holder: counter incentive to call out under-collateralization for own
deposit.

Signing Group: no incentive to spend gas.

Others/Malicious: no incentive to spend gas other than security the
system.

Note: Can be called even if the deposit term is reached.

Note: This transition should be removed.

Active: exitCourtesyCall

Exit from courtesy call if deposit term is not yet reached.

TDT Holder: incentive to set deposit to active.

Signing Group: no incentive to spend gas.

Others/Malicious: no incentive to spend gas.

Note: Courtesy call a can be exit in the same block if someone calls
notifyDepositExpiryCourtesyCall and
_d.fundedAt + TBTCConstants.getDepositTerm() == block.timestamp .

Active: notifyUndercollateralizedLiquidation, notifyCourtesyTimeout,
notifySignatureTimeout, notifyRedemptionProofTimeout

Liquidate the deposit due to it being severely undercollateralized.

TDT Holder: no incentive to spend gas.

Signing Group: incentive to set themselves as liquidationInitiator and
recover the bond at the auction. Allows one member of the signing

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 44/211

group to purchase the bond and the signing group may receive half of
the remainder after the auction to the group.

Others/Malicious: gets rewarded for calling out undercollateralized
deposits (liquidationInitiator).

Note: Calling out undercollateralized deposits can be front-run.

Note: Undercollateralization can be due to oracle price slippage. (Oracle
Risk)

Active: provideECDSAFraudProof, provideSPVFraudProof

Provide proof of signer fraud for an active deposit.

TDT Holder: incentive to report fraud to be rewarded as
liquidationInitiator .

Signing Group: counter incentive to call out fraud on themselves and
incentive to report fraud to be rewarded as liquidationInitiator and
recover part of the bond.

Others/Malicious: incentive to report fraud to be rewarded as
liquidationInitiator .

Redemption: provideECDSAFraudProof, provideSPVFraudProof

Provide proof of signer fraud in the redemption �low.

Redeemer: Can be set to any address when requesting redemption.
Incentive to call the transition in order to receive the full signer bond.

Signing Group: counter incentive to call out fraud on themselves.

Others/Malicious: no incentive to spend gas for not being rewarded.

Liquidation: purchaseSignerBondsAtAuction

Anyone can purchase the signer bond for a deposit in liquidation. The
auction is settled in TBTC. The party purchasing the bond receives 90-100%
of the seized bond depending on how long the auction is active already.

The longer the auction is active the more percent of the bond is awarded to
the buyer. There is an incentive for the buyer to wait until the end of the
auction to receive all of the signer bond. The auction can be front-run by
observing that someone places a bid. The bids price is static lotSizeTbtc .

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 45/211

Only the leftover contract balance (which can be zero at this time if the
bidder waited until the end of the auction period) the liquidationInitiator
(someone calling out fraud or undercollateralized deposits or timeouts) is
compensated. - In the case of fraud the liquidationInitiator gets all the
leftover contract balance - In the case of a timeout or undercollateralized
event the leftover contract balance is split between the signing group and
the one calling out the event

TDT Holder: weak incentive to purchase bonds to make sure deposit is
compensated with TBTC.

Signing Group:
Fraud: incentivized to bid at the latest time possible to maximize the
reward and avoid compensating the party calling out fraud.

Abort: incentivized to bid at the latest time possible to maximize the
reward and avoid compensating the party calling out the abort with
more than half of the remainder after the auction value.

Others/Malicious:
incentivized to bid at the latest time possible to maximize the reward
and avoid compensating the party calling out fraud/abort.

LiquidationInitiator:
Fraud: is incentivized to maximize the reward by purchasing the
bond at the earliest time possible.

Abort: is incentivized to maximize the reward by purchasing the
bond at the latest time possible.

Note: Bidding on the auction can be front-run to maximize rewards by
bidding at the latest time possible.

Note: Can be front-run: observing if someone purchases the signer bond and
then front-run it if lucrative.

Active: transferAndRequestRedemption, requestRedemption

Transfer TDT token ownership to a new recipient, request signer group to
sign wpkhSpendSighash to initiate redemption. Minimum redemption fee is
set and can only be adjusted to max. 5 times the initial redemption fee in
cycles every 4 hrs with increaseRedemptionFee).

TDT Holder: The method is supposed to be called by the current TDT
holder (or VendingMachine).

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 46/211

Redeemer: no incentive.

Signing Group: no incentive.

Others/Malicious: no incentive.

Note: Can be called after the deposit term is reached to close the deposit.
However, the deposit might still fall severely undercollateralized while waiting
in the redemption �low (cycling with increaseRedemptionFee for at most 5 * 4
hours) and it will not be possible to call that out.

Redemption: provideRedemptionSignature

Signers provide the signature for the most recent wpkhSpendSighash digest.

TDT Holder: no incentive.

Redeemer: no incentive.

Signing Group: provides signature to continue redemption �low and be
awarded the signer fee.

Others/Malicious: no incentive.

Note: Bails if signature for different digest ist provided.

Redemption: provideRedemptionProof

Anyone can provide proof that the BTC transaction was sent terminating the
deposit.

TDT Holder: no incentive to spend gas.

Redeemer: no incentive to spend gas. This will reward the signers (and
fee rebate to the former depositor).

Signing Group: incentive to receive the signer fee.

Others/Malicious: no incentive to spend gas.

Note: Does not explicitly verify tx signature. accepts previously signed
transactions after increasing the fee.

Redemption: IncreaseRedemptionFee

Signers can increase the redemption fee to cover BTC transaction costs.

TDT Holder: no incentive to spend gas.

Redeemer: no incentive to spend gas.

Signing Group: incentive to adjust fee.

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 47/211

Others/Malicious: no incentive to spend gas.

Note: If BTC network stays congested this might always require a few cycles
of provideRedemptionSignature and increaseRedemptionFee being called every 4 hrs.

Note: Can only be increased every 4 hrs to x times initial fee chosen by
redeemer.

Note: Fee can be increased up to 5 * initialRedemptionFee.
initialRedemptionFee can be set when requesting redemption (must be >=
system minimum). There is no incentive for TDT holder or others to not
increase the fee. Fee is paid from the tBTC owned by the contract.

Note: Leftover tBTC assigned to the deposit contract that is >= signerFee is
sent to the rebateTokenHolder for the deposit. Values < signerFee are lost?

Note: In awaiting_withdrawal_proof a signed btc tx can be constructed to
actually redeem the deposit. Assuming someone sends the transaction
redeeming BTC late and increaseRedemptionFee becomes available before being
able to provideRedemptionProof (delayed due to required accumulated work),
someone could increase the fee after the redemption has been made.
provideRedemptionProof can then afterward still be called from
awaiting_withdrawal_proof .

Note: When increasing the signer fee someone could attempt to just feed in a
btc transaction with the lowest signer fee as all of the signatures for the
different amounts are valid.

5 Issues
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions
around best practices or readability. Code maintainers should use their
own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities.
These should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly
exploitable or may require certain conditions in order to be exploited. All
major issues should be addressed.

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 48/211

Critical issues are directly exploitable security vulnerabilities that need to
be �ixed.

5.1 TokenStaking.recoverStake allows instant stake
undelegation Critical ✓ Addressed

Resolution

Addressed with keep-network/keep-core#1521 by adding a non-zero
check for the undelegation block.

Description

TokenStaking.recoverStake is used to recover stake that has been designated to
be undelegated. It contains a single check to ensure that the undelegation
period has passed:

keep-core/contracts/solidity/contracts/TokenStaking.sol:L182-L187

However, if an undelegation period is never set, this will always return true,
allowing any operator to instantly undelegate stake at any time.

Recommendation

Require that the undelegation period is nonzero before allowing an operator
to recover stake.

5.2 Improper length validation in BLS signature library
allows RNG manipulation Critical ✓ Addressed

function recoverStake(address _operator) public {
 uint256 operatorParams = operators[_operator].packedParams;
 require(
 block.number > operatorParams.getUndelegationBlock().add(undelegatio
 "Can not recover stake before undelegation period is over."
);

https://github.com/keep-network/keep-core/pull/1521

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 49/211

Resolution

Addressed with keep-network/keep-core#1523 by adding input length
checks to g2Decompress , g2Unmarshal and g1Unmarshal .

Description

KeepRandomBeaconOperator.relayEntry(bytes memory _signature) is used to submit
random beacon results:

keep-
core/contracts/solidity/contracts/KeepRandomBeaconOperator.sol:L418-
L433

The function calls BLS.verify , which validates that the submitted signature
correctly signs the previous recorded random beacon entry. BLS.verify calls
AltBn128.g1Unmarshal(signature) :

keep-core/contracts/solidity/contracts/cryptography/BLS.sol:L31-L37

function relayEntry(bytes memory _groupSignature) public nonReentrant {
 require(isEntryInProgress(), "Entry was submitted");
 require(!hasEntryTimedOut(), "Entry timed out");

 bytes memory groupPubKey = groups.getGroupPublicKey(signingRequest.group

 require(
 BLS.verify(
 groupPubKey,
 signingRequest.previousEntry,
 _groupSignature
),
 "Invalid signature"
);

 emit RelayEntrySubmitted();

https://github.com/keep-network/keep-core/pull/1523

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 50/211

function verify(
 bytes memory publicKey,
 bytes memory message,
 bytes memory signature
) public view returns (bool) {

 AltBn128.G1Point memory _signature = AltBn128.g1Unmarshal(signature);

AltBn128.g1Unmarshal(signature) reads directly from memory without making any
length checks:

keep-core/contracts/solidity/contracts/cryptography/AltBn128.sol:L214-
L228

There are two potential issues with this:

�. g1Unmarshal may be reading out-of-bounds of the signature from dirty
memory.

�. g1Unmarshal may not be reading all of the signature. If more than 64 bytes
are supplied, they are ignored for the purposes of signature validation.

These issues are important because the hash of the signature is the “random
number” supplied to user contracts:

keep-
core/contracts/solidity/contracts/KeepRandomBeaconOperator.sol:L435-
L448

/**
 * @dev Unmarshals a point on G1 from bytes in an uncompressed form.
 */
function g1Unmarshal(bytes memory m) internal pure returns(G1Point memory) {
 bytes32 x;
 bytes32 y;

 /* solium-disable-next-line */
 assembly {
 x := mload(add(m, 0x20))
 y := mload(add(m, 0x40))
 }

 return G1Point(uint256(x), uint256(y));
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 51/211

An attacker can use this behavior to game random number generation by
frontrunning a valid signature submission with additional byte padding.

Recommendation

Ensure each function in BLS.sol properly validates input lengths for all
parameters; the same length validation issue exists in BLS.verifyBytes .

5.3 tbtc - the tecdsa keep is never closed, signer bonds are
not released Critical ✓ Addressed

Resolution

Addressed with https://github.com/keep-network/tbtc/issues/473,
https://github.com/keep-network/tbtc/issues/490, keep-
network/tbtc#534, and keep-network/tbtc#520.

failed_setup:
notifySignerSetupFailure ✅closed by seizing funds with issue
5.10

notifyFundingTimeout ✅closed with keep-network/tbtc#534

provideFundingECDSAFraudProof, ✅slashes stake, distributes
signer bonds to funder (push payment -> should be pull or
funder may block), closes keep.

// Spend no more than groupSelectionGasEstimate + 40000 gas max
// This will prevent relayEntry failure in case the service contract is compro
signingRequest.serviceContract.call.gas(groupSelectionGasEstimate.add(40000)
 abi.encodeWithSignature(
 "entryCreated(uint256,bytes,address)",
 signingRequest.relayRequestId,
 _groupSignature,
 msg.sender
)
);

if (signingRequest.callbackFee > 0) {
 executeCallback(signingRequest, uint256(keccak256(_groupSignature)));
}

https://github.com/keep-network/tbtc/issues/473
https://github.com/keep-network/tbtc/issues/490
https://github.com/keep-network/tbtc/pull/534
https://github.com/keep-network/tbtc/pull/520
https://github.com/keep-network/tbtc/pull/534

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 52/211

provideFraudBTCFundingProof ✅ removed with keep-
network/tbtc#534

notifyFraudFundingTimeout ✅ removed with keep-
network/tbtc#534

liquidated:
provideSPVFraudProof ✅removed

purchaseSignerBondsAtAuction ✅ via
startSignerAbortLiquidation, ✅ via startSignerFraudLiquidation
(implicitly via seizebonds)

redeemed:
provideRedemptionProof ✅

Description

At the end of the TBTC deposit lifecycle happy path, the deposit is supposed
to close the keep in order to release the signer bonds. However, there is no
call to closeKeep in any of the code-bases under audit.

Recommendation

Close the keep releasing the signer bonds.

5.4 tbtc - No access control in
TBTCSystem.requestNewKeep Critical ✓ Addressed

Resolution

Issue addressed in keep-network/tbtc#514. Each call to requestNewKeep

makes a check that uint(msg.sender) is an existing TBTCDepositToken .
Because these tokens are only minted in DepositFactory , msg.sender would
have to be one of the cloned deposit contracts.

Description

https://github.com/keep-network/tbtc/pull/534
https://github.com/keep-network/tbtc/pull/534
https://github.com/keep-network/tbtc/pull/514

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 53/211

TBTCSystem.requestNewKeep is used by each new Deposit contract on creation. It
calls BondedECDSAKeepFactory.openKeep , which sets the Deposit contract as the
“owner,” a permissioned role within the created keep. openKeep also
automatically allocates bonds from members registered to the application.
The “application” from which member bonds are allocated is the tbtc system
itself.

Because requestNewKeep has no access controls, anyone can request that a
keep be opened with msg.sender as the “owner,” and arbitrary signing
threshold values:

tbtc/implementation/contracts/system/TBTCSystem.sol:L231-L243

Given that the owner of a keep is able to seize signer bonds, close the keep,
and more, having control of this role could be detrimental to group
members.

Recommendation

Add access control to requestNewKeep , so that it can only be called as a part of
the Deposit creation and initialization process.

5.5 Unpredictable behavior due to front running or general
bad timing Major ✓ Addressed

Resolution

/// @notice Request a new keep opening.
/// @param _m Minimum number of honest keep members required to sign.
/// @param _n Number of members in the keep.
/// @return Address of a new keep.
function requestNewKeep(uint256 _m, uint256 _n, uint256 _bond)
 external
 payable
 returns (address)
{
 IBondedECDSAKeepVendor _keepVendor = IBondedECDSAKeepVendor(keepVendor);
 IBondedECDSAKeepFactory _keepFactory = IBondedECDSAKeepFactory(_keepVend
 return _keepFactory.openKeep.value(msg.value)(_n, _m, msg.sender, _bond)
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 54/211

This issue has been addressed with https://github.com/keep-
network/tbtc/issues/493 and the following set of PRs:

https://github.com/keep-network/tbtc/issues/493

https://github.com/keep-network/keep-tecdsa/issues/296 - note:
initializeImplementation should be done in completeUpgrade otherwise

this could be used as a backdoor.
�ixed by keep-network/keep-ecdsa#327 - �ixed: initialization
moved to complete upgrade step

https://github.com/keep-network/keep-core/issues/1423 - note:
initializeImplementation should be done in completeUpgrade`
otherwise this could be used as a backdoor.

�ixed by keep-network/keep-core#1517 - �ixed: initialization
moved to complete upgrade step

The client also provided the following statements:

In general, our current stance on frontrunning proofs that lead
to rewards is that as long as it doesn’t signi�icantly compromise
an incentive on the primary actors of the system, we’re
comfortable with having it present. In particular, frontrunnable
actions that include rewards in several cases have additional
incentives—for tBTC deposit owners, for example, claiming
bonds in case of misbehavior; for signers, reclaiming bonds in
case of deposit owner absence or other misbehavior. We
consider signer reclamation of bonds to be a strong incentive,
as bond value is expected to be large enough that there is
ongoing expected value to having the bond value liquid rather
than bonded.

Some of the frontrunning cases (e.g. around beacon signing)
did not have this additional incentive, and in those cases we’ve
taken up the recommendations in the audit.

Description

In a number of cases, administrators of contracts can update or upgrade
things in the system without warning. This has the potential to violate a

https://github.com/keep-network/tbtc/issues/493
https://github.com/keep-network/tbtc/issues/493
https://github.com/keep-network/keep-tecdsa/issues/296
https://github.com/keep-network/keep-ecdsa/pull/327
https://github.com/keep-network/keep-core/issues/1423
https://github.com/keep-network/keep-core/pull/1517

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 55/211

security goal of the system.

Speci�ically, privileged roles could use front running to make malicious
changes just ahead of incoming transactions, or purely accidental negative
effects could occur due to unfortunate timing of changes.

Some instances of this are more important than others, but in general users
of the system should have assurances about the behavior of the action
they’re about to take.

Examples

System Parameters

The owner of the TBTCSystem contract can change system parameters at any
time with changes taking effect immediately.

setSignerFeeDivisor - stored in the deposit contract when creating a new
deposit. emits an event.

setLotSizes - stored in the deposit contract when creating a new deposit.
emits an event.

setCollateralizationThresholds - stored in the deposit contract when
creating a new deposit. emits an event.

This also opens up an opportunity for malicious owner to:

interfere with other participants deposit creation attempts (front-running
transactions)

craft a series of transactions that allow the owner to set parameters that
are more bene�icial to them, then create a deposit and reset the
parameters to the systems’ initial settings.

tbtc/implementation/contracts/system/TBTCSystem.sol:L113-L121

/// @notice Set the system signer fee divisor.
/// @param _signerFeeDivisor The signer fee divisor.
function setSignerFeeDivisor(uint256 _signerFeeDivisor)
 external onlyOwner
{
 require(_signerFeeDivisor > 9, "Signer fee divisor must be greater than
 signerFeeDivisor = _signerFeeDivisor;
 emit SignerFeeDivisorUpdated(_signerFeeDivisor);
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 56/211

Upgradables

The proxy pattern used in many places throughout the system allows the
operator to set a new implementation which takes effect immediately.

keep-
core/contracts/solidity/contracts/KeepRandomBeaconService.sol:L67-L80

keep-tecdsa/solidity/contracts/BondedECDSAKeepVendor.sol:L57-L71

Registry

/**
 * @dev Upgrade current implementation.
 * @param _implementation Address of the new implementation contract.
 */
function upgradeTo(address _implementation)
 public
 onlyOwner
{
 address currentImplementation = implementation();
 require(_implementation != address(0), "Implementation address can't be
 require(_implementation != currentImplementation, "Implementation addres
 setImplementation(_implementation);
 emit Upgraded(_implementation);
}

/// @notice Upgrades the current vendor implementation.
/// @param _implementation Address of the new vendor implementation contract.
function upgradeTo(address _implementation) public onlyOwner {
 address currentImplementation = implementation();
 require(
 _implementation != address(0),
 "Implementation address can't be zero."
);
 require(
 _implementation != currentImplementation,
 "Implementation address must be different from the current one."
);
 setImplementation(_implementation);
 emit Upgraded(_implementation);
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 57/211

keep-tecdsa/solidity/contracts/BondedECDSAKeepVendorImplV1.sol:L43-
L50

Recommendation

The underlying issue is that users of the system can’t be sure what the
behavior of a function call will be, and this is because the behavior can
change at any time.

We recommend giving the user advance notice of changes with a time lock.
For example, make all upgrades require two steps with a mandatory time
window between them. The �irst step merely broadcasts to users that a
particular change is coming, and the second step commits that change after
a suitable waiting period.

5.6 keep-core - reportRelayEntryTimeout creates an
incentive for nodes to race for rewards potentially wasting
gas and it creates an opportunity for front-running Major
✓ Addressed

Resolution

Following the discussion at https://github.com/keep-network/keep-
core/issues/1404 it was veri�ied that the method throws as early as
possible in an attempt to safe gas in case many nodes call out the
timeout in the same block. The client is currently comfortable with this
tradeoff. We would like to note that this issue cannot easily be addressed
(e.g. allowing nodes to disable calling out timeouts impacts the security
of the system; a commit/reveal proxy adds overhead and is unlikely to

function registerFactory(address payable _factory) external onlyOperatorCont
 require(_factory != address(0), "Incorrect factory address");
 require(
 registry.isApprovedOperatorContract(_factory),
 "Factory contract is not approved"
);
 keepFactory = _factory;
}

https://github.com/keep-network/keep-core/issues/1404

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 58/211

make the situation better as nodes are programmed to call out timeouts)
and we therefore recommend to monitor the network for this scenario.

Description

The incentive on reportRelayEntryTimeout for being rewarded with 5% of the
seized amount creates an incentive to call the method but might also kick off
a race for front-running this call. This method is being called from the keep
node which is unlikely to adjust the gasPrice and might always lose the race
against a front-running bot collecting rewards for all timeouts and fraud
proofs (issue 5.7)

Examples

keep-
core/contracts/solidity/contracts/KeepRandomBeaconOperator.sol:L600-
L626

/**
 * @dev Function used to inform about the fact the currently ongoing
 * new relay entry generation operation timed out. As a result, the group
 * which was supposed to produce a new relay entry is immediately
 * terminated and a new group is selected to produce a new relay entry.
 * All members of the group are punished by seizing minimum stake of
 * their tokens. The submitter of the transaction is rewarded with a
 * tattletale reward which is limited to min(1, 20 / group_size) of the
 * maximum tattletale reward.
 */
function reportRelayEntryTimeout() public {
 require(hasEntryTimedOut(), "Entry did not time out");
 groups.reportRelayEntryTimeout(signingRequest.groupIndex, groupSize, min

 // We could terminate the last active group. If that's the case,
 // do not try to execute signing again because there is no group
 // which can handle it.
 if (numberOfGroups() > 0) {
 signRelayEntry(
 signingRequest.relayRequestId,
 signingRequest.previousEntry,
 signingRequest.serviceContract,
 signingRequest.entryVerificationAndProfitFee,
 signingRequest.callbackFee
);
 }
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 59/211

Recommendation

Make sure that reportRelayEntryTimeout throws as early as possible if the group
was previously terminated (isGroupTerminated) to avoid that keep-nodes spend
gas on a call that will fail. Depending on the reward for calling out the
timeout this might create a front-running opportunity that cannot be
resolved.

5.7 keep-core - reportUnauthorizedSigning fraud proof is
not bound to reporter and can be front-run Major ✓ Addressed

Resolution

Addressed with https://github.com/keep-network/keep-core/issues/1405
by binding the proof to msg.sender .

Description

An attacker can monitor reportUnauthorizedSigning() for fraud reports and
attempt to front-run the original call in an effort to be the �irst one reporting
the fraud and be rewarded 5% of the total seized amount.

Examples

keep-
core/contracts/solidity/contracts/KeepRandomBeaconOperator.sol:L742-
L755

https://github.com/keep-network/keep-core/issues/1405

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 60/211

Recommendation

Require the reporter to include msg.sender in the signature proving the fraud
or implement a two-step commit/reveal scheme to counter front-running
opportunities by forcing a reporter to secretly commit the fraud parameters
in one block and reveal them in another.

5.8 keep-core - operator contracts disabled via panic
button can be re-enabled by RegistryKeeper Major ✓ Addressed

Resolution

Addressed by https://github.com/keep-network/keep-core/issues/1406
with changes from https://github.com/keep-network/keep-
core/pull/1463:

the contract is now using enums instead of int literals

only new operator contracts can be approved

only approved contracts can be disabled

disabled contracts cannot be re-enabled

disabling an operator contract does not yield an event

changes take effect immediately

/**
 * @dev Reports unauthorized signing for the provided group. Must provide
 * a valid signature of the group address as a message. Successful signature
 * verification means the private key has been leaked and all group members
 * should be punished by seizing their tokens. The submitter of this proof is
 * rewarded with 5% of the total seized amount scaled by the reward adjustment
 * parameter and the rest 95% is burned.
 */
function reportUnauthorizedSigning(
 uint256 groupIndex,
 bytes memory signedGroupPubKey
) public {
 groups.reportUnauthorizedSigning(groupIndex, signedGroupPubKey, minimumS
}

https://github.com/keep-network/keep-core/issues/1406
https://github.com/keep-network/keep-core/pull/1463:

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 61/211

Description

The Registry contract de�ines three administrative accounts: Governance ,
registryKeeper , and panicButton . All permissions are initially assigned to the

deployer when the contract is created. The account acting like a super-
admin, being allowed to re-assign administrative accounts - is Governance .
registryKeeper is a lower privileged account maintaining the registry and
panicButton is an emergency account that can disable operator contracts.

The keep speci�ication states the following:

Panic Button The Panic Button can disable malicious or
malfunctioning contracts that have been previously approved by
the Registry Keeper. When a contract is disabled by the Panic
Button, its status on the registry changes to re�lect this, and it
becomes ineligible to penalize operators. Contracts disabled by the
Panic Button can not be reactivated. The Panic Button can be
rekeyed by Governance.

It is assumed that the permissions are Governance > panicButton > registryKeeper ,
meaning that panicButton should be able to overrule registryKeeper , while
registryKeeper cannot overrule panicButton .

With the current implementation of the Registry the registryKeeper account
can re-enable an operator contract that has previously been disabled by the
panicButton account.

We would also like to note the following:

The contract should use enums instead of integer literals when working
with contract states.

Changes to the contract take effect immediately, allowing an
administrative account to selectively front-run calls to the Registry ACL
and interfere with user activity.

The operator contract state can be set to the current value without
raising an error.

The panic button can be called for operator contracts that are not yet
active.

Examples

http://docs.keep.network/random-beacon/#_roles_and_authorizations

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 62/211

keep-core/contracts/solidity/contracts/Registry.sol:L67-L75

Recommendation

The keep speci�ication states:

The Panic Button can be used to set the status of an APPROVED
contract to DISABLED. Operator Contracts disabled with the Panic
Button cannot be re-enabled, and disabled contracts may not
punish operators nor be selected by service contracts to perform
work.

All three accounts are typically trusted. We recommend requiring the
Governance or paniceButton accounts to reset the contract operator state before
registryKeeper can change the state or disallow re-enabling of disabled

operator contracts as stated in the speci�ication.

5.9 tbtc - State transitions are not always enforced Major
✓ Addressed

Resolution

This issue was addressed with https://github.com/keep-
network/tbtc/issues/494 and accepted by the client with the following
statement. Deposits that are timed out can still be pushed to an active
state.

For 5.7 around state transitions, our stance (speci�ically for the
upcoming release) is that a skipped state is acceptable as long

function approveOperatorContract(address operatorContract) public onlyRegist
 operatorContracts[operatorContract] = 1;
}

function disableOperatorContract(address operatorContract) public onlyPanicB
 operatorContracts[operatorContract] = 2;
}

https://github.com/keep-network/tbtc/issues/494

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 63/211

as it does not result in data loss or incentive skew. Taken in
turn, the listed examples:

‘A TDT holder can choose not to call out
notifySignerSetupFailure hoping that the signing group
still forms after the signer setup timeout passes.’ -> we
consider this �ine. If the TDT holder wishes to hold out
hope, it is their choice. Signers should be incentivized to
call notifySignerSetupFailure in case of actual failure to
release their bond.

‘The deposit can be pushed to active state even after
notifySignerSetupFailure, notifyFundingTimeout have
passed but nobody called it out.’ -> again, we consider this
�ine. A deposit that is funded and proven past its timeout is
still a valid deposit, since the two players in question (the
depositor and the signing group) were willing to wait
longer to complete the �low. The timeouts in question are
largely a matter of allowing signers to release their bond in
case there is an issue setting up the deposit.

‘Members of the signing group might decide to call
notifyFraudFundingTimeout in a race to avoid late
submissions for provideFraudBTCFundingProof to succeed
in order to contain funds lost due to fraud.’ -> We are
intending to change the mechanic here so that signers
lose their whole bond in either case.

‘A malicious signing group observes BTC funding on the
bitcoin chain in an attempt to commit fraud at the time the
provideBTCFundingProof transition becomes available to
front-run provideFundingECDSAFraudProof forcing the
deposit into active state.’ -> this one is tough, and we’re
working on changing the liquidation initiator reward so it is
no longer a useful attack. In particular, we’re looking at the
suggestion in 2.4 for this.

‘If oracle price slippage occurs for one block (�lash-crash
type of event) someone could call an undercollateralization
transition.’ -> We are still investigating this possibility.

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 64/211

‘A deposit term expiration courtesy call can be exit in the
rare case where _d.fundedAt +
TBTCConstants.getDepositTerm() == block.timestamp’ ->
Deposit term expiration courtsey calls should no longer
apply; see keep-network/tbtc@ 6344892 . Courtesy call after
deposit term is identical to courtsey call pre-term.

Description

A deposit follows a complex state-machine that makes sure it is correctly
funded before TBTC Tokens are minted. The deposit lifecycle starts with a set
of states modeling a funding �low that - if successful - ultimately leads to the
deposit being active, meaning that corresponding TBTC tokens exist for the
deposits. A redemption �low allows to redeem TBTC for BTC and a liquidation
�low handles fraud and abort conditions. Fraud cases in the funding �low are
handled separately.

State transitions from one deposit state to another require someone calling
the corresponding transition method on the deposit and actually spend gas
on it. The incentive to call a transition varies and is analyzed in more detail in
the security-speci�ication section of this report.

This issue assumes that participants are not always pushing forward through
the state machine as soon as a new state becomes available, opening up the
possibility of having multiple state transitions being a valid option for a
deposit (e.g. pushing a deposit to active state even though a timeout should
have been called on it).

Examples

A TDT holder can choose not to call out notifySignerSetupFailure hoping that
the signing group still forms after the signer setup timeout passes.

there is no incentive for the TDT holder to terminate its own deposit after
a timeout.

the deposit might end up never being in a �inal error state.

there is no incentive for the signing group to terminate the deposit.

This affects all states that can time out.

https://github.com/keep-network/tbtc/commit/634489236f56df1049d210c7002bac9af4d7067c

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 65/211

The deposit can be pushed to active state even after notifySignerSetupFailure ,
notifyFundingTimeout have passed but nobody called it out.

There is no timeout check in retrieveSignerPubkey , provideBTCFundingProof .

tbtc/implementation/contracts/deposit/DepositFunding.sol:L108-L117

tbtc/implementation/contracts/deposit/DepositFunding.sol:L263-L278

function provideBTCFundingProof(
 DepositUtils.Deposit storage _d,
 bytes4 _txVersion,
 bytes memory _txInputVector,
 bytes memory _txOutputVector,
 bytes4 _txLocktime,
 uint8 _fundingOutputIndex,
 bytes memory _merkleProof,
 uint256 _txIndexInBlock,
 bytes memory _bitcoinHeaders
) public returns (bool) {

 require(_d.inAwaitingBTCFundingProof(), "Not awaiting funding");

 bytes8 _valueBytes;
 bytes memory _utxoOutpoint;

Members of the signing group might decide to call notifyFraudFundingTimeout in
a race to avoid late submissions for provideFraudBTCFundingProof to succeed in
order to contain funds lost due to fraud.

It should be noted that even after the fraud funding timeout passed the TDT
holder could provideFraudBTCFundingProof as it does not check for the timeout.

A malicious signing group observes BTC funding on the bitcoin chain in an
attempt to commit fraud at the time the provideBTCFundingProof transition

/// @notice we poll the Keep contract to retrieve our pubkey
/// @dev We store the pubkey as 2 bytestrings, X and Y.
/// @param _d deposit storage pointer
/// @return True if successful, otherwise revert
function retrieveSignerPubkey(DepositUtils.Deposit storage _d) public {
 require(_d.inAwaitingSignerSetup(), "Not currently awaiting signer setup

 bytes memory _publicKey = IBondedECDSAKeep(_d.keepAddress).getPublicKey(
 require(_publicKey.length == 64, "public key not set or not 64-bytes lon

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 66/211

becomes available to front-run provideFundingECDSAFraudProof forcing the
deposit into active state.

The malicious users of the signing group can then try to report fraud, set
themselves as liquidationInitiator to be awarded part of the signer bond
(in addition to taking control of the BTC collateral).

The TDT holders fraud-proof can be front-run, see issue 5.15

If oracle price slippage occurs for one block (�lash-crash type of event)
someone could call an undercollateralization transition.

For severe oracle errors deposits might be liquidated by calling
notifyUndercollateralizedLiquidation . The TDT holder cannot exit liquidation

in this case.

For non-severe under collateralization someone could call
notifyCourtesyCall to impose extra effort on TDT holders to exitCourtesyCall

deposits.

A deposit term expiration courtesy call can be exit in the rare case where
_d.fundedAt + TBTCConstants.getDepositTerm() == block.timestamp

tbtc/implementation/contracts/deposit/DepositLiquidation.sol:L289-L298

tbtc/implementation/contracts/deposit/DepositLiquidation.sol:L318-L327

/// @notice Goes from courtesy call to active
/// @dev Only callable if collateral is sufficient and the deposit is n
/// @param _d deposit storage pointer
function exitCourtesyCall(DepositUtils.Deposit storage _d) public {
 require(_d.inCourtesyCall(), "Not currently in courtesy call");
 require(block.timestamp <= _d.fundedAt + TBTCConstants.getDepositTerm(),
 require(getCollateralizationPercentage(_d) >= _d.undercollateralizedThre
 _d.setActive();
 _d.logExitedCourtesyCall();
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 67/211

Allow exiting the courtesy call only if the deposit is not expired:
block.timestamp < _d.fundedAt + TBTCConstants.getDepositTerm()

Recommendation

Ensure that there are no competing interests between participants of the
system to favor one transition over the other, causing race conditions, front-
running opportunities or stale deposits that are not pushed to end-states.

Note: Please �ind an analysis of incentives to call state transitions in the
security section of this document.

5.10 tbtc - Funder loses payment to keep if signing group is
not established in time Major Pending

Resolution

This issue was addressed with https://github.com/keep-
network/tbtc/issues/495 by refunding the cost of creating a new keep.
We recommend using the pull instead of a push payment pattern to
avoid that the funder can block the call.

Additionally, the client provided the following statement:

The remaining push vs pull question is being tracked in
https://github.com/keep-network/tbtc/issues/551, part of
recommendation 2.7.

/// @notice Notifies the contract that its term limit has been reached
/// @dev This initiates a courtesy call
/// @param _d deposit storage pointer
function notifyDepositExpiryCourtesyCall(DepositUtils.Deposit storage _d) pu
 require(_d.inActive(), "Deposit is not active");
 require(block.timestamp >= _d.fundedAt + TBTCConstants.getDepositTerm(),
 _d.setCourtesyCall();
 _d.logCourtesyCalled();
 _d.courtesyCallInitiated = block.timestamp;
}

https://github.com/keep-network/tbtc/issues/495
https://github.com/keep-network/tbtc/issues/551

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 68/211

Description

To create a new deposit, the funder has to pay for the creation of a keep. If
establishing the keep does not succeed in time, fails or the signing group
decides not to return a public key when retrieveSignerPubkey is called to
transition from awaiting_signer_setup to awaiting_btc_funding_proof the signer
setup fails. After a timeout of 3 hrs, anyone can force the deposit to transition
from awaiting_signer_setup to failed_setup by calling notifySignerSetupFailure .

The funder had to provide payment for the keep but the signing group failed
to establish. Payment for the keep is not returned even though one could
assume that the signing group tried to play unfairly. The signing group might
intentionally try to cause this scenario to interfere with the system.

Examples

retrieveSignerPubkey fails if keep provided pubkey is empty or of an
unexpected length

tbtc/implementation/contracts/deposit/DepositFunding.sol:L108-L127

notifySignerSetupFailure can be called by anyone after a timeout of 3hrs

/// @notice we poll the Keep contract to retrieve our pubkey
/// @dev We store the pubkey as 2 bytestrings, X and Y.
/// @param _d deposit storage pointer
/// @return True if successful, otherwise revert
function retrieveSignerPubkey(DepositUtils.Deposit storage _d) public {
 require(_d.inAwaitingSignerSetup(), "Not currently awaiting signer setup

 bytes memory _publicKey = IBondedECDSAKeep(_d.keepAddress).getPublicKey(
 require(_publicKey.length == 64, "public key not set or not 64-bytes lon

 _d.signingGroupPubkeyX = _publicKey.slice(0, 32).toBytes32();
 _d.signingGroupPubkeyY = _publicKey.slice(32, 32).toBytes32();
 require(_d.signingGroupPubkeyY != bytes32(0) && _d.signingGroupPubkeyX !
 _d.fundingProofTimerStart = block.timestamp;

 _d.setAwaitingBTCFundingProof();
 _d.logRegisteredPubkey(
 _d.signingGroupPubkeyX,
 _d.signingGroupPubkeyY);
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 69/211

tbtc/implementation/contracts/deposit/DepositFunding.sol:L93-L106

Recommendation

It should be ensured that a keep group always establishes or otherwise the
funder is refunded the fee for the keep.

5.11 tbtc - Ethereum block gas limit imposes a fundamental
limitation on SPV proofs Major ✓ Addressed

Resolution

SPV fraud proofs were removed in keep-network/tbtc#521. Remember to
continue exploring this limitation of the EVM with benchmarking and gas
estimates in the tBTC UI.

Description

Several components of the tBTC system rely on SPV proofs to prove the
existence of transactions on Bitcoin. Because an SPV proof must provide the
entire Bitcoin transaction to the proving smart contract, the Ethereum block
gas limit imposes an upper bound on the size of the transaction in question.
Although an exact upper bound is subject to several variables, reasonable

/// @notice Anyone may notify the contract that signing group setup has ti
/// @dev We rely on the keep system punishes the signers in this case
/// @param _d deposit storage pointer
function notifySignerSetupFailure(DepositUtils.Deposit storage _d) public {
 require(_d.inAwaitingSignerSetup(), "Not awaiting setup");
 require(
 block.timestamp > _d.signingGroupRequestedAt + TBTCConstants.getSign
 "Signing group formation timeout not yet elapsed"
);
 _d.setFailedSetup();
 _d.logSetupFailed();

 fundingTeardown(_d);
}

https://github.com/keep-network/tbtc/pull/521

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 70/211

estimates show that even a moderately-sized Bitcoin transaction may not be
able to be successfully validated on Ethereum.

This limitation is signi�icant for two reasons:

�. Depositors may deposit BTC to the signers by way of a legitimate Bitcoin
transaction, only to �ind that this transaction is unable to be veri�ied on
Ethereum. Although the depositor in question was not acting maliciously,
they may lose their deposit entirely.

�. In case signers collude to spend a depositor’s BTC unprompted, the
system allows depositors to prove a fraudulent spend occurred by way of
SPV fraud proof. Given that signers can easily spend BTC with a
transaction that is too large to validate by way of SPV proof, this method
of fraud proof is unreliable at best. Deposit owners should instead prove
fraud by using an ECDSA fraud proof, which operates on a hash of the
signed message.

Recommendation

It’s important that prospective depositors are able to guarantee that their
deposit transaction will be veri�ied successfully. To that end, efforts should be
made to provide a deposit UI that checks whether or not a given transaction
will be veri�ied successfully before it is submitted. Several variables can
affect transaction veri�ication:

Current Ethereum block gas limits

Number of zero-bytes in the Bitcoin transaction in question

Size of the merkle proof needed to prove the transaction’s existence

Given that not all of these can be calculated before the transaction is
submitted to the Bitcoin blockchain, calculations should attempt to provide a
margin of error for the process. Additionally, users should be well-educated
about the process, including how to perform a deposit with relatively low
risk.

Understanding the relative limitations of the EVM will help this process
signi�icantly. Consider benchmarking the gas cost of verifying Bitcoin
transactions of various sizes.

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 71/211

Finally, because SPV fraud proofs can be gamed by colluding signers, they
should be removed from the system entirely. Deposit owners should always
be directed towards ECDSA fraud proofs, as these require relatively fewer
assumptions and stronger guarantees.

5.12 bitcoin-spv - SPV proofs do not support transactions
with larger numbers of inputs and outputs Major Pending

Resolution

The client provided the following statement:

Benchmarks and takeaways are being tracked in issue
https://github.com/keep-network/tbtc/issues/556.

Description

There is no explicit restriction on the number of inputs and outputs a Bitcoin
transaction can have - as long as the transaction �its into a block. The number
of inputs and outputs in a transaction is denoted by a leading “varint” - a
variable length integer. In BTCUtils.validateVin and BTCUtils.validateVout , the
value of this varint is restricted to under 0xFD , or 253:

bitcoin-spv/solidity/contracts/BTCUtils.sol:L404-L415

/// @notice Checks that the vin passed up is properly formatted
/// @dev Consider a vin with a valid vout in its scriptsig
/// @param _vin Raw bytes length-prefixed input vector
/// @return True if it represents a validly formatted vin
function validateVin(bytes memory _vin) internal pure returns (bool) {
 uint256 _offset = 1;
 uint8 _nIns = uint8(_vin.slice(0, 1)[0]);

 // Not valid if it says there are too many or no inputs
 if (_nIns >= 0xfd || _nIns == 0) {
 return false;
 }

https://github.com/keep-network/tbtc/issues/556

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 72/211

Transactions that include more than 252 inputs or outputs will not pass this
validation, leading to some legitimate deposits being rejected by the tBTC
system.

Examples

The 252-item limit exists in a few forms throughout the system, outside of the
aforementioned BTCUtils.validateVin and BTCUtils.validateVout :

�. BTCUtils.determineOutputLength :

bitcoin-spv/solidity/contracts/BTCUtils.sol:L294-L303

�. DepositUtils.findAndParseFundingOutput :

tbtc/implementation/contracts/deposit/DepositUtils.sol:L150-L154

function findAndParseFundingOutput(
 DepositUtils.Deposit storage _d,
 bytes memory _txOutputVector,
 uint8 _fundingOutputIndex
) public view returns (bytes8) {

�. DepositUtils.validateAndParseFundingSPVProof :

tbtc/implementation/contracts/deposit/DepositUtils.sol:L181-L191

/// @notice Determines the length of an output
/// @dev 5 types: WPKH, WSH, PKH, SH, and OP_RETURN
/// @param _output The output
/// @return The length indicated by the prefix, error if invalid leng
function determineOutputLength(bytes memory _output) internal pure returns (
 uint8 _len = uint8(_output.slice(8, 1)[0]);
 require(_len < 0xfd, "Multi-byte VarInts not supported");

 return _len + 8 + 1; // 8 byte value, 1 byte for _len itself
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 73/211

function validateAndParseFundingSPVProof(
 DepositUtils.Deposit storage _d,
 bytes4 _txVersion,
 bytes memory _txInputVector,
 bytes memory _txOutputVector,
 bytes4 _txLocktime,
 uint8 _fundingOutputIndex,
 bytes memory _merkleProof,
 uint256 _txIndexInBlock,
 bytes memory _bitcoinHeaders
) public view returns (bytes8 _valueBytes, bytes memory _utxoOutpoint){

�. DepositFunding.provideFraudBTCFundingProof :

tbtc/implementation/contracts/deposit/DepositFunding.sol:L213-L223

function provideFraudBTCFundingProof(
 DepositUtils.Deposit storage _d,
 bytes4 _txVersion,
 bytes memory _txInputVector,
 bytes memory _txOutputVector,
 bytes4 _txLocktime,
 uint8 _fundingOutputIndex,
 bytes memory _merkleProof,
 uint256 _txIndexInBlock,
 bytes memory _bitcoinHeaders
) public returns (bool) {

�. DepositFunding.provideBTCFundingProof :

tbtc/implementation/contracts/deposit/DepositFunding.sol:L263-L273

function provideBTCFundingProof(
 DepositUtils.Deposit storage _d,
 bytes4 _txVersion,
 bytes memory _txInputVector,
 bytes memory _txOutputVector,
 bytes4 _txLocktime,
 uint8 _fundingOutputIndex,
 bytes memory _merkleProof,
 uint256 _txIndexInBlock,
 bytes memory _bitcoinHeaders
) public returns (bool) {

�. DepositLiquidation.provideSPVFraudProof :

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 74/211

tbtc/implementation/contracts/deposit/DepositLiquidation.sol:L150-L160

function provideSPVFraudProof(
 DepositUtils.Deposit storage _d,
 bytes4 _txVersion,
 bytes memory _txInputVector,
 bytes memory _txOutputVector,
 bytes4 _txLocktime,
 bytes memory _merkleProof,
 uint256 _txIndexInBlock,
 uint8 _targetInputIndex,
 bytes memory _bitcoinHeaders
) public {

Recommendation

Incorporate varint parsing in BTCUtils.validateVin and BTCUtils.validateVout .
Ensure that other components of the system re�lect the removal of the 252-
item limit.

5.13 bitcoin-spv - multiple integer under-/overflows Major
✓ Addressed

Resolution

This was partially addressed in summa-tx/bitcoin-spv#118, summa-
tx/bitcoin-spv#119, and summa-tx/bitcoin-spv#122.

Summa opted not to �ix the under�low in extractTarget .

In summa-tx/bitcoin-spv#118, the determineOutputLength over�low was
addressed by casting _len to a uint256 before addition.

In summa-tx/bitcoin-spv#119, the extractHash under�low was
addressed by returning an empty bytes array if the extracted length
would cause under�low. Note that an explicit error and transaction
revert is favorable in these cases, in order to avoid returning
unusable data to the calling function.

https://github.com/summa-tx/bitcoin-spv/pull/118
https://github.com/summa-tx/bitcoin-spv/pull/119
https://github.com/summa-tx/bitcoin-spv/pull/122
https://github.com/summa-tx/bitcoin-spv/pull/118
https://github.com/summa-tx/bitcoin-spv/pull/119

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 75/211

Under�low and over�low in BytesLib was addressed in summa-
tx/bitcoin-spv#122. Multiple requires were added to the mentioned
functions, ensuring memory reads stayed in-bounds for each array.
A later change in summa-tx/bitcoin-spv#128 added support for
slice with a length of 0.

Description

The bitcoin-spv library allows for multiple integer under-/over�lows while
processing or converting potentially untrusted or user-provided data.

Examples

uint8 under�low uint256(uint8(_e - 3))

Note: _header[75] will throw consuming all gas if out of bounds while the
majority of the library usually uses slice(start, 1) to handle this more
gracefully.

bitcoin-spv/solidity/contracts/BTCUtils.sol:L483-L494

uint8 over�low uint256(uint8(_len + 8 + 1))

Note: might allow a specially crafted output to return an invalid
determineOutputLength <= 9.

Note: while type VarInt is implemented for inputs, it is not for the output
length.

/// @dev Target is a 256 bit number encoded as a 3-byte mantissa a
/// @param _header The header
/// @return The target threshold
function extractTarget(bytes memory _header) internal pure returns (uint256)
 bytes memory _m = _header.slice(72, 3);
 uint8 _e = uint8(_header[75]);
 uint256 _mantissa = bytesToUint(reverseEndianness(_m));
 uint _exponent = _e - 3;

 return _mantissa * (256 ** _exponent);
}

https://github.com/summa-tx/bitcoin-spv/pull/122
https://github.com/summa-tx/bitcoin-spv/pull/128

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 76/211

bitcoin-spv/solidity/contracts/BTCUtils.sol:L295-L304

uint8 under�low uint256(uint8(extractOutputScriptLen(_output)[0]) - 2)

bitcoin-spv/solidity/contracts/BTCUtils.sol:L366-L378

BytesLib input validation multiple start+length over�low

Note: multiple occurrences. should check
start+length > start && bytes.length >= start+length

bitcoin-spv/solidity/contracts/BytesLib.sol:L246-L248

BytesLib input validation multiple start over�low

/// @dev 5 types: WPKH, WSH, PKH, SH, and OP_RETURN
/// @param _output The output
/// @return The length indicated by the prefix, error if invalid leng
function determineOutputLength(bytes memory _output) internal pure returns (
 uint8 _len = uint8(_output.slice(8, 1)[0]);
 require(_len < 0xfd, "Multi-byte VarInts not supported");

 return _len + 8 + 1; // 8 byte value, 1 byte for _len itself
}

/// @dev Determines type by the length prefix and validates format
/// @param _output The output
/// @return The hash committed to by the pk_script, or null for error
function extractHash(bytes memory _output) internal pure returns (bytes memo
 if (uint8(_output.slice(9, 1)[0]) == 0) {
 uint256 _len = uint8(extractOutputScriptLen(_output)[0]) - 2;
 // Check for maliciously formatted witness outputs
 if (uint8(_output.slice(10, 1)[0]) != uint8(_len)) {
 return hex"";
 }
 return _output.slice(11, _len);
 } else {
 bytes32 _tag = _output.keccak256Slice(8, 3);

function slice(bytes memory _bytes, uint _start, uint _length) internal pur
 require(_bytes.length >= (_start + _length), "Slice out of bounds");

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 77/211

bitcoin-spv/solidity/contracts/BytesLib.sol:L280-L281

bitcoin-spv/solidity/contracts/BytesLib.sol:L269-L270

bitcoin-spv/solidity/contracts/BytesLib.sol:L246-L248

bitcoin-spv/solidity/contracts/BytesLib.sol:L410-L412

Recommendation

We believe that a general-purpose parsing and veri�ication library for bitcoin
payments should be very strict when processing untrusted user input. With
strict we mean, that it should rigorously validate provided input data and only
proceed with the processing of the data if it is within a safe-to-use range for
the method to return valid results. Relying on the caller to provide pre-
validate data can be unsafe especially if the caller assumes that proper input
validation is performed by the library.

Given the risk pro�ile for this library, we recommend a conservative approach
that balances security instead of gas e�iciency without relying on certain
calls or instructions to throw on invalid input.

For this issue speci�ically, we recommend proper input validation and explicit
type expansion where necessary to prevent values from wrapping or

function toUint(bytes memory _bytes, uint _start) internal pure returns (ui
 require(_bytes.length >= (_start + 32), "Uint conversion out of bounds."

function toAddress(bytes memory _bytes, uint _start) internal pure returns
 require(_bytes.length >= (_start + 20), "Address conversion out of bound

function slice(bytes memory _bytes, uint _start, uint _length) internal pur
 require(_bytes.length >= (_start + _length), "Slice out of bounds");

function keccak256Slice(bytes memory _bytes, uint _start, uint _length) pure
 require(_bytes.length >= (_start + _length), "Slice out of bounds");

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 78/211

processing data for arguments that are not within a safe-to-use range.

5.14 tbtc - Unreachable state LIQUIDATION_IN_PROGRESS
Major ✓ Addressed

Resolution

Addressed with https://github.com/keep-network/tbtc/issues/497 with
commits from keep-network/tbtc#517 changing all non-fraud transitions
to end up in LIQUIDATION_IN_PROGRESS .

Description

According to the speci�ication (overview, states, version 2020-02-06), a
deposit can be in one of two liquidation_in_progress states.

LIQUIDATION_IN_PROGRESS

LIQUIDATION_IN_PROGRESS Liquidation due to
undercollateralization or an abort has started Automatic (on-chain)
liquidation was unsuccessful

FRAUD_LIQUIDATION_IN_PROGRESS

FRAUD_LIQUIDATION_IN_PROGRESS Liquidation due to fraud has
started Automatic (on-chain) liquidation was unsuccessful

However, LIQUIDATION_IN_PROGRESS is unreachable and instead,
FRAUD_LIQUIDATION_IN_PROGRESS is always called. This means that all non-fraud

state transitions end up in the fraud liquidation path and will perform actions
as if fraud was detected even though it might be caused by an
undercollateralized noti�ication or courtesy timeout.

Examples

startSignerAbortLiquidation transitions to FRAUD_LIQUIDATION_IN_PROGRESS on non-
fraud events notifyUndercollateralizedLiquidation and notifyCourtesyTimeout

tbtc/implementation/contracts/deposit/DepositLiquidation.sol:L96-L108

https://github.com/keep-network/tbtc/issues/497
https://github.com/keep-network/tbtc/pull/517
http://docs.keep.network/tbtc/#_overview_6
http://docs.keep.network/tbtc/#_states_3

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 79/211

Recommendation

Verify state transitions and either remove LIQUIDATION_IN_PROGRESS if it is
redundant or �ix the state transitions for non-fraud liquidations.

Note that Deposit states can be simpli�ied by removing redundant states by
setting a �lag (e.g. fraudLiquidation) in the deposit instead of adding a state
to track the fraud liquidation path.

According to the speci�ication, we assume the following state transitions are
desired:

LIQUIDATION_IN_PROGRESS > In case of liquidation due to undercollateralization or
abort, the remaining bond value is split 50-50 between the account which
triggered the liquidation and the signers.

FRAUD_LIQUIDATION_IN_PROGRESS > In case of liquidation due to fraud, the remaining
bond value in full goes to the account which triggered the liquidation by
proving fraud.

5.15 tbtc - various deposit state transitions can be front-run
(e.g. fraud proofs, timeouts) Major Won't Fix

Resolution

/// @notice Starts signer liquidation due to abort or undercollaterali
/// @dev We first attempt to liquidate on chain, then by auction
/// @param _d deposit storage pointer
function startSignerAbortLiquidation(DepositUtils.Deposit storage _d) intern
 _d.logStartedLiquidation(false);
 // Reclaim used state for gas savings
 _d.redemptionTeardown();
 _d.seizeSignerBonds();

 _d.liquidationInitiated = block.timestamp; // Store the timestamp for au
 _d.liquidationInitiator = msg.sender;
 _d.setFraudLiquidationInProgress();
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 80/211

Addressed with the discussion at https://github.com/keep-
network/tbtc/issues/498. It is accepted that a malicious entity may be
able to front-run certain fraud proofs as long as fraud is being called out.
It is also accepted that calls to certain timeouts may be front-run which
could lead to a scenario where the client implementation is always front-
run by a malicious actor.

Additionally, the client provided the following statement:

In general, we are comfortable with front-runnable interactions
that ensure system integrity, as long as such front-running
does not remove the original incentive of the submitter. We
believe remaining front-runnable interactions have clear
bene�its to system actors, such that even if they are front-run,
they have reason to submit the transaction.

Description

An entity that can provide proof for fraudulent ECDSA signatures or SPV
proofs in the liquidation �low is rewarded with part of the deposit contract
ETH value.

Speci�ication: Liquidation Any signer bond left over after the
deposit owner is compensated is distributed to the account
responsible for reporting the misbehavior (for fraud) or between the
signers and the account that triggered liquidation (for
collateralization issues).

However, the methods under which proof is provided are not protected from
front-running allowing anyone to observe transactions to
provideECDSAFraudProof / provideSPVFraudProof and submit the same proofs with

providing a higher gas value.

Please note that a similar issue exists for timeout states providing rewards for
calling them out (i.e. they set the liquidationInitiator address).

Examples

https://github.com/keep-network/tbtc/issues/498
http://docs.keep.network/tbtc/#liquidation

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 81/211

provideECDSAFraudProof veri�ies the fraudulent proof

r,s,v,signedDigest appear to be the fraudulent signature. _preimage is the
correct value.

tbtc/implementation/contracts/deposit/DepositLiquidation.sol:L117-L137

startSignerFraudLiquidation sets the address that provides the proof as the
bene�iciary

tbtc/implementation/contracts/deposit/DepositFunding.sol:L153-L179

/// @param _preimage The sha256 preimage of the digest
function provideECDSAFraudProof(
 DepositUtils.Deposit storage _d,
 uint8 _v,
 bytes32 _r,
 bytes32 _s,
 bytes32 _signedDigest,
 bytes memory _preimage
) public {
 require(
 !_d.inFunding() && !_d.inFundingFailure(),
 "Use provideFundingECDSAFraudProof instead"
);
 require(
 !_d.inSignerLiquidation(),
 "Signer liquidation already in progress"
);
 require(!_d.inEndState(), "Contract has halted");
 require(submitSignatureFraud(_d, _v, _r, _s, _signedDigest, _preimage),
 startSignerFraudLiquidation(_d);
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 82/211

purchaseSignerBondsAtAuction pays out the funds

tbtc/implementation/contracts/deposit/DepositLiquidation.sol:L260-L276

function provideFundingECDSAFraudProof(
 DepositUtils.Deposit storage _d,
 uint8 _v,
 bytes32 _r,
 bytes32 _s,
 bytes32 _signedDigest,
 bytes memory _preimage
) public {
 require(
 _d.inAwaitingBTCFundingProof(),
 "Signer fraud during funding flow only available while awaiting fund
);

 bool _isFraud = _d.submitSignatureFraud(_v, _r, _s, _signedDigest, _prei
 require(_isFraud, "Signature is not fraudulent");
 _d.logFraudDuringSetup();

 // If the funding timeout has elapsed, punish the funder too!
 if (block.timestamp > _d.fundingProofTimerStart + TBTCConstants.getFundi
 address(0).transfer(address(this).balance); // Burn it all down (fi
 _d.setFailedSetup();
 } else {
 /* NB: This is reuse of the variable */
 _d.fundingProofTimerStart = block.timestamp;
 _d.setFraudAwaitingBTCFundingProof();
 }
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 83/211

 uint256 contractEthBalance = address(this).balance;
 address payable initiator = _d.liquidationInitiator;

 if (initiator == address(0)){
 initiator = address(0xdead);
 }
 if (contractEthBalance > 1) {
 if (_wasFraud) {
 initiator.transfer(contractEthBalance);
 } else {
 // There will always be a liquidation initiator.
 uint256 split = contractEthBalance.div(2);
 _d.pushFundsToKeepGroup(split);
 initiator.transfer(split);
 }
 }
}

Recommendation

For fraud proofs, it should be required that the reporter uses a commit/reveal
scheme to lock in a proof in one block, and reveal the details in another.

5.16 tbtc - Anyone can emit log events due to missing
access control Major ✓ Addressed

Resolution

Addressed with https://github.com/keep-network/tbtc/issues/477, keep-
network/tbtc#467 and keep-network/tbtc#537 by restricting log calls to
known TBTCDepositToken . tbtcDepositToken was moved to DepositLog which is
not ideal.

Description

Access control for DepositLog is not implemented. DepositLog is inherited by
TBTCSystem and its functionality is usually consumed by Deposit contracts to

emit log events on TBTCSystem . Due to the missing access control, anyone can
emit log events on TBTCSystem . Users, client-software or other components

https://github.com/keep-network/tbtc/issues/477
https://github.com/keep-network/tbtc/pull/467
https://github.com/keep-network/tbtc/pull/537

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 84/211

that rely on these events might be tricked into performing actions that were
not authorized by the system.

Examples

tbtc/implementation/contracts/DepositLog.sol:L95-L99

function approvedToLog(address _caller) public pure returns (bool) {
 /* TODO: auth via system */
 _caller;
 return true;
}

Recommendation

Log events are typically initiated by the Deposit contract. Make sure only
Deposit contracts deployed by an approved factory can emit logs on
TBTCSystem.

5.17 DKGResultVerification.verify unsafe packing in
signed data Medium ✓ Addressed

Resolution

Addressed with keep-network/keep-core#1525 by adding additional
checks for groupPubKey size, the number of signatures provided and the
length of the provided misbehaved group indices. No salt was added to
separate the �ields.

Description

DKGResultVerification.verify allows the sender to arbitrarily move bytes
between groupPubKey and misbehaved :

keep-
core/contracts/solidity/contracts/libraries/operator/DKGResultVeri�ication.
sol:L80

https://github.com/keep-network/keep-core/pull/1525

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 85/211

Recommendation

Validate the expected length of both and add a salt between the two.

5.18 keep-core - Service contract callbacks can be abused
to call into other contracts Medium ✓ Addressed

Resolution

Addressed with keep-network/keep-core#1532 by hardcoding the
callback method signature and the following statement:

We still allow specifying an address of the callback contract.
This could be bene�icial in a situations where one contract pays
for a random number for another contract.

A subsequent change in keep-network/keep-ecdsa#339 updated
keep-tecdsa to use the new, hardcoded callback function:
__beaconCallback(uint256) .

Description

KeepRandomBeaconServiceImplV1 allows senders to specify an arbitrary method and
contract that will receive a callback once the beacon generates a relay entry:

keep-
core/contracts/solidity/contracts/KeepRandomBeaconServiceImplV1.sol:L
228-L245

bytes32 resultHash = keccak256(abi.encodePacked(groupPubKey, misbehaved));

https://github.com/keep-network/keep-core/pull/1532
https://github.com/keep-network/keep-ecdsa/pull/339

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 86/211

Once an operator contract receives the relay entry, it calls executeCallback :

keep-
core/contracts/solidity/contracts/KeepRandomBeaconServiceImplV1.sol:L
314-L335

/**
 * @dev Creates a request to generate a new relay entry, which will include
 * a random number (by signing the previous entry's random number).
 * @param callbackContract Callback contract address. Callback is called once
 * @param callbackMethod Callback contract method signature. String representa
 * uint256 input parameter i.e. "relayEntryCallback(uint256)".
 * @param callbackGas Gas required for the callback.
 * The customer needs to ensure they provide a sufficient callback gas
 * to cover the gas fee of executing the callback. Any surplus is returned
 * to the customer. If the callback gas amount turns to be not enough to
 * execute the callback, callback execution is skipped.
 * @return An uint256 representing uniquely generated relay request ID. It is
 */
function requestRelayEntry(
 address callbackContract,
 string memory callbackMethod,
 uint256 callbackGas
) public nonReentrant payable returns (uint256) {

/**
 * @dev Executes customer specified callback for the relay entry request.
 * @param requestId Request id tracked internally by this contract.
 * @param entry The generated random number.
 * @return Address to receive callback surplus.
 */
function executeCallback(uint256 requestId, uint256 entry) public returns (a
 require(
 _operatorContracts.contains(msg.sender),
 "Only authorized operator contract can call execute callback."
);

 require(
 _callbacks[requestId].callbackContract != address(0),
 "Callback contract not found"
);

 _callbacks[requestId].callbackContract.call(abi.encodeWithSignature(_cal

 surplusRecipient = _callbacks[requestId].surplusRecipient;
 delete _callbacks[requestId];
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 87/211

Arbitrary callbacks can be used to force the service contract to execute many
functions within the keep contract system. Currently, the
KeepRandomBeaconOperator includes an onlyServiceContract modi�ier:

keep-
core/contracts/solidity/contracts/KeepRandomBeaconOperator.sol:L150-
L159

/**
 * @dev Checks if sender is authorized.
 */
modifier onlyServiceContract() {
 require(
 serviceContracts.contains(msg.sender),
 "Caller is not an authorized contract"
);
 _;
}

The functions it protects cannot be targeted by the aforementioned service
contract callbacks due to Solidity’s CALLDATASIZE checking. However, the
presence of the modi�ier suggests that the service contract is expected to be
a permissioned actor within some contracts.

Recommendation

�. Stick to a constant callback method signature, rather than allowing users
to submit an arbitrary string. An example is __beaconCallback__(uint256) .

�. Consider disallowing arbitrary callback destinations. Instead, rely on
contracts making requests directly, and default the callback destination
to msg.sender . Ensure the sender is not an EOA.

5.19 tbtc - Disallow signatures with high-s values in
DepositRedemption.provideRedemptionSignature
Medium ✓ Addressed

Resolution

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 88/211

Issue addressed in keep-network/tbtc#518

Description

DepositRedemption.provideRedemptionSignature is used by signers to publish a
signature that can be used to redeem a deposit on Bitcoin. The function
accepts a signature s value in the upper half of the secp256k1 curve:

tbtc/implementation/contracts/deposit/DepositRedemption.sol:L183-L202

Although ecrecover accepts signatures with these s values, they are no longer
used in Bitcoin. As such, the signature will appear to be valid to the Ethereum
smart contract, but will likely not be accepted on Bitcoin. If no users
watching malleate the signature, the redemption process will likely enter a
fee increase loop, incurring a cost on the deposit owner.

Recommendation

Ensure the passed-in s value is restricted to the lower half of the secp256k1
curve, as done in BondedECDSAKeep :

function provideRedemptionSignature(
 DepositUtils.Deposit storage _d,
 uint8 _v,
 bytes32 _r,
 bytes32 _s
) public {
 require(_d.inAwaitingWithdrawalSignature(), "Not currently awaiting a si

 // If we're outside of the signature window, we COULD punish signers here
 // Instead, we consider this a no-harm-no-foul situation.
 // The signers have not stolen funds. Most likely they've just inconvenien

 // The signature must be valid on the pubkey
 require(
 _d.signerPubkey().checkSig(
 _d.lastRequestedDigest,
 _v, _r, _s
),
 "Invalid signature"
);

https://github.com/keep-network/tbtc/pull/518

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 89/211

keep-tecdsa/solidity/contracts/BondedECDSAKeep.sol:L333-L340

5.20 Consistent use of SafeERC20 for external tokens
Medium ✓ Addressed

Resolution

Addressed with https://github.com/keep-network/keep-core/issues/1407
and https://github.com/keep-network/keep-tecdsa/issues/272.

Description

Use SafeERC20 features to interact with potentially broken tokens used in the
system. E.g. TokenGrant.receiveApproval() is using safeTransferFrom while other
contracts aren’t.

Examples

TokenGrant.receiveApproval using safeTransferFrom

keep-core/contracts/solidity/contracts/TokenGrant.sol:L200-L200

token.safeTransferFrom(_from, address(this), _amount);

TokenStaking.receiveApproval not using safeTransferFrom while safeTransfer is
being used.

keep-core/contracts/solidity/contracts/TokenStaking.sol:L75-L75

// Validate `s` value for a malleability concern described in EIP-2.
// Only signatures with `s` value in the lower half of the secp256k1
// curve's order are considered valid.
require(
 uint256(_s) <=
 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
 "Malleable signature - s should be in the low half of secp256k1 curve's
);

https://github.com/keep-network/keep-core/issues/1407
https://github.com/keep-network/keep-tecdsa/issues/272

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 90/211

token.transferFrom(_from, address(this), _value);

keep-core/contracts/solidity/contracts/TokenStaking.sol:L103-L103

token.safeTransfer(owner, amount);

keep-core/contracts/solidity/contracts/TokenStaking.sol:L193-L193

token.transfer(tattletale, tattletaleReward);

distributeERC20ToMembers not using safeTransferFrom

keep-tecdsa/solidity/contracts/BondedECDSAKeep.sol:L459-L463

token.transferFrom(
 msg.sender,
 tokenStaking.magpieOf(members[i]),
 dividend
);

Recommendation

Consistently use SafeERC20 to support potentially broken tokens external to
the system.

5.21 Initialize implementations for proxy contracts and
protect initialization methods Medium ✓ Addressed

Resolution

This issue is addressed with the following changesets that ensure that
the logic contracts cannot be used by other parties by initializing them
in the constructor: https://github.com/keep-network/keep-
tecdsa/issues/297, https://github.com/keep-network/keep-
core/issues/1424, and https://github.com/keep-network/tbtc/issues/500.

https://github.com/keep-network/keep-tecdsa/issues/297
https://github.com/keep-network/keep-core/issues/1424
https://github.com/keep-network/tbtc/issues/500

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 91/211

Description

It should be avoided that the implementation for proxy contracts can be
initialized by third parties. This can be the case if the initialize function is
unprotected. Since the implementation contract is not meant to be used
directly without a proxy delegate-calling it is recommended to protect the
initialization method of the implementation by initializing on deployment.

Changing the proxies implementation (upgradeTo()) to a version that does not
protect the initialization method may allow someone to front-run and
initialize the contract if it is not done within the same transaction.

Examples

KeepVendor delegates to KeepVendorImplV1 . The implementations
initialization method is unprotected.

keep-tecdsa/solidity/contracts/BondedECDSAKeepVendorImplV1.sol:L22-
L32

/// @notice Initializes Keep Vendor contract implementation.
/// @param registryAddress Keep registry contract linked to this contract.
function initialize(
 address registryAddress
)
 public
{
 require(!initialized(), "Contract is already initialized.");
 _initialized["BondedECDSAKeepVendorImplV1"] = true;
 registry = Registry(registryAddress);
}

KeepRandomBeaconServiceImplV1 and KeepRandomBeaconServiceUpgradeExample

keep-
core/contracts/solidity/contracts/KeepRandomBeaconServiceImplV1.sol:L
118-L137

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 92/211

function initialize(
 uint256 priceFeedEstimate,
 uint256 fluctuationMargin,
 uint256 dkgContributionMargin,
 uint256 withdrawalDelay,
 address registry
)
 public
{
 require(!initialized(), "Contract is already initialized.");
 _initialized["KeepRandomBeaconServiceImplV1"] = true;
 _priceFeedEstimate = priceFeedEstimate;
 _fluctuationMargin = fluctuationMargin;
 _dkgContributionMargin = dkgContributionMargin;
 _withdrawalDelay = withdrawalDelay;
 _pendingWithdrawal = 0;
 _previousEntry = _beaconSeed;
 _registry = registry;
 _baseCallbackGas = 18845;
}

Deposit is deployed via cloneFactory delegating to a masterDepositAddress in
DepositFactory . The masterDepositAddress (Deposit) might be left

uninitialized.

tbtc/implementation/contracts/system/DepositFactoryAuthority.sol:L3-
L14

Recommendation

Initialize unprotected implementation contracts in the implementation’s
constructor. Protect initialization methods from being called by unauthorized

contract DepositFactoryAuthority {

 bool internal _initialized = false;
 address internal _depositFactory;

 /// @notice Set the address of the System contract on contract initializat
 function initialize(address _factory) public {
 require(! _initialized, "Factory can only be initialized once.");

 _depositFactory = _factory;
 _initialized = true;
 }

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 93/211

parties or ensure that deployment of the proxy and initialization is performed
in the same transaction.

5.22 keep-tecdsa - If caller sends more than is contained in
the signer subsidy pool, the value is burned Medium ✓ Addressed

Resolution

Issue addressed in keep-network/keep-ecdsa#306. The subsidyPool was
removed in favor of a reseedPool , which is �illed by the beacon by surplus
sent to requestRelayEntry .

Description

The signer subsidy pool in BondedECDSAKeepFactory tracks funds sent to the
contract. Each time a keep is opened, the subsidy pool is intended to be
distributed to the members of the new keep:

keep-tecdsa/solidity/contracts/BondedECDSAKeepFactory.sol:L312-L320

// If subsidy pool is non-empty, distribute the value to signers but
// never distribute more than the payment for opening a keep.
uint256 signerSubsidy = subsidyPool < msg.value
 ? subsidyPool
 : msg.value;
if (signerSubsidy > 0) {
 subsidyPool -= signerSubsidy;
 keep.distributeETHToMembers.value(signerSubsidy)();
}

The tracking around subsidy pool increases is inconsistent, and can lead to
sent value being burned. In the case that subsidyPool contains less Ether than
is sent in msg.value , msg.value is unused and remains in the contract. It may or
may not be added to subsidyPool , depending on the return status of the
random beacon:

keep-tecdsa/solidity/contracts/BondedECDSAKeepFactory.sol:L347-L357

https://github.com/keep-network/keep-ecdsa/pull/306

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 94/211

Recommendation

Rather than tracking the subsidyPool individually, simply distribute this.balance

to each new keep’s members.

5.23 keep-core - TokenGrant and TokenStaking allow
staking zero amount of tokens and front-running Medium
✓ Addressed

Resolution

Addressed with https://github.com/keep-network/keep-core/issues/1425
and keep-network/keep-core#1461 by requiring a hardcoded minimum
amount of tokens to be staked.

Description

Tokens are staked via the callback receiveApproval() which is normally invoked
when calling approveAndCall() . The method is not restricting who can initiate
the staking of tokens and relies on the fact that the token transfer to the
TokenStaking contract is pre-approved by the owner, otherwise, the call would

revert.

However, receiveApproval() allows the staking of a zero amount of tokens. The
only check performed on the number of tokens transferred is, that the token
holders balance covers the amount to be transferred. This check is both
relatively weak - having enough balance does not imply that tokens are

(bool success,) = address(randomBeacon).call.gas(400000).value(msg.value)(
 abi.encodeWithSignature(
 "requestRelayEntry(address,string,uint256)",
 address(this),
 "setGroupSelectionSeed(uint256)",
 callbackGas
)
);
if (!success) {
 subsidyPool += msg.value; // beacon is busy
}

https://github.com/keep-network/keep-core/issues/1425
https://github.com/keep-network/keep-core/pull/1461

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 95/211

approved for transfer - and does not cover the fact that someone can call the
method with a zero amount of tokens.

This way someone could create an arbitrary number of operators staking no
tokens at all. This passes the token balance check, token.transferFrom() will
succeed and an operator struct with a zero stake and arbitrary values for
operator, from, magpie, authorizer can be set. Finally, an event is emitted for a

zero stake.

An attacker could front-run calls to receiveApproval to block staking of a
legitimate operator by creating a zero stake entry for the operator before she
is able to. This vector might allow someone to permanently inconvenience an
operator’s address. To recover from this situation one could be forced to
cancelStake terminating the zero stake struct in order to call the contract with

the correct stake again.

The same issue exists for TokenGrant .

Examples

keep-core/contracts/solidity/contracts/TokenStaking.sol:L54-L81

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 96/211

Recommendation

Require tokens to be staked and explicitly disallow the zero amount of tokens
case. The balance check can be removed.

Note: Consider checking the calls return value or calling the contract via
SafeERC20 to support potentially broken tokens that do not revert in error

cases (token.transferFrom).

5.24 tbtc - Inconsistency between
increaseRedemptionFee and
provideRedemptionProof may create un-provable

redemptions Medium ✓ Addressed

/**
 * @notice Receives approval of token transfer and stakes the approved amount
 * @dev Makes sure provided token contract is the same one linked to this cont
 * @param _from The owner of the tokens who approved them to transfer.
 * @param _value Approved amount for the transfer and stake.
 * @param _token Token contract address.
 * @param _extraData Data for stake delegation. This byte array must have the
 * following values concatenated: Magpie address (20 bytes) where the rewards
 * are sent, operator's (20 bytes) address, authorizer (20 bytes) address.
 */
function receiveApproval(address _from, uint256 _value, address _token, byte
 require(ERC20Burnable(_token) == token, "Token contract must be the same
 require(_value <= token.balanceOf(_from), "Sender must have enough token
 require(_extraData.length == 60, "Stake delegation data must be provided

 address payable magpie = address(uint160(_extraData.toAddress(0)));
 address operator = _extraData.toAddress(20);
 require(operators[operator].owner == address(0), "Operator address is al
 address authorizer = _extraData.toAddress(40);

 // Transfer tokens to this contract.
 token.transferFrom(_from, address(this), _value);

 operators[operator] = Operator(_value, block.number, 0, _from, magpie, a
 ownerOperators[_from].push(operator);

 emit Staked(operator, _value);
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 97/211

Resolution

Issue addressed in keep-network/tbtc#522

Description

DepositRedemption.increaseRedemptionFee is used by signers to approve a signable
bitcoin transaction with a higher fee, in case the network is congested and
miners are not approving the lower-fee transaction.

Fee increases can be performed every 4 hours:

tbtc/implementation/contracts/deposit/DepositRedemption.sol:L225

In addition, each increase must increment the fee by exactly the initial
proposed fee:

tbtc/implementation/contracts/deposit/DepositRedemption.sol:L260-
L263

Outside of these two restrictions, there is no limit to the number of times
increaseRedemptionFee can be called. Over a 20-hour period, for example,
increaseRedemptionFee could be called 5 times, increasing the fee to
initialRedemptionFee * 5 . Over a 24-hour period, increaseRedemptionFee could be

called 6 times, increasing the fee to initialRedemptionFee * 6 .

Eventually, it is expected that a transaction will be submitted and mined. At
this point, anyone can call DepositRedemption.provideRedemptionProof , �inalizing the
redemption process and rewarding the signers. However,
provideRedemptionProof will fail if the transaction fee is too high:

require(block.timestamp >= _d.withdrawalRequestTime + TBTCConstants.getIncre

// Check that we're incrementing the fee by exactly the redeemer's initial fee
uint256 _previousOutputValue = DepositUtils.bytes8LEToUint(_previousOutputVa
_newOutputValue = DepositUtils.bytes8LEToUint(_newOutputValueBytes);
require(_previousOutputValue.sub(_newOutputValue) == _d.initialRedemptionFee

https://github.com/keep-network/tbtc/pull/522

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 98/211

tbtc/implementation/contracts/deposit/DepositRedemption.sol:L308

In the case that increaseRedemptionFee is called 6 times and the signers provide
a signature for this transaction, the transaction can be submitted and mined
but provideRedemptionProof for this will always fail. Eventually, a redemption
proof timeout will trigger the deposit into liquidation and the signers will be
punished.

Recommendation

Because it is di�icult to say with certainty that a 5x fee increase will always
ensure a transaction’s redeemability, the upper bound on fee bumps should
be removed from provideRedemptionProof .

This should be implemented in tandem with issue 5.37, so that signers cannot
provide a proof that bypasses increaseRedemptionFee �low to spend the highest
fee possible.

5.25 keep-tecdsa - keep cannot be closed if a members
bond was seized or fully reassigned Medium ✓ Addressed

Description

A keep cannot be closed if the bonds have been completely reassigned or
seized before, leaving at least one member with zero lockedBonds . In this case
closeKeep() will throw in freeMembersBonds() because the requirement in
keepBonding.freeBond is not satis�ied anymore (lockedBonds[bondID] > 0). As a result

of this, none of the potentially remaining bonds (reassign) are freed, the keep
stays active even though it should be closed.

Examples

keep-tecdsa/solidity/contracts/BondedECDSAKeep.sol:L373-L396

require((_d.utxoSize().sub(_fundingOutputValue)) <= _d.initialRedemptionFee

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 99/211

keep-tecdsa/solidity/contracts/KeepBonding.sol:L173-L190

/// @notice Releases the bond and moves the bond value to the operator's
/// unbounded value pool.
/// @dev Function requires that caller is the holder of the bond which is
/// being released.
/// @param operator Address of the bonded operator.
/// @param referenceID Reference ID of the bond.
function freeBond(address operator, uint256 referenceID) public {
 address holder = msg.sender;
 bytes32 bondID = keccak256(
 abi.encodePacked(operator, holder, referenceID)
);

 require(lockedBonds[bondID] > 0, "Bond not found");

 uint256 amount = lockedBonds[bondID];
 lockedBonds[bondID] = 0;
 unbondedValue[operator] = amount;
}

Recommendation

/// @notice Closes keep when owner decides that they no longer need it.
/// Releases bonds to the keep members. Keep can be closed only when
/// there is no signing in progress or requested signing process has timed out
/// @dev The function can be called by the owner of the keep and only is the
/// keep has not been closed already.
function closeKeep() external onlyOwner onlyWhenActive {
 require(
 !isSigningInProgress() || hasSigningTimedOut(),
 "Requested signing has not timed out yet"
);

 isActive = false;

 freeMembersBonds();

 emit KeepClosed();
}

/// @notice Returns bonds to the keep members.
function freeMembersBonds() internal {
 for (uint256 i = 0; i < members.length; i++) {
 keepBonding.freeBond(members[i], uint256(address(this)));
 }
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 100/211

Make sure the keep can be set to an end-state (closed/inactive) indicating its
end-of-life even if the bond has been seized before. Avoid throwing an
exception when freeing member bonds to avoid blocking the unlocking of
bonds.

5.26 tbtc - provideFundingECDSAFraudProof attempts
to burn non-existent funds Medium ✓ Addressed

Resolution

Addressed as https://github.com/keep-network/tbtc/issues/502 and
�ixed with keep-network/tbtc#523.

Description

The funding �low was recently changed from requiring the funder to provide
a bond that stays in the Deposit contract to forwarding the funds to the keep,
paying for the keep setup.

So at a high level, the funding bond was designed to ensure that
funders had some minimum skin in the game, so that DoSing
signers/the system was expensive. The upside was that we could
refund it in happy paths. Now that we’ve realized that opening the
keep itself will cost enough to prevent DoS, the concept of
refunding goes away entirely. We de�initely missed cleaning up the
funder handling in provideFundingECDSAFraudProof though.

Examples

tbtc/implementation/contracts/deposit/DepositFunding.sol:L170-L173

Recommendation

// If the funding timeout has elapsed, punish the funder too!
if (block.timestamp > _d.fundingProofTimerStart + TBTCConstants.getFundingTi
 address(0).transfer(address(this).balance); // Burn it all down (fire em
 _d.setFailedSetup();

https://github.com/keep-network/tbtc/issues/502
https://github.com/keep-network/tbtc/pull/523

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 101/211

Remove the line that attempts to punish the funder by burning the Deposit
contract balance which is zero due to recent changes in how the payment
provided with createNewDeposit is handled.

5.27 bitcoin-spv - Bitcoin output script length is not
checked in wpkhSpendSighash Medium Won't Fix

Resolution

Summa opted not to make this change. See https://github.com/summa-
tx/bitcoin-spv/issues/112 for details.

Description

CheckBitcoinSigs.wpkhSpendSighash calculates the sighash of a Bitcoin transaction.
Among its parameters, it accepts bytes memory _outpoint , which is a 36-byte
UTXO id consisting of a 32-byte transaction hash and a 4-byte output index.

The function in question should not accept an _outpoint that is not 36-bytes,
but no length check is made:

bitcoin-spv/solidity/contracts/CheckBitcoinSigs.sol:L130-L159

https://github.com/summa-tx/bitcoin-spv/issues/112

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 102/211

Recommendation

Check that _outpoint.length is 36.

5.28 tbtc - liquidationInitiator can block
purchaseSignerBondsAtAuction indefinitely Medium ✓ Addressed

Resolution

Addressed with https://github.com/keep-network/tbtc/issues/503 and
commits from keep-network/tbtc#524 switching from transfer to send .

function wpkhSpendSighash(
 bytes memory _outpoint, // 36 byte UTXO id
 bytes20 _inputPKH, // 20 byte hash160
 bytes8 _inputValue, // 8-byte LE
 bytes8 _outputValue, // 8-byte LE
 bytes memory _outputScript // lenght-prefixed output script
) internal pure returns (bytes32) {
 // Fixes elements to easily make a 1-in 1-out sighash digest
 // Does not support timelocks
 bytes memory _scriptCode = abi.encodePacked(
 hex"1976a914", // length, dup, hash160, pkh_length
 _inputPKH,
 hex"88ac"); // equal, checksig
 bytes32 _hashOutputs = abi.encodePacked(
 _outputValue, // 8-byte LE
 _outputScript).hash256();
 bytes memory _sighashPreimage = abi.encodePacked(
 hex"01000000", // version
 _outpoint.hash256(), // hashPrevouts
 hex"8cb9012517c817fead650287d61bdd9c68803b6bf9c64133dcab3e65b5a50cb9
 _outpoint, // outpoint
 _scriptCode, // p2wpkh script code
 _inputValue, // value of the input in 8-byte LE
 hex"00000000", // input nSequence
 _hashOutputs, // hash of the single output
 hex"00000000", // nLockTime
 hex"01000000" // SIGHASH_ALL
);
 return _sighashPreimage.hash256();
}

https://github.com/keep-network/tbtc/issues/503
https://github.com/keep-network/tbtc/pull/524

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 103/211

Description

When reporting a fraudulent proof the deposits liquidationInitiator is set to
the entity reporting and proo�ing the fraud. The deposit that is in a
*_liquidation_in_progress state can be bought by anyone at an auction calling
purchaseSignerBondsAtAuction .

Instead of receiving a share of the funds the liquidationInitiator can decide to
intentionally reject the funds by raising an exception causing
initiator.transfer(contractEthBalance) to throw, blocking the auction and forcing

the liquidation to fail. The deposit will stay in one of the
*_liquidation_in_progress states.

Examples

tbtc/implementation/contracts/deposit/DepositLiquidation.sol:L224-L276

/// @notice Closes an auction and purchases the signer bonds. Payout to bu
/// @dev For interface, reading auctionValue will give a past value. th
/// @param _d deposit storage pointer
function purchaseSignerBondsAtAuction(DepositUtils.Deposit storage _d) publi
 bool _wasFraud = _d.inFraudLiquidationInProgress();
 require(_d.inSignerLiquidation(), "No active auction");

 _d.setLiquidated();
 _d.logLiquidated();

 // send the TBTC to the TDT holder. If the TDT holder is the Vending Machi
 address tdtHolder = _d.depositOwner();

 TBTCToken _tbtcToken = TBTCToken(_d.TBTCToken);

 uint256 lotSizeTbtc = _d.lotSizeTbtc();
 require(_tbtcToken.balanceOf(msg.sender) >= lotSizeTbtc, "Not enough TBT

 if(tdtHolder == _d.VendingMachine){
 _tbtcToken.burnFrom(msg.sender, lotSizeTbtc); // burn minimal amoun
 }
 else{
 _tbtcToken.transferFrom(msg.sender, tdtHolder, lotSizeTbtc);
 }

 // Distribute funds to auction buyer
 uint256 _valueToDistribute = _d.auctionValue();
 msg.sender.transfer(_valueToDistribute);

 // Send any TBTC left to the Fee Rebate Token holder
 _d.distributeFeeRebate();

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 104/211

Recommendation

Use a pull vs push funds pattern or use address.send instead of address.transfer

which might leave some funds locked in the contract if it fails.

5.29 bitcoin-spv - verifyHash256Merkle allows
existence proofs for the same leaf in multiple locations in
the tree Medium Won't Fix

Resolution

Summa opted not to make this change, citing inconsistencies in Bitcoin’s
merkle implementation. See https://github.com/summa-tx/bitcoin-
spv/issues/108 for details.

Description

_ ();

 // For fraud, pay remainder to the liquidation initiator.
 // For non-fraud, split 50-50 between initiator and signers. if the transf
 // division will yield a 0 value which causes a revert; instead,
 // we simply ignore such a tiny amount and leave some wei dust in escrow
 uint256 contractEthBalance = address(this).balance;
 address payable initiator = _d.liquidationInitiator;

 if (initiator == address(0)){
 initiator = address(0xdead);
 }
 if (contractEthBalance > 1) {
 if (_wasFraud) {
 initiator.transfer(contractEthBalance);
 } else {
 // There will always be a liquidation initiator.
 uint256 split = contractEthBalance.div(2);
 _d.pushFundsToKeepGroup(split);
 initiator.transfer(split);
 }
 }
}

https://github.com/summa-tx/bitcoin-spv/issues/108

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 105/211

BTCUtils.verifyHash256Merkle is used by ValidateSPV.prove to validate a
transaction’s existence in a Bitcoin block. The function accepts as input a
_proof and an _index . The _proof consists of, in order: the transaction hash, a

list of intermediate nodes, and the merkle root.

The proof is performed iteratively, and uses the _index to determine whether
the next proof element represents a “left branch” or a “right branch:”

bitcoin-spv/solidity/contracts/BTCUtils.sol:L574-L586

If _idx is even, the computed hash is placed before the next proof element. If
_idx is odd, the computed hash is placed after the next proof element. After

each iteration, _idx is decremented by _idx /= 2 .

Because verifyHash256Merkle makes no requirements on the size of _proof

relative to _index , it is possible to pass in invalid values for _index that prove
a transaction’s existence in multiple locations in the tree.

Examples

By modifying existing tests, we showed that any transaction can be proven to
exist at least one alternate index. This alternate index is calculated as
(2 ** treeHeight) + prevIndex - though other alternate indices are possible. The

modi�ied test is below:

uint _idx = _index;
bytes32 _root = _proof.slice(_proof.length - 32, 32).toBytes32();
bytes32 _current = _proof.slice(0, 32).toBytes32();

for (uint i = 1; i < (_proof.length.div(32)) - 1; i++) {
 if (_idx % 2 == 1) {
 _current = _hash256MerkleStep(_proof.slice(i * 32, 32), abi.encodePa
 } else {
 _current = _hash256MerkleStep(abi.encodePacked(_current), _proof.sli
 }
 _idx = _idx >> 1;
}
return _current == _root;

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 106/211

it('verifies a bitcoin merkle root', async () => {
 for (let i = 0; i < verifyHash256Merkle.length; i += 1) {
 const res = await instance.verifyHash256Merkle(
 verifyHash256Merkle[i].input.proof,
 verifyHash256Merkle[i].input.index
); // 0-indexed
 assert.strictEqual(res, verifyHash256Merkle[i].output);

 // Now, attempt to use the same proof to verify the same leaf at
 // a different index in the tree:
 let pLen = verifyHash256Merkle[i].input.proof.length;
 let height = ((pLen - 2) / 64) - 2;

 // Only attempt to verify roots that are meant to be verified
 if (verifyHash256Merkle[i].output && height >= 1) {
 let altIdx = (2 ** height) + verifyHash256Merkle[i].input.index;

 const resNext = await instance.verifyHash256Merkle(
 verifyHash256Merkle[i].input.proof,
 altIdx
);

 assert.strictEqual(resNext, verifyHash256Merkle[i].output);

 console.log('Verified transaction twice!');
 }
 }
});

Recommendation

Use the length of _proof to determine the maximum allowed _index . _index

should satisfy the following criterion: _index < 2 ** (_proof.length.div(32) - 2) .

Note that subtraction by 2 accounts for the transaction hash and merkle root,
which are assumed to be encoded in the proof along with the intermediate
nodes.

5.30 keep-core - stake operator should not be eligible if
undelegatedAt is set Minor ✓ Addressed

Resolution

Addressed with https://github.com/keep-network/keep-core/issues/1433
by enforcing that stake must be canceled in initialization period.

https://github.com/keep-network/keep-core/issues/1433

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 107/211

undelegatedAt is intended to support undelegation in advance
at any given time. Whether we do < or <= is not actually
signi�icant, as transaction reordering also means ability to
include/not include transactions arbitrarily, but changing the
check to operator.UndelegatedAt == 0 would ruin e.g. the use-
case where Alice wants to delegate to Bob for 12 months. If we
don’t currently need that use-case, the check can be simpli�ied
to == 0.

Description

An operator’s stake should not be eligible if they stake an amount and
immediately call undelegate in an attempt to indicate that they are going to
recover their stake soon.

Examples

keep-core/contracts/solidity/contracts/TokenStaking.sol:L232-L236

Recommendation

A stake that is entering undelegation is indicated by operator.undelegatedAt

being non-zero. Change the notUndelegated check
block.number <= operator.undelegatedAt || operator.undelegatedAt == 0 to
operator.undelegatedAT == 0 as any value being set indicates that undelegation is

in progress.

Enforce that within the initialization period stake is canceled instead of being
undelegated.

5.31 keep-core - Specification inconsistency: TokenStaking
amount to be slashed/seized Minor ✓ Addressed

bool notUndelegated = block.number <= operator.undelegatedAt || operator.und

if (isAuthorized && isActive && notUndelegated) {
 balance = operator.amount;
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 108/211

Resolution

Partially addressed with https://github.com/keep-network/keep-
core/issues/1428 by ensuring that at least some stack is slashed. As
noted in the issue, the case where less than the minimum stake was
slashed from an operator is left unhandled with this �ix.

Description

The keep speci�ication states that slash and seize affect at least the amount
speci�ied or the remaining stake of a member.

Slash each operator in the list misbehavers by the speci�ied amount
(or their remaining stake, whichever is lower).

Punish each operator in the list misbehavers by the speci�ied
amount or their remaining stake.

The implementation, however, bails if one of the accounts does not have
enough stake to be slashed or seized because of the use of SafeMath.sub() .
This behavior is inconsistent with the speci�ication which states that
min(amount, misbehaver.stake) stake should be affected. The call to slash/seize

will revert and no stakes are affected. At max, the staked amount of the
lowest staker can be slashed/seized from every staker.

Implementing this method as stated in the speci�ication using
min(amount, misbehaver.stake) will cover the fact that slashing/seizing was only

partially successful. If misbehaver.stake is zero no error might be emitted even
though no stake was slashed/seized.

Examples

keep-core/contracts/solidity/contracts/TokenStaking.sol:L151-L195

https://github.com/keep-network/keep-core/issues/1428
http://docs.keep.network/random-beacon/#_staking_contract_slashing

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 109/211

Recommendation

/**
 * @dev Slash provided token amount from every member in the misbehaved
 * operators array and burn 100% of all the tokens.
 * @param amount Token amount to slash from every misbehaved operator.
 * @param misbehavedOperators Array of addresses to seize the tokens from.
 */
function slash(uint256 amount, address[] memory misbehavedOperators)
 public
 onlyApprovedOperatorContract(msg.sender) {
 for (uint i = 0; i < misbehavedOperators.length; i++) {
 address operator = misbehavedOperators[i];
 require(authorizations[msg.sender][operator], "Not authorized");
 operators[operator].amount = operators[operator].amount.sub(amount);
 }

 token.burn(misbehavedOperators.length.mul(amount));
}

/**
 * @dev Seize provided token amount from every member in the misbehaved
 * operators array. The tattletale is rewarded with 5% of the total seized
 * amount scaled by the reward adjustment parameter and the rest 95% is burned
 * @param amount Token amount to seize from every misbehaved operator.
 * @param rewardMultiplier Reward adjustment in percentage. Min 1% and 100% ma
 * @param tattletale Address to receive the 5% reward.
 * @param misbehavedOperators Array of addresses to seize the tokens from.
 */
function seize(
 uint256 amount,
 uint256 rewardMultiplier,
 address tattletale,
 address[] memory misbehavedOperators
) public onlyApprovedOperatorContract(msg.sender) {
 for (uint i = 0; i < misbehavedOperators.length; i++) {
 address operator = misbehavedOperators[i];
 require(authorizations[msg.sender][operator], "Not authorized");
 operators[operator].amount = operators[operator].amount.sub(amount);
 }

 uint256 total = misbehavedOperators.length.mul(amount);
 uint256 tattletaleReward = (total.mul(5).div(100)).mul(rewardMultiplier)

 token.transfer(tattletale, tattletaleReward);
 token.burn(total.sub(tattletaleReward));
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 110/211

Require that minimumStake has been provided and can be seized/slashed.
Update the documentation to re�lect the fact that the solution always
seizes/slashes minimumStake . Ensure that stakers cannot cancel their stake
while they are actively participating in the network.

5.32 keep-tecdsa - Change state-mutability of
checkSignatureFraud to view Minor ✓ Addressed

Resolution

Addressed as part of https://github.com/keep-network/keep-
tecdsa/issues/254 with commits from keep-network/keep-tecdsa#283
splitting the method into two parts: checkSignatureFraud declared view-only

and submitSignatureFraud which initiates slashing of signer stakes.

Description

BondedECDSAKeep.sol.submitSignatureFraud is not state-changing and should,
therefore, be declared with the function state-mutability view .

Examples

keep-tecdsa/solidity/contracts/BondedECDSAKeep.sol:L265-L290

https://github.com/keep-network/keep-tecdsa/issues/254
https://github.com/keep-network/keep-tecdsa/pull/283

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 111/211

function submitSignatureFraud(
 uint8 _v,
 bytes32 _r,
 bytes32 _s,
 bytes32 _signedDigest,
 bytes calldata _preimage
) external returns (bool _isFraud) {
 require(publicKey.length != 0, "Public key was not set yet");

 bytes32 calculatedDigest = sha256(_preimage);
 require(
 _signedDigest == calculatedDigest,
 "Signed digest does not match double sha256 hash of the preimage"
);

 bool isSignatureValid = publicKeyToAddress(publicKey) ==
 ecrecover(_signedDigest, _v, _r, _s);

 // Check if the signature is valid but was not requested.
 require(
 isSignatureValid && !digests[_signedDigest],
 "Signature is not fraudulent"
);

 return true;
}

Recommendation

Declare method as view . Consider renaming submitSignatureFraud to e.g.
checkSignatureFraud to emphasize that it is only checking the signature and not

actually changing state.

5.33 keep-core - Specification inconsistency:
TokenStaking.slash() is never called Minor ✓ Addressed

Resolution

Addressed with https://github.com/keep-network/keep-
tecdsa/issues/254 and changesets from keep-network/keep-tecdsa#283
by slashing the signer stakes when signature fraud is proven.

https://github.com/keep-network/keep-tecdsa/issues/254
https://github.com/keep-network/keep-tecdsa/pull/283

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 112/211

Description

According to the keep speci�ication stake should be slashed if a staker
violates the protocol:

Slashing If a staker violates the protocol of an operation in a way
which can be proven on-chain, they will be penalized by having
their stakes slashed.

While this functionality can only be called by the approved operator contract,
it is not being used throughout the system. In contrast seize() is being called
when reporting unauthorized signing or relay entry timeout.

Examples

keep-core/contracts/solidity/contracts/TokenStaking.sol:L151-L167

Recommendation

Implement slashing according to the speci�ication.

5.34 tbtc - Remove
notifyDepositExpiryCourtesyCall and allow
exitCourtesyCall exiting the courtesy call at term Minor
✓ Addressed

/**
 * @dev Slash provided token amount from every member in the misbehaved
 * operators array and burn 100% of all the tokens.
 * @param amount Token amount to slash from every misbehaved operator.
 * @param misbehavedOperators Array of addresses to seize the tokens from.
 */
function slash(uint256 amount, address[] memory misbehavedOperators)
 public
 onlyApprovedOperatorContract(msg.sender) {
 for (uint i = 0; i < misbehavedOperators.length; i++) {
 address operator = misbehavedOperators[i];
 require(authorizations[msg.sender][operator], "Not authorized");
 operators[operator].amount = operators[operator].amount.sub(amount);
 }

 token.burn(misbehavedOperators.length.mul(amount));
}

http://docs.keep.network/random-beacon/#_slashing

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 113/211

Resolution

Addressed with keep-network/tbtc#476 following the recommendation.

Description

Following a deep dive into state transitions with the client it was agreed that
notifyDepositExpiryCourtesyCall should be removed from the system as it is a

left-over of a previous version of the deposit contract.

Additionally, exitCourtesyCall should be callable at any time.

Examples

tbtc/implementation/contracts/deposit/DepositLiquidation.sol:L289-L298

Recommendation

Remove the notifyDepositExpiryCourtesyCall state transition and remove the
requirement on exitCourtesyCall being callable only before the deposit
expires.

5.35 keep-tecdsa - withdraw should check for zero value
transfer Minor ✓ Addressed

Resolution

/// @notice Goes from courtesy call to active
/// @dev Only callable if collateral is sufficient and the deposit is n
/// @param _d deposit storage pointer
function exitCourtesyCall(DepositUtils.Deposit storage _d) public {
 require(_d.inCourtesyCall(), "Not currently in courtesy call");
 require(block.timestamp <= _d.fundedAt + TBTCConstants.getDepositTerm(),
 require(getCollateralizationPercentage(_d) >= _d.undercollateralizedThre
 _d.setActive();
 _d.logExitedCourtesyCall();
}

https://github.com/keep-network/tbtc/pull/476

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 114/211

Addressed with https://github.com/keep-network/keep-
tecdsa/issues/280 by denying zero value withdrawals.

Description

Requesting the withdrawal of zero ETH in KeepBonding.withdraw should fail as
this would allow the method to succeed, calling the user-provided
destination even though the sender has no unbonded value.

Examples

keep-tecdsa/solidity/contracts/KeepBonding.sol:L78-L88

function withdraw(uint256 amount, address payable destination) public {
 require(
 unbondedValue[msg.sender] >= amount,
 "Insufficient unbonded value"
);

 unbondedValue[msg.sender] -= amount;

 (bool success,) = destination.call.value(amount)("");
 require(success, "Transfer failed");
}

And a similar instance in BondedECDSAKeep :

keep-tecdsa/solidity/contracts/BondedECDSAKeep.sol:L487-L498

/// @notice Withdraws amount of ether hold in the keep for the member.
/// The value is sent to the beneficiary of the specific member.
/// @param _member Keep member address.
function withdraw(address _member) external {
 uint256 value = memberETHBalances[_member];
 memberETHBalances[_member] = 0;

 /* solium-disable-next-line security/no-call-value */
 (bool success,) = tokenStaking.magpieOf(_member).call.value(value)("");

 require(success, "Transfer failed");
}

https://github.com/keep-network/keep-tecdsa/issues/280

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 115/211

Recommendation

Require that the amount to be withdrawn is greater than zero.

5.36 keep-core - TokenStaking owner should be protected
from slash() and seize() during initializationPeriod

Minor ✓ Addressed

Resolution

Addressed by https://github.com/keep-network/keep-core/issues/1426
and �ixed with keep-network/keep-core#1453.

Description

From the speci�ication:

Slashing If a staker violates the protocol of an operation in a way
which can be proven on-chain, they will be penalized by having
their stakes slashed.

The initialization period is a backoff time during which operator stakes are
not active nor eligible to receive work. Since they cannot misbehave they
should be protected from having their stake slashed or seized.

It should also be noted that slash() and seize() can be front-run during the
initializationPeriod by having the operator owner cancel the deposit before it
is being slashed or seized.

Recommendation

Require deposits to be in active state for being slashed or seized.

5.37 tbtc - Signer collusion may bypass
increaseRedemptionFee flow Minor ✓ Addressed

Resolution

https://github.com/keep-network/keep-core/issues/1426
https://github.com/keep-network/keep-core/pull/1453
http://docs.keep.network/random-beacon/#_staking

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 116/211

Issue addressed in keep-network/tbtc#522

Description

DepositRedemption.increaseRedemptionFee is used by signers to approve a
signable bitcoin transaction with a higher fee, in case the network is
congested and miners are not approving the lower-fee transaction.

Fee increases can be performed every 4 hours:

tbtc/implementation/contracts/deposit/DepositRedemption.sol:L225

In addition, each increase must increment the fee by exactly the initial
proposed fee:

tbtc/implementation/contracts/deposit/DepositRedemption.sol:L260-
L263

Outside of these two restrictions, there is no limit to the number of times
increaseRedemptionFee can be called. Over a 20-hour period, for example,
increaseRedemptionFee could be called 5 times, increasing the fee to
initialRedemptionFee * 5 .

Rather than calling increaseRedemptionFee 5 times over 20 hours, colluding
signers may immediately create and sign a transaction with a fee of
initialRedemptionFee * 5 , wait for it to be mined, then submit it to
provideRedemptionProof . Because provideRedemptionProof does not check that a

transaction signature signs an approved digest, interested parties would
need to monitor the bitcoin blockchain, notice the spend, and provide an
ECDSA fraud proof before provideRedemptionProof is called.

require(block.timestamp >= _d.withdrawalRequestTime + TBTCConstants.getIncre

// Check that we're incrementing the fee by exactly the redeemer's initial fee
uint256 _previousOutputValue = DepositUtils.bytes8LEToUint(_previousOutputVa
_newOutputValue = DepositUtils.bytes8LEToUint(_newOutputValueBytes);
require(_previousOutputValue.sub(_newOutputValue) == _d.initialRedemptionFee

https://github.com/keep-network/tbtc/pull/522

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 117/211

Recommendation

Track the latest approved fee, and ensure the transaction in
provideRedemptionProof does not include a higher fee.

5.38 tbtc - liquidating a deposit does not send the
complete remainder of the contract balance to recipients

Minor ✓ Addressed

Resolution

Addressed with https://github.com/keep-network/tbtc/issues/504 and
commits from keep-network/tbtc#524, transferring the remaining
balance of the contract to the initiator and switching from transfer

which might block the auction to send . We’d like to note that in case the
send fails funds might be locked in the contract.

Description

purchaseSignerBondsAtAuction might leave a wei in the contract if:

there is only one wei remaining in the contract

there is more than one wei remaining but the contract balance is odd.

Examples

contract balances must be > 1 wei otherwise no transfer is attempted

the division at line 271 �loors the result if dividing an odd balance. The
contract is sending floor(contract.balance / 2) to the keep group and
liquidationInitiator leaving one 1 in the contract.

tbtc/implementation/contracts/deposit/DepositLiquidation.sol:L266-L275

https://github.com/keep-network/tbtc/issues/504
https://github.com/keep-network/tbtc/pull/524

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 118/211

if (contractEthBalance > 1) {
 if (_wasFraud) {
 initiator.transfer(contractEthBalance);
 } else {
 // There will always be a liquidation initiator.
 uint256 split = contractEthBalance.div(2);
 _d.pushFundsToKeepGroup(split);
 initiator.transfer(split);
 }
}

Recommendation

De�ine a reasonable minimum amount when awarding the fraud reporter or
liquidation initiator. Alternatively, always transfer the contract balance. When
splitting the amount use the contract balance after the �irst transfer as the
value being sent to the second recipient. Use the presence of locked funds in
a contract as an error indicator unless funds were sent forcefully to the
contract.

5.39 tbtc - approveAndCall unused return parameter
Minor ✓ Addressed

Resolution

Addressed with https://github.com/keep-network/tbtc/issues/505 by
returning true instead of false .

Description

approveAndCall always returns false because the return value bool success is
never set.

Examples

tbtc/implementation/contracts/system/TBTCDepositToken.sol:L42-L54

https://github.com/keep-network/tbtc/issues/505

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 119/211

Recommendation

Return the correct success state.

5.40 bitcoin-spv - Unnecessary memory allocation in
BTCUtils Minor Pending

Resolution

The client provided feedback that this issue is not scheduled to be
addressed.

Description

BTCUtils makes liberal use of BytesLib.slice , which returns a freshly-allocated
slice of an existing bytes array. In many cases, the desired behavior is simply
to read a 32-byte slice of a byte array. As a result, the typical pattern used is:
bytesVar.slice(start, start + 32).toBytes32() .

This pattern introduces unnecessary complexity and memory allocation in a
critically important library: cloning a portion of the array, storing that clone in
memory, and then reading it from memory. A simpler alternative would be to
implement BytesLib.readBytes32(bytes _b, uint _idx) and other “memory-read”
functions.

/// @notice Set allowance for other address and notify.
/// Allows `_spender` to transfer the specified TDT
/// on your behalf and then ping the contract about it.
/// @dev The `_spender` should implement the `tokenRecipient` int
/// to receive approval notifications.
/// @param _spender Address of contract authorized to spend.
/// @param _tdtId The TDT they can spend.
/// @param _extraData Extra information to send to the approved contract.
function approveAndCall(address _spender, uint256 _tdtId, bytes memory _extr
 tokenRecipient spender = tokenRecipient(_spender);
 approve(_spender, _tdtId);
 spender.receiveApproval(msg.sender, _tdtId, address(this), _extraData);
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 120/211

Rather than moving the free memory pointer and redundantly reading,
storing, then re-reading memory, readBytes32 and similar functions would
perform a simple length check and mload directly from the desired index in
the array.

Examples

extractInputTxIdLE :

bitcoin-spv/solidity/contracts/BTCUtils.sol:L254-L260

verifyHash256Merkle :

bitcoin-spv/solidity/contracts/BTCUtils.sol:L574-L586

Recommendation

Implement BytesLib.readBytes32 and favor its use over the
bytesVar.slice(start, start + 32).toBytes32() pattern. Implement other memory-

read functions where possible, and avoid the use of slice .

/// @notice Extracts the outpoint tx id from an input
/// @dev 32 byte tx id
/// @param _input The input
/// @return The tx id (little-endian bytes)
function extractInputTxIdLE(bytes memory _input) internal pure returns (byte
 return _input.slice(0, 32).toBytes32();
}

uint _idx = _index;
bytes32 _root = _proof.slice(_proof.length - 32, 32).toBytes32();
bytes32 _current = _proof.slice(0, 32).toBytes32();

for (uint i = 1; i < (_proof.length.div(32)) - 1; i++) {
 if (_idx % 2 == 1) {
 _current = _hash256MerkleStep(_proof.slice(i * 32, 32), abi.encodePa
 } else {
 _current = _hash256MerkleStep(abi.encodePacked(_current), _proof.sli
 }
 _idx = _idx >> 1;
}
return _current == _root;

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 121/211

Note, too, that implementing this change in verifyHash256Merkle would allow
_hash256MerkleStep to accept 2 bytes32 inputs (rather than bytes), removing

additional unnecessary casting and memory allocation.

5.41 bitcoin-spv - ValidateSPV.validateHeaderChain
does not completely validate input Minor Won't Fix

Resolution

Summa opted not to make this change. See https://github.com/summa-
tx/bitcoin-spv/issues/111

Description

ValidateSPV.validateHeaderChain takes as input a sequence of Bitcoin headers and
calculates the total accumulated di�iculty across the entire sequence. The
input headers are checked to ensure they are relatively well-formed:

bitcoin-spv/solidity/contracts/ValidateSPV.sol:L173-L174

// Check header chain length
if (_headers.length % 80 != 0) {return ERR_BAD_LENGTH;}

However, the function lacks a check for nonzero length of _headers . Although
the total di�iculty returned would be zero, an explicit check would make this
more clear.

Recommendation

If headers.length is zero, return ERR_BAD_LENGTH

5.42 bitcoin-spv - unnecessary intermediate cast Minor
✓ Addressed

Resolution

https://github.com/summa-tx/bitcoin-spv/issues/111

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 122/211

Issue addressed in summa-tx/bitcoin-spv#123

Description

CheckBitcoinSigs.accountFromPubkey() casts the bytes32 keccack256 hash of the
pubkey to uint256 , then uint160 and then �inally to address while the

intermediate cast is not required.

Examples

bitcoin-spv/solidity/contracts/CheckBitcoinSigs.sol:L15-L25

Recommendation

The intermediate cast from uint256 to uint160 can be omitted. Refactor to
return address(uint256(_digest)) instead.

5.43 bitcoin-spv - unnecessary logic in
BytesLib.toBytes32() Minor ✓ Addressed

Resolution

Issue addressed in summa-tx/bitcoin-spv#125

Description

/// @notice Derives an Ethereum Account address from a pubkey
/// @dev The address is the last 20 bytes of the keccak256 of the
/// @param _pubkey The public key X & Y. Unprefixed, as a 64-byte array
/// @return The account address
function accountFromPubkey(bytes memory _pubkey) internal pure returns (addr
 require(_pubkey.length == 64, "Pubkey must be 64-byte raw, uncompressed

 // keccak hash of uncompressed unprefixed pubkey
 bytes32 _digest = keccak256(_pubkey);
 return address(uint160(uint256(_digest)));
}

https://github.com/summa-tx/bitcoin-spv/pull/123
https://github.com/summa-tx/bitcoin-spv/pull/125

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 123/211

The heavily used library function BytesLib.toBytes32() unnecessarily casts
_source to bytes (same type) and creates a copy of the dynamic byte array to

check it’s length, while this can be done directly on the user-provided
bytes _source .

Examples

bitcoin-spv/solidity/contracts/BytesLib.sol:L399-L408

Recommendation

5.44 bitcoin-spv - redundant functionality Minor Won't Fix

Resolution

Summa opted not to make this change. See https://github.com/summa-
tx/bitcoin-spv/issues/116 for details.

function toBytes32(bytes memory _source) pure internal returns (bytes32 resu
 bytes memory tempEmptyStringTest = bytes(_source);
 if (tempEmptyStringTest.length == 0) {
 return 0x0;
 }

 assembly {
 result := mload(add(_source, 32))
 }
}

function toBytes32(bytes memory _source) pure internal returns (bytes32 resu
 if (_source.length == 0) {
 return 0x0;
 }

 assembly {
 result := mload(add(_source, 32))
 }
 }

https://github.com/summa-tx/bitcoin-spv/issues/116

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 124/211

Description

The library exposes redundant implementations of bitcoins double sha256 .

Examples

solidity native implementation with an overzealous type correction issue
5.45

bitcoin-spv/solidity/contracts/BTCUtils.sol:L110-L116

assembly implementation

Note this implementation does not handle errors when staticcall’ing the
precompiled sha256 contract (private chains).

bitcoin-spv/solidity/contracts/BTCUtils.sol:L118-L129

Recommendation

We recommend providing only one implementation for calculating the
double sha256 as maintaining two interfaces for the same functionality is not

/// @notice Implements bitcoin's hash256 (double sha2)
/// @dev abi.encodePacked changes the return to bytes instead of b
/// @param _b The pre-image
/// @return The digest
function hash256(bytes memory _b) internal pure returns (bytes32) {
 return abi.encodePacked(sha256(abi.encodePacked(sha256(_b)))).toBytes32(
}

/// @notice Implements bitcoin's hash256 (double sha2)
/// @dev sha2 is precompiled smart contract located at address(2)
/// @param _b The pre-image
/// @return The digest
function hash256View(bytes memory _b) internal view returns (bytes32 res) {
 assembly {
 let ptr := mload(0x40)
 pop(staticcall(gas, 2, add(_b, 32), mload(_b), ptr, 32))
 pop(staticcall(gas, 2, ptr, 32, ptr, 32))
 res := mload(ptr)
 }
}

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 125/211

desirable. Furthermore, even though the assembly implementation is saving
gas, we recommend keeping the language provided implementation.

5.45 bitcoin-spv - unnecessary type correction Minor
✓ Addressed

Resolution

Issue addressed in summa-tx/bitcoin-spv#126

Description

The type correction encodePacked().toBytes32() is not needed as sha256 already
returns bytes32 .

Examples

bitcoin-spv/solidity/contracts/BTCUtils.sol:L114-L117

Recommendation

Refactor to return sha256(abi.encodePacked(sha256(_b))); to save gas.

5.46 tbtc - Restrict access to fallback function in
Deposit.sol Minor ✓ Addressed

Resolution

Issue addressed in keep-network/tbtc#526

Description

function hash256(bytes memory _b) internal pure returns (bytes32) {
 return abi.encodePacked(sha256(abi.encodePacked(sha256(_b)))).toBytes32(
}

https://github.com/summa-tx/bitcoin-spv/pull/126
https://github.com/keep-network/tbtc/pull/526

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 126/211

Deposit.sol has an empty, payable fallback function. It is unused except when
seizing signer bonds from BondedECDSAKeep .

Recommendation

So that Ether is not accidentally sent to a Deposit , have the fallback revert if
the sender is not the BondedECDSAKeep .

5.47 tbtc - Where possible, a specific contract type should
be used rather than address Minor ✓ Addressed

Resolution

This issue has been addressed with https://github.com/keep-
network/tbtc/issues/507 and keep-network/tbtc#542.

Description

Rather than storing address es and then casting to the known contract type,
it’s better to use the best type available so the compiler can check for type
safety.

Examples

TBTCSystem.priceFeed is of type address , but it could be type IBTCETHPriceFeed

instead. Not only would this give a little more type safety when deploying
new modules, but it would avoid repeated casts throughout the codebase of
the form IBTCETHPriceFeed(priceFeed) , IRelay(relay) , TBTCSystem() , and others.

tbtc/implementation/contracts/deposit/DepositUtils.sol:L25-L37

https://github.com/keep-network/tbtc/issues/507
https://github.com/keep-network/tbtc/pull/542

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 127/211

struct Deposit {

 // SET DURING CONSTRUCTION
 address TBTCSystem;
 address TBTCToken;
 address TBTCDepositToken;
 address FeeRebateToken;
 address VendingMachine;
 uint256 lotSizeSatoshis;
 uint8 currentState;
 uint256 signerFeeDivisor;
 uint128 undercollateralizedThresholdPercent;
 uint128 severelyUndercollateralizedThresholdPercent;

tbtc/implementation/contracts/proxy/DepositFactory.sol:L16-L28

contract DepositFactory is CloneFactory, TBTCSystemAuthority{

 // Holds the address of the deposit contract
 // which will be used as a master contract for cloning.
 address public masterDepositAddress;
 address public tbtcSystem;
 address public tbtcToken;
 address public tbtcDepositToken;
 address public feeRebateToken;
 address public vendingMachine;
 uint256 public keepThreshold;
 uint256 public keepSize;

Remediation

Where possible, use more speci�ic types instead of address . This goes for
parameter types as well as state variable types.

5.48 tbtc - Variable shadowing in DepositFactory Minor
✓ Addressed

Resolution

Issue addressed in keep-network/tbtc#512

https://github.com/keep-network/tbtc/pull/512

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 128/211

Description

DepositFactory inherits from TBTCSystemAuthority . Both contracts declare a state
variable with the same name, tbtcSystem .

tbtc/implementation/contracts/proxy/DepositFactory.sol:L21

address public tbtcSystem;

Recommendation

Remove the shadowed variable.

5.49 tbtc - Values may contain dirty lower-order bits Minor
 Pending

Resolution

This is being tracked as https://github.com/keep-
network/tbtc/issues/557.

Description

FundingScript and RedemptionScript use mload to cast the �irst bytes of a byte
array to bytes4 . Because mload deals with 32-byte chunks, the resulting
bytes4 value may contain dirty lower-order bits.

Examples

FundingScript.receiveApproval :

tbtc/implementation/contracts/scripts/FundingScript.sol:L38-L44

// Verify _extraData is a call to unqualifiedDepositToTbtc.
bytes4 functionSignature;
assembly { functionSignature := mload(add(_extraData, 0x20)) }
require(
 functionSignature == vendingMachine.unqualifiedDepositToTbtc.selector,
 "Bad _extraData signature. Call must be to unqualifiedDepositToTbtc."
);

https://github.com/keep-network/tbtc/issues/557

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 129/211

RedemptionScript.receiveApproval :

tbtc/implementation/contracts/scripts/RedemptionScript.sol:L39-L45

// Verify _extraData is a call to tbtcToBtc.
bytes4 functionSignature;
assembly { functionSignature := mload(add(_extraData, 0x20)) }
require(
 functionSignature == vendingMachine.tbtcToBtc.selector,
 "Bad _extraData signature. Call must be to tbtcToBtc."
);

Recommendation

Solidity truncates these unneeded bytes in the subsequent comparison
operations, so there is no action required. However, this is good to keep in
mind if these values are ever used for anything outside of strict comparison.

5.50 tbtc - Revert error string may be malformed Minor
 Pending

Resolution

This issue is being tracked as https://github.com/keep-
network/tbtc/issues/509.

Description

FundingScript handles an error from a call to VendingMachine like so.

tbtc/implementation/contracts/scripts/FundingScript.sol:L46-L52

// Call the VendingMachine.
// We could explictly encode the call to vending machine, but this would
// involve manually parsing _extraData and allocating variables.
(bool success, bytes memory returnData) = address(vendingMachine).call(
 _extraData
);
require(success, string(returnData));

https://github.com/keep-network/tbtc/issues/509

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 130/211

On a high-level revert, returnData will already include the typical “error
selector”. As FundingScript propagates this error message, it will add another
error selector, which may make it di�icult to read the error message.

The same issue is present in RedemptionScript :

tbtc/implementation/contracts/scripts/RedemptionScript.sol:L47-L52

Recommendation

Rather than adding an assembly-level revert to the affected contracts, ensure
nested error selectors are handled in external libraries.

5.51 tbtc - Where possible, use constant rather than state
variables Minor ✓ Addressed

Resolution

Issue addressed in keep-network/tbtc#513

Description

TBTCSystem uses a state variable for pausedDuration , but this value is never
changed.

tbtc/implementation/contracts/system/TBTCSystem.sol:L34

uint256 pausedDuration = 10 days;

(bool success, bytes memory returnData) = address(vendingMachine).call(_extr
// By default, `address.call` will catch any revert messages.
// Converting the `returnData` to a string will effectively forward any revert
// https://ethereum.stackexchange.com/questions/69133/forward-revert-message-f
// TODO: there's some noisy couple bytes at the beginning of the converted str
require(success, string(returnData));

https://github.com/keep-network/tbtc/pull/513

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 131/211

Recommendation

Consider using the constant keyword.

5.52 tbtc - Variable shadowing in TBTCDepositToken
constructor Minor ✓ Addressed

Resolution

Issue addressed in keep-network/tbtc#512

Description

TBTCDepositToken inherits from DepositFactoryAuthority , which has a single state
variable, _depositFactory . This variable is shadowed in the TBTCDepositToken

constructor.

tbtc/implementation/contracts/system/TBTCDepositToken.sol:L21-L26

constructor(address _depositFactory)
 ERC721Metadata("tBTC Deopsit Token", "TDT")
 DepositFactoryAuthority(_depositFactory)
public {
 // solium-disable-previous-line no-empty-blocks
}

Recommendation

Rename the parameter or state variable.

Appendix 1 - Code Quality
Recommendations
A.1.1 Possible faulty initialization process in
KeepRandomBeaconOperator

UPDATE: This recommendation has been addressed with the
following statement: genesis can only be called a second time after

https://github.com/keep-network/tbtc/pull/512

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 132/211

group selection has completed and the �irst group has timed out of
successfully completing its DKG. In this case, the system did not
successfully complete genesis, so running it again is desirable. It
can also be called if all of the beacon’s groups expire due to some
very long-running off-chain attack or malfunction; in these cases,
restarting the relay is again desirable.

KeepRandomBeaconOperator.genesis() may be callable multiple times if numberOfGroups

returns zero:

Consider switching to a boolean initialized variable, instead.

A.1.2 Incomplete/Outdated comment and TODO’s

UPDATE: This recommendation has been addressed with the
following statement: Review of outdated comments and TODOs is
being tracked in issue https://github.com/keep-
network/tbtc/issues/554.

Comments in the codebase suggest that the project is still undergoing heavy
development. Check comments for accuracy and review TODO’s.

Inaccurate natspec for duplicate @param _m . Other params are
undocumented.

 function genesis() public payable {
 require(numberOfGroups() == 0, "Groups exist");
 // Set latest added service contract as a group selection starter to
 groupSelectionStarterContract = ServiceContract(serviceContracts[ser
 startGroupSelection(_genesisGroupSeed, msg.value);
 }

https://github.com/keep-network/tbtc/issues/554

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 133/211

TODO’s

function approvedToLog(address _caller) public pure returns (bool) {
/* TODO: auth via system */
_caller;
return true;
}

while the di�iculty factor is actually set to 1.

// THIS IS THE INIT FUNCTION
/// @notice The system can spin up a new deposit
/// @dev This should be called by an approved contract, not a
/// @param _m m for m-of-n
/// @param _m n for m-of-n
/// @return True if successful, otherwise revert
function createNewDeposit(
 address _TBTCSystem,
 address _TBTCToken,
 address _TBTCDepositToken,
 address _FeeRebateToken,
 address _VendingMachine,
 uint256 _m,
 uint256 _n,
 uint256 _lotSize
) public onlyFactory payable returns (bool) {
 self.TBTCSystem = _TBTCSystem;
 self.TBTCToken = _TBTCToken;
 self.TBTCDepositToken = _TBTCDepositToken;
 self.FeeRebateToken = _FeeRebateToken;
 self.VendingMachine = _VendingMachine;
 self.createNewDeposit(_m, _n, _lotSize);
 return true;
}

/* TODO: make this better than 6 */
require(
_observedDiff >= _reqDiff.mul(TBTCConstants.getTxProofDifficultyFactor()
"Insufficient accumulated difficulty in header chain"
);

uint256 public constant TX_PROOF_DIFFICULTY_FACTOR = 1; // TODO: decreas

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 134/211

A.1.3 Code duplication

UPDATE: This recommendation has been addressed with the
following statement: In the interest of minimizing changes before
launch, we will not be making further maintenance-related
refactoring and deduplication a priority; however, they will be on
the roadmap for v2 before any additional changes and maintenance
work occur.

Duplicated or logically equivalent code can be hard to maintain. We therefore
recommend to avoid code duplication when feasible.

For example, in tBTC the contracts TBTCSystemAuthority and
VendingMachineAuthority are logically equivalent. Both variants implement a

subset of the functionality of openzeppelin’s Ownable . Instead of having to
maintain both variants it is recommended to create an abstracted version
that �its both use-cases. This also applies to DepositFactoryAuthority which
could be abstracted as an Ownable variant for proxies.

As another example, CloneFactory.sol lives as a copy in
keep-tecdsa/solidity/contracts and tbtc/implementation/contracts/proxy .

A.1.4 Variable naming

UPDATE: This recommendation has been addressed with the
following statement: We are making adjustments across the
codebase to align more completely to Solidity naming guidelines.

It is good practice to follow the solidity style guidelines and naming
conventions.

For example, the state variable VendingMachine might be mistaken as a contract
type due to the non-conformant variable naming. Note that VendingMachine is
also the name of a contract in the system.

contract VendingMachineAuthority {
 address internal VendingMachine;

 constructor(address _vendingMachine) public {
 VendingMachine = _vendingMachine;
 }

https://solidity.readthedocs.io/en/v0.5.15/style-guide.html#local-and-state-variable-names

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 135/211

A.1.5 Share interface definitions instead of re-defining
them

UPDATE: This recommendation has been addressed with the
following statement: As noted in A.1.3, we are largely not prioritizing
reducing code duplication at this stage until after mainnet launch.
However, the speci�ic example is being tracked in issue
https://github.com/keep-network/tbtc/issues/559.

Both tbtc/TBTCToken.sol and tbtc/TBTCDepositToken.sol declare the same interface
tokenRecipient . Code duplications can be hard to maintain. We, therefore,

suggest avoiding code duplications when possible.

A.1.6 Visually distinguish internal from public API

UPDATE: This recommendation has been addressed with the
following statement: We are looking into this across the codebase,
but do not anticipate the changes will land before a mainnet
release.

Methods and Functions usually live in one of two worlds:

public API - methods declared with visibility public or external exposed
for interaction by other parties

internal API - methods declared with visibility internal , private that are
not exposed for interaction by other parties

It is good practice to visually distinguish and internal functions from public
API by following commonly accepted naming convention e.g. by pre�ixing
internal functions with an underscore (_doSomething vs. doSomething) or adding
the keyword unsafe to unsafe functions that are not performing checks and
may have a dramatic effect to the system (_unsafePayout vs. RequestPayout).
Some development teams also prefer to separate publicly accessible

/**
 @dev Interface of recipient contract for approveAndCall pattern.
*/
interface tokenRecipient { function receiveApproval(address _from, uint256 _

https://github.com/keep-network/tbtc/issues/559

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 136/211

methods (contract API) from internal methods by keeping all public methods
grouped together (e.g. at the beginning of the contract).

A.1.7 Pin Solidity Version

UPDATE: This recommendation has been addressed with the
following statement: Solidity version pinning, and alignment in
versions across our systems, is being tracked in issues
https://github.com/keep-network/tbtc/issues/560,
https://github.com/keep-network/keep-ecdsa/issues/359, and
https://github.com/keep-network/keep-core/issues/1552.

Most of the �iles use a �loating pragma statement pragma solidity ^0.5.10; . We
recommend settling on the most recent version of Solidity 0.5.x.

A.1.8 Use of general-purpose third-party libraries (e.g.
SafeMath)

UPDATE: This recommendation has been addressed with the
following statement: We are looking into this across the codebase,
but do not anticipate all changes will necessarily land before a
mainnet release. The speci�ic switch from bitcoin-spv’s SafeMath to
OpenZeppelin’s is being tracked in issue https://github.com/keep-
network/tbtc/issues/558.

Make sure to use only use security audited versions of third-party libraries
with your codebase. Declare third-party libraries with the project’s
dependencies instead of copying them into your project. Copies of general
purpose libraries may easily get outdated and often end up never being
updated. This might leave the project vulnerable to security issues that are
�ixed in the upstream version already and should avoid that the codebase is
using two different or modi�ied versions of the same general-purpose library.

e.g. for SafeMath consider importing it from the openzeppelin-solidity
contract package. Avoid importing a copied version of SafeMath from
another third-party library (@summa-tx/bitcoin-spv-sol/contracts/SafeMath.sol) in
favor of importing it from the original source (
openzeppelin-solidity/contracts/math/SafeMath.sol).

https://github.com/keep-network/tbtc/issues/560
https://github.com/keep-network/keep-ecdsa/issues/359
https://github.com/keep-network/keep-core/issues/1552
https://github.com/keep-network/tbtc/issues/558

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 137/211

A.1.9 Use enums when referencing a predefined list of
contextual information

UPDATE: This recommendation has been addressed with the
following statement: We are looking into this across the codebase,
but do not anticipate all changes will necessarily land before a
mainnet release. Note that the speci�ic example was updated to use
enums in keep-network/keep-core#1463.

Increase compile-time checking and avoid errors from passing in invalid
constants, as well as document which values are available by de�ining
enumerations of allowed values.

For example, keep-core/Registry.sol de�ines three statis an operator contracts
can be in: DEFAULT , APPROVED , and DISABLED . Even though mentioned as a
comment they are being referred to by their integer literal instead of an
enum.

// The registry of operator contracts
// 0 - NULL (default), 1 - APPROVED, 2 - DISABLED
mapping(address => uint256) public operatorContracts;

A.1.10 Unused return values

UPDATE: This recommendation has been addressed with the
following statement: We are looking into this across the codebase,
but do not anticipate all changes will necessarily land before a
mainnet release.

Ignoring a method’s return value can lead to unexpected states or conditions
being overlooked. It is therefore recommended to always check a method’s
return value. In many cases, however, API is de�ined as returning a static

function approveOperatorContract(address operatorContract) public onlyRegist
 operatorContracts[operatorContract] = 1;
}

function disableOperatorContract(address operatorContract) public onlyPanicB
 operatorContracts[operatorContract] = 2;
}

https://github.com/keep-network/keep-core/pull/1463

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 138/211

success code (true) while throwing in any error condition. Since it can be
assumed that the method succeeded if it does not throw, returning a success
code can be omitted.

The following example of tbtc/DepositFactory.sol shows an instance of this
issue. deposit.createNewDeposit() throws on error, otherwise always returns
success. The return value, in this case, can be omitted.

tbtc/Deposit.sol and tbtc/DepositFunding.sol

 function createDeposit (uint256 _lotSize) public payable returns(address)
 address cloneAddress = createClone(masterDepositAddress);

 Deposit deposit = Deposit(address(uint160(cloneAddress)));
 deposit.initialize(address(this));
 deposit.createNewDeposit.value(msg.value)(
 tbtcSystem,
 tbtcToken,
 tbtcDepositToken,
 feeRebateToken,
 vendingMachine,
 keepThreshold,
 keepSize,
 _lotSize
);

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 139/211

Appendix 2 - Files in Scope
Our review covered the following �iles at the outset:

bitcoin-spv

File SHA-1 hash

bitcoin-
spv/solidity/contracts/BTCUtils.sol

c35c9ea329cc87ff74f1c5ce0c3
00a0d7db368e4

bitcoin-
spv/solidity/contracts/BytesLib.sol

2178fa49f897c2afe236478a9f4
559408ac8aa8a

bitcoin-
spv/solidity/contracts/SafeMath.sol

7462e2ec469c36913b6fc47baf
ef1749f29b1c88

bitcoin-
spv/solidity/contracts/BTCUtilsDelegat
e.sol

ea3bc8ef148ef4�b8daff8c4c26
0c24ff747e4b9

 // THIS IS THE INIT FUNCTION
 /// @notice The system can spin up a new deposit
 /// @dev This should be called by an approved contract, not a d
 /// @param _m m for m-of-n
 /// @param _m n for m-of-n
 /// @return True if successful, otherwise revert
 function createNewDeposit(
 address _TBTCSystem,
 address _TBTCToken,
 address _TBTCDepositToken,
 address _FeeRebateToken,
 address _VendingMachine,
 uint256 _m,
 uint256 _n,
 uint256 _lotSize
) public onlyFactory payable returns (bool) {
 self.TBTCSystem = _TBTCSystem;
 self.TBTCToken = _TBTCToken;
 self.TBTCDepositToken = _TBTCDepositToken;
 self.FeeRebateToken = _FeeRebateToken;
 self.VendingMachine = _VendingMachine;
 self.createNewDeposit(_m, _n, _lotSize);
 return true;
 }

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 140/211

File SHA-1 hash

bitcoin-
spv/solidity/contracts/CheckBitcoinSig
s.sol

e9624d00af1�bd377229fe7670
32eceec856232d

bitcoin-
spv/solidity/contracts/CheckBitcoinSig
sDelegate.sol

53c0a185f9c778df4c184921a3b
ec6f0c6c5f34b

bitcoin-
spv/solidity/contracts/ValidateSPV.sol

1a5fcca4dfe7b2c6ec41603044
522690563301da

bitcoin-
spv/solidity/contracts/ValidateSPVDele
gate.sol

1c0bfe67ec7d9c20192e1e940a
8101c0ac711511

tBTC

File SHA-1 Hash

tbtc/implementation/contracts/DepositL
og.sol

0b4097f3400f2b6bfd1783fa
9e31696beb23d1fe

tbtc/implementation/contracts/deposit/
DepositFunding.sol

c77af1cd7eb7422bc1365e20d
ca246a4ab3d0fcf

tbtc/implementation/contracts/system/T
BTCToken.sol

91a9c9663212800c7b1�bdb9
6868d3966ad65fe3

tbtc/implementation/contracts/system/V
endingMachineAuthority.sol

5e63aae00f82cd5c6c782314
9fc71196091f86f6

tbtc/implementation/contracts/system/T
BTCSystem.sol

2171736428af6abd9c31fde64f
e1c6accc5f86e1

tbtc/implementation/contracts/system/V
endingMachine.sol

17f16b793f5c0378f88680ff12
68a129b3e453e1

tbtc/implementation/contracts/system/T
BTCDepositToken.sol

2e926a39620647d72dbfd85
30e6d0324d6b8a0d3

tbtc/implementation/contracts/system/D
epositFactoryAuthority.sol

188311a48e8b7e4491d2b3b2
b7807a8ceaf2fa06

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 141/211

File SHA-1 Hash

tbtc/implementation/contracts/system/F
eeRebateToken.sol

0e977f37fca62daeed737e3db
1a755a192ca7390

tbtc/implementation/contracts/deposit/
TBTCConstants.sol

5b0fc693173bd612cba1cbba
a9d6f87101a5f9d5

tbtc/implementation/contracts/deposit/
DepositUtils.sol

7308079022c02b2e146466ff
e2acefdcf5e4afa8

tbtc/implementation/contracts/deposit/
DepositStates.sol

5ebaa3a0c9f708a98f653634
01a97408f0c06054

tbtc/implementation/contracts/interface
s/ITBTCSystem.sol

97a6241eea43fd6f319def225
89499111d2e3678

tbtc/implementation/contracts/deposit/
Deposit.sol

0449315750be89b5a74a02c
e11ec8c02cf9e8127

tbtc/implementation/contracts/deposit/
DepositLiquidation.sol

613be100e9f79a89647465117
17fc43f8f6b8333

tbtc/implementation/contracts/deposit/
OutsourceDepositLogging.sol

790c605150564a8963be57c
25730392a4877d8ce

tbtc/implementation/contracts/deposit/
DepositRedemption.sol

7ee02dd144011e257f2462�b8
d69a99f866753f1

tbtc/implementation/contracts/system/T
BTCSystemAuthority.sol

7924969f054ee6740de374eb
1ef1368f08f8c1c9

tbtc/implementation/contracts/proxy/De
positFactory.sol

26a280871b518490022b5276
3d3c83f4d12770ad

tbtc/implementation/contracts/proxy/Cl
oneFactory.sol

9044bc020f1d0132f5d408f9
5e645d6986074a18

tbtc/implementation/contracts/interface
s/IBTCETHPriceFeed.sol

d9d24818569427dbc4d644a
05a980d4df68adc14

tbtc/implementation/contracts/external/I
Medianizer.sol

957d66ee5fc768bf9ff7c4736
2050e532b3ae367

tbtc/implementation/contracts/price-
feed/BTCETHPriceFeed.sol

3658670d0d66b155cdf56e4
6ea0a9556c9b7ad0b

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 142/211

keep-tecdsa

File Name SHA-1 Hash

contracts/BondedECDSAKeep.sol
bc89cc51280d6c424fa76ac70afaca
59794bf8ce

contracts/BondedECDSAKeepFact
ory.sol

23d428253b1f70f12e98e791ff39547
edac898ad

contracts/BondedECDSAKeepVen
dor.sol

6397c7bac818add006ec5add72f72f
8ca77dee0d

contracts/BondedECDSAKeepVen
dorImplV1.sol

4314a3c1f5aff333db73426d35da9b
545e468347

contracts/CloneFactory.sol
7408e755f2f9eb6699c04b45a8c28
446041a3f73

contracts/KeepBonding.sol
a3b01f99c4fde8652f050a45fe2b4a
30c6fa4b9e

contracts/api/IBondedECDSAKeep
.sol

02624cb967aade2c5290cb13c9740
825e905b4de

contracts/api/IBondedECDSAKee
pFactory.sol

30d55d502d4ef0f5aadb812ab553c
6221cc1d633

contracts/api/IBondedECDSAKee
pVendor.sol

764019742ba132a75ddf1272cdeb0e
8a7ccb7f17

sortition-pools

File Name SHA-1 Hash

contracts/AbstractSortitionPool
.sol

7a4b163dcf5fd3ea8a9c74c5c219aadfc
6c007b9

contracts/BondedSortitionPool.
sol

3cde74fa4b63e4e9979dafc6418aa57a
c90ec798

contracts/BondedSortitionPool
Factory.sol

49706b318ace886b3b8bd0725d546e
ce329958b9

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 143/211

File Name SHA-1 Hash

contracts/Branch.sol
2571e8c19fe3f4764aa9feac8b37808f5
95bb407

contracts/DynamicArray.sol
ab6b782ce938cf958cc56e2c6b2a0f2
334715d18

contracts/GasStation.sol
790159120d85a0dbdbfe57f729b5ada5
72ebbaef

contracts/Interval.sol
1fab3c416d8261f42d35d53d37c77b64
4fa1e3c0

contracts/Leaf.sol
22b7bee520b77214b1f81b75e352f44a
d059ffc8

contracts/Position.sol
36cf18478fae2c9e22124d3ac52b5a05
0c7fe78b

contracts/RNG.sol
dc7862e02c56b9b033cc1db67fe19153
a1e38ba7

contracts/SortitionPool.sol
e8896237641128599842d0951f872163
2cfd061e

contracts/SortitionPoolFactory.
sol

56bcc990f6a8cb�bd877b06ca0df43a
7da21dd38

contracts/SortitionTree.sol
7d4d0fac5e8d8d1bea709280c442576
751f18b33

contracts/StackLib.sol
e91c�b78f3b90ca8b3a18f701356c565
a933e52e

contracts/api/IBondedSortition
Pool.sol

d9fd422dc4a6ca6323a0ba536cb65f3
3e44c3e1b

contracts/api/IBonding.sol
71b96ff01a2efdb09e6d24b7432484b9
a15a4a00

contracts/api/ISortitionPool.sol
709d56b46065c160042dcac8c2cb9a
42a1ea201c

contracts/api/IStaking.sol
9412ade9ccf9f0672875d1c94b49d230
dbbe4be1

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 144/211

keep-core

File Name SHA-1 Hash

keep-
core/contracts/solidity/contracts/cryptogra
phy/AltBn128.sol

0af848f5bdf3bc548160fe
bd4e12ae735c11b8cc

keep-
core/contracts/solidity/contracts/cryptogra
phy/BLS.sol

95f316615a6177e4f9f91fa5
28acf50b7e4bc490

keep-
core/contracts/solidity/contracts/DelayedWi
thdrawal.sol

ad8109961339eaf5ca8c4
5dcac1e7def56da55ca

keep-
core/contracts/solidity/contracts/KeepRand
omBeaconOperator.sol

206cb9399c1d4c7c86583
280c271996cc57bc2b0

keep-
core/contracts/solidity/contracts/KeepRand
omBeaconService.sol

280a810f174100a126db55
2d61f1ef01c5ae280d

keep-
core/contracts/solidity/contracts/KeepRand
omBeaconServiceImplV1.sol

8d23f4ef32aea55e5d83e1
6516fcee26b2dc7f68

keep-
core/contracts/solidity/contracts/KeepToke
n.sol

91f2bb61583f741b42641e0
3471f068b4a12cd8f

keep-
core/contracts/solidity/contracts/Registry.s
ol

e1b58dd981a5baa1233d79
9a4fa321bf8e7484c5

keep-
core/contracts/solidity/contracts/StakeDele
gatable.sol

0e469a07df4bb72e8806f
92b9d415fea49444c2a

keep-
core/contracts/solidity/contracts/TokenGran
t.sol

cf6b6befe786cfc1d09371
8f59e7e8b80439a170

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 145/211

File Name SHA-1 Hash

keep-
core/contracts/solidity/contracts/TokenStaki
ng.sol

02c0446475d84aaea7043
bbab976e0cfd33cbde8

keep-
core/contracts/solidity/contracts/libraries/o
perator/DKGResultVeri�ication.sol

132d1a7aa9c6d6c958db2
923936279986f643ac5

keep-
core/contracts/solidity/contracts/libraries/o
perator/GroupSelection.sol

8812a2027044f6a193cf6af
51a57fec7aed119be

keep-
core/contracts/solidity/contracts/libraries/o
perator/Groups.sol

ba8c30b6340966b3bf96
afd728c03193d858dd1e

keep-
core/contracts/solidity/contracts/libraries/o
perator/Reimbursements.sol

285de769e1f56d8c94a8b
ae1c0274f2c6052df8c

keep-
core/contracts/solidity/contracts/utils/Addre
ssArrayUtils.sol

85d9bf08c8628ec5ee453
28213a9c74cbdaf2b99

keep-
core/contracts/solidity/contracts/utils/ModU
tils.sol

ebf6ebc9647c6b699a06a
03d0d2fd4b717e65�b2

keep-
core/contracts/solidity/contracts/utils/Thro
wProxy.sol

fa012ba7589dc8b935048
b9b63978e6e3c244a61

keep-
core/contracts/solidity/contracts/utils/UintA
rrayUtils.sol

5d1210be�ba8fc72a8d46f
615bf9f3af510b3296

Appendix 3 - Artifacts
This section contains some of the artifacts generated during our review by
automated tools, the test suite, etc. If any issues or recommendations were

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 146/211

identi�ied by the output presented here, they have been addressed in the
appropriate section above.

A.3.1 MythX

MythX is a security analysis API for Ethereum smart contracts. It performs
multiple types of analysis, including fuzzing and symbolic execution, to
detect many common vulnerability types. The tool was used for automated
vulnerability discovery for all audited contracts and libraries. More details on
MythX can be found at mythx.io.

A.3.2 Ethlint

Ethlint is an open source project for linting Solidity
code. Only security-related issues were reviewed by
the audit team.

Below is the raw output of the Ethlint vulnerability
scan:

bitcoin-spv

https://mythx.io/

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 147/211

tBTC

solidity/contracts/BTCUtils.sol
 123:8 error Avoid using Inline Assembly. security/no-inline-assem

solidity/contracts/BytesLib.sol
 41:8 error Avoid using Inline Assembly.
 110:8 error Avoid using Inline Assembly.
 249:8 error Avoid using Inline Assembly.
 273:8 error Avoid using Inline Assembly.
 284:8 error Avoid using Inline Assembly.
 294:8 error Avoid using Inline Assembly.
 337:8 error Avoid using Inline Assembly.
 399:50 warning Visibility modifier "internal" should come before oth
 405:8 error Avoid using Inline Assembly.
 410:81 warning Visibility modifier "internal" should come before oth
 413:8 error Avoid using Inline Assembly.

solidity/contracts/CheckBitcoinSigs.sol
 177:10 error Only use indent of 12 spaces. indentation
 178:10 error Only use indent of 12 spaces. indentation
 179:10 error Only use indent of 12 spaces. indentation
 180:10 error Only use indent of 12 spaces. indentation
 181:10 error Only use indent of 12 spaces. indentation
 184:0 error Only use indent of 8 spaces. indentation
 196:6 error Only use indent of 8 spaces. indentation
 197:6 error Only use indent of 8 spaces. indentation
 198:6 error Only use indent of 8 spaces. indentation
 199:6 error Only use indent of 8 spaces. indentation
 200:6 error Only use indent of 8 spaces. indentation
 202:6 error Only use indent of 8 spaces. indentation

✖ 22 errors, 2 warnings found.

contracts/DepositLog.sol
 114:12 warning Avoid using 'block.timestamp'. security/no-block-m
 164:12 warning Avoid using 'block.timestamp'. security/no-block-m
 181:12 warning Avoid using 'block.timestamp'. security/no-block-m
 193:12 warning Avoid using 'block.timestamp'. security/no-block-m
 205:12 warning Avoid using 'block.timestamp'. security/no-block-m
 217:12 warning Avoid using 'block.timestamp'. security/no-block-m
 229:12 warning Avoid using 'block.timestamp'. security/no-block-m
 242:12 warning Avoid using 'block.timestamp'. security/no-block-m
 255:12 warning Avoid using 'block.timestamp'. security/no-block-m
 267:12 warning Avoid using 'block.timestamp'. security/no-block-m
 279:12 warning Avoid using 'block.timestamp'. security/no-block-m

contracts/deposit/Deposit.sol
128:1 warning Line contains trailing whitespace no-trailing-white

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 148/211

 128:1 warning Line contains trailing whitespace no trailing white
 130:7 warning Line contains trailing whitespace no-trailing-white
 136:1 warning Line contains trailing whitespace no-trailing-white

contracts/deposit/DepositFunding.sol
 69:37 warning Avoid using 'block.timestamp'. security/no-block-m
 99:12 warning Avoid using 'block.timestamp'. security/no-block-m
 121:36 warning Avoid using 'block.timestamp'. security/no-block-m
 135:12 warning Avoid using 'block.timestamp'. security/no-block-m
 171:12 warning Avoid using 'block.timestamp'. security/no-block-m
 176:40 warning Avoid using 'block.timestamp'. security/no-block-m
 190:12 warning Avoid using 'block.timestamp'. security/no-block-m
 294:22 warning Avoid using 'block.timestamp'. security/no-block-m

contracts/deposit/DepositLiquidation.sol
 90:34 warning Avoid using 'block.timestamp'. security/no-bloc
 93:8 warning Line contains trailing whitespace no-trailing-whit
 105:34 warning Avoid using 'block.timestamp'. security/no-bloc
 257:1 warning Line contains trailing whitespace no-trailing-whit
 258:1 warning Line contains trailing whitespace no-trailing-whit
 284:35 warning Avoid using 'block.timestamp'. security/no-bloc
 294:16 warning Avoid using 'block.timestamp'. security/no-bloc
 314:16 warning Avoid using 'block.timestamp'. security/no-bloc
 323:16 warning Avoid using 'block.timestamp'. security/no-bloc
 326:35 warning Avoid using 'block.timestamp'. security/no-bloc

contracts/deposit/DepositRedemption.sol
 50:38 warning Avoid using 'block.timestamp'. security/no-bloc
 127:35 warning Avoid using 'block.timestamp'. security/no-bloc
 159:4 warning Line contains trailing whitespace no-trailing-whit
 163:1 warning Line contains trailing whitespace no-trailing-whit
 225:16 warning Avoid using 'block.timestamp'. security/no-bloc
 238:35 warning Avoid using 'block.timestamp'. security/no-bloc
 357:16 warning Avoid using 'block.timestamp'. security/no-bloc
 366:16 warning Avoid using 'block.timestamp'. security/no-bloc

contracts/deposit/DepositStates.sol
 39:65 warning Operator "||" should be on the line where left side of
 58:67 warning Operator "||" should be on the line where left side of
 69:73 warning Operator "||" should be on the line where left side of
 80:52 warning Operator "||" should be on the line where left side of
 81:54 warning Operator "||" should be on the line where left side of
 92:50 warning Operator "||" should be on the line where left side of

contracts/deposit/DepositUtils.sol
 214:11 warning Avoid using 'block.timestamp'. security/no-bloc
 215:31 warning Avoid using 'block.timestamp'. security/no-bloc
 225:27 warning Avoid using 'block.timestamp'. security/no-bloc
 239:1 warning Line contains trailing whitespace no-trailing-whit
 240:1 warning Line contains trailing whitespace no-trailing-whit
 410:1 warning Line contains trailing whitespace no-trailing-whit
 429:1 warning Line contains trailing whitespace no-trailing-whit

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 149/211

keep-tecdsa

contracts/price-feed/BTCETHPriceFeed.sol
 18:25 warning Code contains empty block no-empty-blocks

contracts/price-feed/MockMedianizer.sol
 11:25 warning Code contains empty block no-empty-blocks
 28:43 warning Code contains empty block no-empty-blocks
 31:43 warning Code contains empty block no-empty-blocks

contracts/proxy/DepositFactory.sol
 29:1 warning Line contains trailing whitespace no-trailing-whites

contracts/scripts/FundingScript.sol
 40:8 error Avoid using Inline Assembly. security/no-
 49:74 warning Avoid using low-level function 'call'. security/no-

contracts/scripts/RedemptionScript.sol
 14:4 warning Line contains trailing whitespace no-trailing-
 41:8 error Avoid using Inline Assembly. security/no-
 47:74 warning Avoid using low-level function 'call'. security/no-

contracts/system/TBTCDepositToken.sol
 21:1 warning Line contains trailing whitespace no-trailing-whites

contracts/system/TBTCSystem.sol
 89:1 warning Line contains trailing whitespace no-trailing-whit
 92:26 warning Avoid using 'block.timestamp'. security/no-bloc
 101:16 warning Avoid using 'block.timestamp'. security/no-bloc
 108:16 warning Avoid using 'block.timestamp'. security/no-bloc
 110:31 warning Avoid using 'block.timestamp'. security/no-bloc

contracts/system/VendingMachine.sol
 19:1 warning Line contains trailing whitespace no-trailing-whites

✖ 2 errors, 68 warnings found.

contracts/BondedECDSAKeep.sol
 194:12 warning Avoid using 'block.timestamp'. security/no-block-m

contracts/KeepBonding.sol
 63:10 error Only use indent of 12 spaces.
 86:39 error Consider using 'transfer' in place of 'call.value()'.
 220:39 error Consider using 'transfer' in place of 'call.value()'.

contracts/api/IBondedECDSAKeep.sol
 55:0 error Only use indent of 4 spaces. indentation

✖ 4 errors, 1 warning found.

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 150/211

sortition-pools

keep-core

contracts/AbstractSortitionPool.sol
 155:12 warning Assignment operator must have exactly single space on

✖ 1 warning found.

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 151/211

A.3.3 Surya

Surya is a utility tool for smart contract systems. It provides a number of
visual outputs and information about the structure of smart contracts. It also

contracts/DelayedWithdrawal.sol
 21:29 warning Avoid using 'block.timestamp'.
 29:16 warning Avoid using 'block.timestamp'.
 34:33 error Consider using 'transfer' in place of 'call.value()'.

contracts/KeepRandomBeaconOperator.sol
 237:63 error Consider using 'transfer' in place of 'call.value()'.
 377:19 error Consider using 'transfer' in place of 'call.value()'.
 385:19 error Consider using 'transfer' in place of 'call.value()'.
 486:45 error Consider using 'transfer' in place of 'call.value()'.
 508:8 warning Line exceeds the limit of 145 characters
 707:62 error Consider using 'transfer' in place of 'call.value()'.

contracts/KeepRandomBeaconServiceImplV1.sol
 287:42 error Consider using 'transfer' in place of 'call.value()'.
 331:47 warning Avoid using low-level function 'call'.

contracts/TokenGrant.sol
 182:8 warning Line contains trailing whitespace no
 238:12 warning Avoid using 'now' (alias to 'block.timestamp'). se
 240:19 warning Avoid using 'now' (alias to 'block.timestamp'). se
 243:31 warning Avoid using 'now' (alias to 'block.timestamp'). se

contracts/TokenStaking.sol
 157:1 warning Line contains trailing whitespace no-trailing-white

contracts/cryptography/AltBn128.sol
 118:2 warning Line contains trailing whitespace no-trailing-white
 120:8 warning Line contains trailing whitespace no-trailing-white
 358:7 warning Line contains trailing whitespace no-trailing-white

contracts/libraries/operator/Groups.sol
 405:8 error Avoid using Inline Assembly. security/no-inline-assem

contracts/libraries/operator/Reimbursements.sol
 48:19 error Consider using 'transfer' in place of 'call.value()'.
 58:19 error Consider using 'transfer' in place of 'call.value()'.

contracts/utils/UintArrayUtils.sol
 6:1 warning Line contains trailing whitespace no-trailing-whitesp

✖ 10 errors, 13 warnings found.

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 152/211

supports querying the function call graph in multiple ways to aid in the
manual inspection and control �low analysis of contracts.

Below is a complete list of functions with their visibility and modi�iers:

Contracts Description Table

Legend

Symbol Meaning

🛑 Function can modify state

💵 Function is payable

bitcoin-spv

Contract Type Bases

└
Function

Name
Visibility Mutability Modi�iers

BTCUtils Library

└
determineVarI
ntDataLength

Internal 🔒

└
reverseEndian

ness
Internal 🔒

└
reverseUint25

6
Internal 🔒

└ bytesToUint Internal 🔒

└ lastBytes Internal 🔒

└ hash160 Internal 🔒

└ hash256 Internal 🔒

└ hash256View Internal 🔒

└
extractInputA

tIndex
Internal 🔒

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 153/211

Contract Type Bases

└ isLegacyInput Internal 🔒

└
determineInp

utLength
Internal 🔒

└
extractSeque
nceLELegacy

Internal 🔒

└
extractSeque

nceLegacy
Internal 🔒

└
extractScript

Sig
Internal 🔒

└
extractScript

SigLen
Internal 🔒

└
extractSeque
nceLEWitness

Internal 🔒

└
extractSeque
nceWitness

Internal 🔒

└
extractOutpoi

nt
Internal 🔒

└
extractInputT

xIdLE
Internal 🔒

└
extractInputT

xId
Internal 🔒

└
extractTxInde

xLE
Internal 🔒

└
extractTxInde

x
Internal 🔒

└
determineOut

putLength
Internal 🔒

└
extractOutput

AtIndex
Internal 🔒

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 154/211

Contract Type Bases

└
extractOutput

ScriptLen
Internal 🔒

└
extractValueL

E
Internal 🔒

└ extractValue Internal 🔒

└
extractOpRet

urnData
Internal 🔒

└ extractHash Internal 🔒

└ validateVin Internal 🔒

└ validateVout Internal 🔒

└
extractMerkle

RootLE
Internal 🔒

└
extractMerkle

RootBE
Internal 🔒

└ extractTarget Internal 🔒

└
calculateDi�ic

ulty
Internal 🔒

└
extractPrevBl

ockLE
Internal 🔒

└
extractPrevBl

ockBE
Internal 🔒

└
extractTimest

ampLE
Internal 🔒

└
extractTimest

amp
Internal 🔒

└
extractDi�icul

ty
Internal 🔒

└
_hash256Mer

kleStep
Internal 🔒

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 155/211

Contract Type Bases

└
verifyHash25

6Merkle
Internal 🔒

└
retargetAlgori

thm
Internal 🔒

BytesLib Library

└ concat Internal 🔒

└
concatStorag

e
Internal 🔒 🛑

└ slice Internal 🔒

└ toAddress Internal 🔒

└ toUint Internal 🔒

└ equal Internal 🔒

└ equalStorage Internal 🔒

└ toBytes32 Internal 🔒

└
keccak256Sli

ce
Internal 🔒

SafeMath Library

└ mul Internal 🔒

└ div Internal 🔒

└ sub Internal 🔒

└ add Internal 🔒

BTCUtilsDele
gate

Library

└
determineVarI
ntDataLength

Public ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 156/211

Contract Type Bases

└
reverseEndian

ness
Public ❗ NO❗

└ bytesToUint Public ❗ NO❗

└ lastBytes Public ❗ NO❗

└ hash160 Public ❗ NO❗

└ hash256 Public ❗ NO❗

└
extractInputA

tIndex
Public ❗ NO❗

└ isLegacyInput Public ❗ NO❗

└
determineInp

utLength
Public ❗ NO❗

└
extractSeque
nceLELegacy

Public ❗ NO❗

└
extractSeque

nceLegacy
Public ❗ NO❗

└
extractScript

Sig
Public ❗ NO❗

└
extractScript

SigLen
Public ❗ NO❗

└
extractSeque
nceLEWitness

Public ❗ NO❗

└
extractSeque
nceWitness

Public ❗ NO❗

└
extractOutpoi

nt
Public ❗ NO❗

└
extractInputT

xIdLE
Public ❗ NO❗

└
extractInputT

xId
Public ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 157/211

Contract Type Bases

└
extractTxInde

xLE
Public ❗ NO❗

└
extractTxInde

x
Public ❗ NO❗

└
determineOut

putLength
Public ❗ NO❗

└
extractOutput

AtIndex
Public ❗ NO❗

└
extractOutput

ScriptLen
Public ❗ NO❗

└
extractValueL

E
Public ❗ NO❗

└ extractValue Public ❗ NO❗

└
extractOpRet

urnData
Public ❗ NO❗

└ extractHash Public ❗ NO❗

└ validateVin Public ❗ NO❗

└ validateVout Public ❗ NO❗

└
extractMerkle

RootLE
Public ❗ NO❗

└
extractMerkle

RootBE
Public ❗ NO❗

└ extractTarget Public ❗ NO❗

└
calculateDi�ic

ulty
Public ❗ NO❗

└
extractPrevBl

ockLE
Public ❗ NO❗

└
extractPrevBl

ockBE
Public ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 158/211

Contract Type Bases

└
extractTimest

ampLE
Public ❗ NO❗

└
extractTimest

amp
Public ❗ NO❗

└
extractDi�icul

ty
Public ❗ NO❗

└
_hash256Mer

kleStep
Public ❗ NO❗

└
verifyHash25

6Merkle
Public ❗ NO❗

└
retargetAlgori

thm
Public ❗ NO❗

CheckBitcoin
Sigs

Library

└
accountFrom

Pubkey
Internal 🔒

└
p2wpkhFrom

Pubkey
Internal 🔒

└ checkSig Internal 🔒

└
checkBitcoin

Sig
Internal 🔒

└
isSha256Prei

mage
Internal 🔒

└
isKeccak256P

reimage
Internal 🔒

└
wpkhSpendSi

ghash
Internal 🔒

└
wpkhToWpkh

Sighash
Internal 🔒

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 159/211

Contract Type Bases

└
oneInputOne
OutputSighas

h
Internal 🔒

CheckBitcoin
SigsDelegate

Library

└
accountFrom

Pubkey
Public ❗ NO❗

└
p2wpkhFrom

Pubkey
Public ❗ NO❗

└ checkSig Public ❗ NO❗

└
checkBitcoin

Sig
Public ❗ NO❗

└
isSha256Prei

mage
Public ❗ NO❗

└
isKeccak256P

reimage
Public ❗ NO❗

└
oneInputOne
OutputSighas

h
Public ❗ NO❗

ValidateSPV Library

└
getErrBadLen

gth
Internal 🔒

└
getErrInvalid

Chain
Internal 🔒

└
getErrLowWor

k
Internal 🔒

└ prove Internal 🔒

└ calculateTxId Internal 🔒

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 160/211

Contract Type Bases

└ parseInput Internal 🔒

└ parseOutput Internal 🔒

└ parseHeader Internal 🔒

└
validateHead

erChain
Internal 🔒

└
validateHead

erWork
Internal 🔒

└
validateHead
erPrevHash

Internal 🔒

ValidateSPV
Delegate

Library

└
getErrBadLen

gth
Public ❗ NO❗

└
getErrInvalid

Chain
Public ❗ NO❗

└
getErrLowWor

k
Public ❗ NO❗

└ prove Public ❗ NO❗

└ calculateTxId Public ❗ NO❗

└ parseInput Public ❗ NO❗

└ parseOutput Public ❗ NO❗

└ parseHeader Public ❗ NO❗

└
validateHead

erChain
Public ❗ NO❗

└
validateHead

erWork
Public ❗ NO❗

└
validateHead
erPrevHash

Public ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 161/211

tBTC

Contract Type Bases

└
Function

Name
Visibility Mutability Modi�iers

DepositLo
g

Implementati
on

└
approvedToL

og
Public ❗ NO❗

└ logCreated Public ❗ 🛑 NO❗

└
logRedempti
onRequested

Public ❗ 🛑 NO❗

└
logGotRedem
ptionSignatur

e
Public ❗ 🛑 NO❗

└
logRegistere

dPubkey
Public ❗ 🛑 NO❗

└
logSetupFaile

d
Public ❗ 🛑 NO❗

└
logFraudDuri

ngSetup
Public ❗ 🛑 NO❗

└ logFunded Public ❗ 🛑 NO❗

└
logCourtesyC

alled
Public ❗ 🛑 NO❗

└
logStartedLiq

uidation
Public ❗ 🛑 NO❗

└
logRedeeme

d
Public ❗ 🛑 NO❗

└ logLiquidated Public ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 162/211

Contract Type Bases

└
logExitedCou

rtesyCall
Public ❗ 🛑 NO❗

DepositFu
nding

Library

└
fundingTeard

own
Internal 🔒 🛑

└
fundingFraud

Teardown
Internal 🔒 🛑

└
createNewDe

posit
Public ❗ 🛑 NO❗

└
partiallySlash
ForFraudInFu

nding
Internal 🔒 🛑

└
distributeSig
nerBondsToF

under
Internal 🔒 🛑

└
notifySignerS

etupFailure
Public ❗ 🛑 NO❗

└
retrieveSigne

rPubkey
Public ❗ 🛑 NO❗

└
notifyFundin

gTimeout
Public ❗ 🛑 NO❗

└
provideFundi
ngECDSAFra

udProof
Public ❗ 🛑 NO❗

└
notifyFraudFu
ndingTimeou

t
Public ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 163/211

Contract Type Bases

└
provideFraud
BTCFundingP

roof
Public ❗ 🛑 NO❗

└
provideBTCF
undingProof

Public ❗ 🛑 NO❗

tokenReci
pient

Interface

└
receiveAppro

val
External ❗ 🛑 NO❗

TBTCToke
n

Implementati
on

ERC20Detaile
d, ERC20,

VendingMachi
neAuthority

└ Public ❗ 🛑

ERC20Det
ailed

VendingM
achineAut

hority

└ mint Public ❗ 🛑
onlyVendi
ngMachin

e

└ burnFrom Public ❗ 🛑 NO❗

└ burn Public ❗ 🛑 NO❗

└
approveAndC

all
Public ❗ 🛑 NO❗

VendingM
achineAut

hority

Implementati
on

└ Public ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 164/211

Contract Type Bases

TBTCSyst
em

Implementati
on

Ownable,
ITBTCSystem,

DepositLog

└ Public ❗ 🛑 NO❗

└ initialize External ❗ 🛑 onlyOwner

└
getAllowNew

Deposits
External ❗ NO❗

└
emergencyPa
useNewDepo

sits
External ❗ 🛑 onlyOwner

└
resumeNewD

eposits
Public ❗ 🛑 NO❗

└
getRemainin
gPauseTerm

Public ❗ NO❗

└
setSignerFee

Divisor
External ❗ 🛑 onlyOwner

└
getSignerFee

Divisor
External ❗ NO❗

└ setLotSizes External ❗ 🛑 onlyOwner

└
getAllowedLo

tSizes
External ❗ NO❗

└
isAllowedLot

Size
External ❗ NO❗

└
setCollaterali
zationThresh

olds
External ❗ 🛑 onlyOwner

└

getUndercoll
ateralizedThr
esholdPercen

t

External ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 165/211

Contract Type Bases

└

getSeverelyU
ndercollateral
izedThreshol

dPercent

External ❗ NO❗

└
getInitialColla
teralizedPerc

ent
External ❗ NO❗

└
fetchBitcoinP

rice
External ❗ NO❗

└
fetchRelayCu
rrentDi�iculty

External ❗ NO❗

└
fetchRelayPre
viousDi�icult

y
External ❗ NO❗

└
createNewDe
positFeeEsti

mate
External ❗ 🛑 NO❗

└
requestNewK

eep
External ❗ 💵 NO❗

VendingM
achine

Implementati
on

TBTCSystemA
uthority

└ Public ❗ 🛑
TBTCSyste
mAuthorit

y

└
setExternalAd

dresses
Public ❗ 🛑

onlyTbtcS
ystem

└ isQuali�ied Public ❗ NO❗

└ tbtcToTdt Public ❗ 🛑 NO❗

└ tdtToTbtc Public ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 166/211

Contract Type Bases

└
unquali�iedD
epositToTbtc

Public ❗ 🛑 NO❗

└ tbtcToBtc Public ❗ 🛑 NO❗

TBTCDepo
sitToken

Implementati
on

ERC721Metad
ata,

DepositFactor
yAuthority

└ Public ❗ 🛑
ERC721Me

tadata

└ mint Public ❗ 🛑
onlyFactor

y

└ exists Public ❗ NO❗

└
approveAndC

all
Public ❗ 🛑 NO❗

tokenReci
pient

Interface

└
receiveAppro

val
External ❗ 🛑 NO❗

DepositFa
ctoryAuth

ority

Implementati
on

└ initialize Public ❗ 🛑 NO❗

FeeRebate
Token

Implementati
on

ERC721Metad
ata,

VendingMachi
neAuthority

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 167/211

Contract Type Bases

└ Public ❗ 🛑

ERC721Me
tadata

VendingM
achineAut

hority

└ mint Public ❗ 🛑
onlyVendi
ngMachin

e

└ exists Public ❗ NO❗

TBTCCons
tants

Library

└
getBene�iciar
yRewardDivis

or
Public ❗ NO❗

└
getSatoshiMu

ltiplier
Public ❗ NO❗

└
getFundingFr
audPartialSla

shDivisor
Public ❗ NO❗

└
getDepositTe

rm
Public ❗ NO❗

└
getTxProofDi
�icultyFactor

Public ❗ NO❗

└
getSignature

Timeout
Public ❗ NO❗

└
getIncreaseF

eeTimer
Public ❗ NO❗

└
getRedempti
onProofTime

out
Public ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 168/211

Contract Type Bases

└
getMinimum
RedemptionF

ee
Public ❗ NO❗

└
getFundingTi

meout
Public ❗ NO❗

└
getSigningGr
oupFormatio

nTimeout
Public ❗ NO❗

└
getFraudFun
dingTimeout

Public ❗ NO❗

└
getCourtesy
CallTimeout

Public ❗ NO❗

└
getAuctionDu

ration
Public ❗ NO❗

└
getAuctionBa
sePercentage

Public ❗ NO❗

└
getPermitted

FeeBumps
Public ❗ NO❗

DepositUti
ls

Library

└
currentBlock

Di�iculty
Public ❗ NO❗

└
previousBloc

kDi�iculty
Public ❗ NO❗

└
evaluateProof

Di�iculty
Public ❗ NO❗

└
checkProofFr

omTxId
Public ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 169/211

Contract Type Bases

└
�indAndParse
FundingOutp

ut
Public ❗ NO❗

└
validateAndP
arseFundingS

PVProof
Public ❗ NO❗

└
remainingTer

m
Public ❗ NO❗

└ auctionValue Public ❗ NO❗

└ lotSizeTbtc Public ❗ NO❗

└ signerFee Public ❗ NO❗

└
auctionTBTC

Amount
Public ❗ NO❗

└
determineCo
mpressionPre

�ix
Public ❗ NO❗

└
compressPub

key
Public ❗ NO❗

└ signerPubkey Public ❗ NO❗

└ signerPKH Public ❗ NO❗

└ utxoSize Public ❗ NO❗

└
fetchBitcoinP

rice
Public ❗ NO❗

└
fetchBondAm

ount
Public ❗ NO❗

└
bytes8LEToUi

nt
Public ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 170/211

Contract Type Bases

└
wasDigestAp
provedForSig

ning
Public ❗ NO❗

└
feeRebateTok

enHolder
Public ❗ NO❗

└
depositOwne

r
Public ❗ NO❗

└
redemptionT

eardown
Public ❗ 🛑 NO❗

└
seizeSignerB

onds
Internal 🔒 🛑

└
distributeFee

Rebate
Internal 🔒 🛑

└
pushFundsTo
KeepGroup

Internal 🔒 🛑

└

getOwnerRe
demptionTbt
cRequiremen

t

Internal 🔒

└
getRedempti
onTbtcRequir

ement
Internal 🔒

DepositSt
ates

Library

└ inFunding Public ❗ NO❗

└
inFundingFail

ure
Public ❗ NO❗

└
inSignerLiqui

dation
Public ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 171/211

Contract Type Bases

└
inRedemptio

n
Public ❗ NO❗

└ inEndState Public ❗ NO❗

└
inRedeemabl

eState
Public ❗ NO❗

└ inStart Public ❗ NO❗

└
inAwaitingSig

nerSetup
External ❗ NO❗

└
inAwaitingBT
CFundingPro

of
External ❗ NO❗

└
inFraudAwaiti
ngBTCFundin

gProof
External ❗ NO❗

└ inFailedSetup External ❗ NO❗

└ inActive External ❗ NO❗

└
inAwaitingWit
hdrawalSigna

ture
External ❗ NO❗

└
inAwaitingWit
hdrawalProof

External ❗ NO❗

└ inRedeemed External ❗ NO❗

└
inCourtesyCa

ll
External ❗ NO❗

└
inFraudLiquid
ationInProgre

ss
External ❗ NO❗

└
inLiquidationI

nProgress
External ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 172/211

Contract Type Bases

└ inLiquidated External ❗ NO❗

└
setAwaitingSi

gnerSetup
External ❗ 🛑 NO❗

└
setAwaitingB
TCFundingPr

oof
External ❗ 🛑 NO❗

└
setFraudAwai
tingBTCFundi

ngProof
External ❗ 🛑 NO❗

└
setFailedSetu

p
External ❗ 🛑 NO❗

└ setActive External ❗ 🛑 NO❗

└
setAwaitingW
ithdrawalSign

ature
External ❗ 🛑 NO❗

└
setAwaitingW
ithdrawalProo

f
External ❗ 🛑 NO❗

└ setRedeemed External ❗ 🛑 NO❗

└
setCourtesyC

all
External ❗ 🛑 NO❗

└
setFraudLiqui
dationInProgr

ess
External ❗ 🛑 NO❗

└
setLiquidatio
nInProgress

External ❗ 🛑 NO❗

└ setLiquidated External ❗ 🛑 NO❗

ITBTCSyst
em

Interface

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 173/211

Contract Type Bases

└
fetchBitcoinP

rice
External ❗ NO❗

└
fetchRelayCu
rrentDi�iculty

External ❗ NO❗

└
fetchRelayPre
viousDi�icult

y
External ❗ NO❗

Deposit
Implementati

on
DepositFactor

yAuthority

└ Public ❗ 🛑 NO❗

└ External ❗ 💵 NO❗

└
getCurrentSt

ate
Public ❗ NO❗

└ inActive Public ❗ NO❗

└
remainingTer

m
Public ❗ NO❗

└ signerFee Public ❗ NO❗

└
lotSizeSatosh

is
Public ❗ NO❗

└ lotSizeTbtc Public ❗ NO❗

└ utxoSize Public ❗ NO❗

└
createNewDe

posit
Public ❗ 💵

onlyFactor
y

└
requestRede

mption
Public ❗ 🛑 NO❗

└
transferAndR
equestRedem

ption
Public ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 174/211

Contract Type Bases

└
getRedempti
onTbtcRequir

ement
Public ❗ NO❗

└

getOwnerRe
demptionTbt
cRequiremen

t

Public ❗ NO❗

└
provideRede
mptionSignat

ure
Public ❗ 🛑 NO❗

└
increaseRede

mptionFee
Public ❗ 🛑 NO❗

└
provideRede
mptionProof

Public ❗ 🛑 NO❗

└
notifySignatu

reTimeout
Public ❗ 🛑 NO❗

└
notifyRedem
ptionProofTi

meout
Public ❗ 🛑 NO❗

└
notifySignerS

etupFailure
Public ❗ 🛑 NO❗

└
retrieveSigne

rPubkey
Public ❗ 🛑 NO❗

└
notifyFundin

gTimeout
Public ❗ 🛑 NO❗

└
provideFundi
ngECDSAFra

udProof
Public ❗ 🛑 NO❗

└
notifyFraudFu
ndingTimeou

t
Public ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 175/211

Contract Type Bases

└
provideFraud
BTCFundingP

roof
Public ❗ 🛑 NO❗

└
provideBTCF
undingProof

Public ❗ 🛑 NO❗

└
provideECDS
AFraudProof

Public ❗ 🛑 NO❗

└
provideSPVFr

audProof
Public ❗ 🛑 NO❗

└
purchaseSign
erBondsAtAu

ction
Public ❗ 🛑 NO❗

└
notifyCourtes

yCall
Public ❗ 🛑 NO❗

└
exitCourtesy

Call
Public ❗ 🛑 NO❗

└
notifyUnderc
ollateralizedLi

quidation
Public ❗ 🛑 NO❗

└
notifyCourtes

yTimeout
Public ❗ 🛑 NO❗

└
notifyDeposit
ExpiryCourte

syCall
Public ❗ 🛑 NO❗

DepositLi
quidation

Library

└
submitSignat

ureFraud
Public ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 176/211

Contract Type Bases

└
getCollaterali
zationPercent

age
Public ❗ NO❗

└
startSignerFr
audLiquidatio

n
Internal 🔒 🛑

└
startSignerAb
ortLiquidatio

n
Internal 🔒 🛑

└
provideECDS
AFraudProof

Public ❗ 🛑 NO❗

└
provideSPVFr

audProof
Public ❗ 🛑 NO❗

└
validateRede
emerNotPaid

Internal 🔒

└
purchaseSign
erBondsAtAu

ction
Public ❗ 🛑 NO❗

└
notifyCourtes

yCall
Public ❗ 🛑 NO❗

└
exitCourtesy

Call
Public ❗ 🛑 NO❗

└
notifyUnderc
ollateralizedLi

quidation
Public ❗ 🛑 NO❗

└
notifyCourtes

yTimeout
Public ❗ 🛑 NO❗

└
notifyDeposit
ExpiryCourte

syCall
Public ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 177/211

Contract Type Bases

Outsource
DepositLo

gging
Library

└ logCreated External ❗ 🛑 NO❗

└
logRedempti
onRequested

Public ❗ 🛑 NO❗

└
logGotRedem
ptionSignatur

e
External ❗ 🛑 NO❗

└
logRegistere

dPubkey
External ❗ 🛑 NO❗

└
logSetupFaile

d
External ❗ 🛑 NO❗

└
logFraudDuri

ngSetup
External ❗ 🛑 NO❗

└ logFunded External ❗ 🛑 NO❗

└
logCourtesyC

alled
External ❗ 🛑 NO❗

└
logStartedLiq

uidation
External ❗ 🛑 NO❗

└
logRedeeme

d
External ❗ 🛑 NO❗

└ logLiquidated External ❗ 🛑 NO❗

└
logExitedCou

rtesyCall
External ❗ 🛑 NO❗

DepositRe
demption

Library

└
distributeSig

nerFee
Internal 🔒 🛑

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 178/211

Contract Type Bases

└
approveDiges

t
Internal 🔒 🛑

└
performRede
mptionTBTCT

ransfers
Internal 🔒 🛑

└
_requestRede

mption
Internal 🔒 🛑

└
transferAndR
equestRedem

ption
Public ❗ 🛑 NO❗

└
requestRede

mption
Public ❗ 🛑 NO❗

└
provideRede
mptionSignat

ure
Public ❗ 🛑 NO❗

└
increaseRede

mptionFee
Public ❗ 🛑 NO❗

└
checkRelatio
nshipToPrevi

ous
Public ❗ NO❗

└
provideRede
mptionProof

Public ❗ 🛑 NO❗

└
redemptionTr
ansactionChe

cks
Public ❗ NO❗

└
notifySignatu

reTimeout
Public ❗ 🛑 NO❗

└
notifyRedem
ptionProofTi

meout
Public ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 179/211

Contract Type Bases

TBTCSyst
emAuthori

ty

Implementati
on

└ Public ❗ 🛑 NO❗

DepositFa
ctory

Implementati
on

CloneFactory,
TBTCSystemA

uthority

└ Public ❗ 🛑
TBTCSyste
mAuthorit

y

└
setExternalDe
pendencies

Public ❗ 🛑
onlyTbtcS

ystem

└
createDeposi

t
Public ❗ 💵 NO❗

CloneFact
ory

Implementati
on

└ createClone Internal 🔒 🛑

└ isClone Internal 🔒

IBTCETHP
riceFeed

Interface

└ getPrice External ❗ NO❗

IMedianiz
er

Interface

└ read External ❗ NO❗

BTCETHPr
iceFeed

Implementati
on

Ownable,
IBTCETHPrice

Feed

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 180/211

Contract Type Bases

└ Public ❗ 🛑 NO❗

└ initialize External ❗ 🛑 onlyOwner

└ getPrice External ❗ NO❗

keep-tecdsa

Contract Type Bases

└
Function

Name
Visibility Mutability Modi�iers

BondedECD
SAKeep

Implement
ation

IBondedECDS
AKeep

└ initialize Public ❗ 🛑 NO❗

└
submitPubli

cKey
External ❗ 🛑

onlyMemb
er

└
hasKeyGen
erationTime

dOut
Internal 🔒

└
hasMember
SubmittedP

ublicKey
Internal 🔒

└
getPublicKe

y
External ❗ NO❗

└
checkBond

Amount
External ❗ NO❗

└
seizeSigner

Bonds
External ❗ 🛑 onlyOwner

└
submitSign
atureFraud

External ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 181/211

Contract Type Bases

└ sign External ❗ 🛑
onlyOwner
onlyWhen

Active

└
isAwaitingS

ignature
External ❗ NO❗

└
submitSign

ature
External ❗ 🛑

onlyMemb
er

└
isSigningIn

Progress
Internal 🔒

└
hasSigning
TimedOut

Internal 🔒

└ closeKeep External ❗ 🛑
onlyOwner
onlyWhen

Active

└
freeMembe

rsBonds
Internal 🔒 🛑

└
publicKeyT
oAddress

Internal 🔒

└
distributeE
THToMemb

ers
External ❗ 💵 NO❗

└
distributeE
RC20ToMe

mbers
External ❗ 🛑 NO❗

└
getMember
ETHBalance

External ❗ NO❗

└ withdraw External ❗ 🛑 NO❗

BondedECD
SAKeepFact

ory

Implement
ation

IBondedECDS
AKeepFactory,
CloneFactory

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 182/211

Contract Type Bases

└ Public ❗ 🛑 NO❗

└ External ❗ 💵 NO❗

└
createSortit

ionPool
External ❗ 🛑 NO❗

└
getSortition

Pool
External ❗ NO❗

└
registerMe
mberCandi

date
External ❗ 🛑 NO❗

└
isOperatorR

egistered
Public ❗ NO❗

└
isOperator
UpToDate

External ❗ NO❗

└
updateOpe
ratorStatus

External ❗ 🛑 NO❗

└
getSortition
PoolForOpe

rator
Internal 🔒

└
openKeepF
eeEstimate

Public ❗ NO❗

└ openKeep External ❗ 💵 NO❗

└
newGroupS
electionSee

d
Internal 🔒 🛑

└
setGroupSe
lectionSeed

External ❗ 🛑
onlyRando
mBeacon

BondedECD
SAKeepVen

dor

Implement
ation

Ownable

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 183/211

Contract Type Bases

└ Public ❗ 🛑 NO❗

└
implementa

tion
Public ❗ NO❗

└
setImpleme

ntation
Internal 🔒 🛑

└ External ❗ 💵 NO❗

└ upgradeTo Public ❗ 🛑 onlyOwner

BondedECD
SAKeepVen
dorImplV1

Implement
ation

IBondedECDS
AKeepVendor,

Ownable

└ initialize Public ❗ 🛑 NO❗

└ initialized Public ❗ NO❗

└
registerFact

ory
External ❗ 🛑

onlyOpera
torContrac
tUpgrader

└
selectFacto

ry
Public ❗ NO❗

CloneFactor
y

Implement
ation

└
createClon

e
Internal 🔒 🛑

└ isClone Internal 🔒

KeepBondin
g

Implement
ation

└ Public ❗ 🛑 NO❗

└
availableUn
bondedVal

ue
Public ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 184/211

Contract Type Bases

└ deposit External ❗ 💵 NO❗

└ withdraw Public ❗ 🛑 NO❗

└ createBond Public ❗ 🛑 NO❗

└
bondAmou

nt
Public ❗ NO❗

└
reassignBo

nd
Public ❗ 🛑 NO❗

└ freeBond Public ❗ 🛑 NO❗

└ seizeBond Public ❗ 🛑 NO❗

└
authorizeSo
rtitionPoolC

ontract
Public ❗ 🛑 NO❗

└
hasSecond
aryAuthoriz

ation
Public ❗ NO❗

Migrations
Implement

ation

└ Public ❗ 🛑 NO❗

└
setComplet

ed
Public ❗ 🛑 restricted

└ upgrade Public ❗ 🛑 restricted

IBondedEC
DSAKeep

Implement
ation

└
getPublicKe

y
External ❗ NO❗

└
checkBond

Amount
External ❗ NO❗

└ sign External ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 185/211

Contract Type Bases

└
distributeE
THToMemb

ers
External ❗ 💵 NO❗

└
distributeE
RC20ToMe

mbers
External ❗ 🛑 NO❗

└
seizeSigner

Bonds
External ❗ 🛑 NO❗

└
submitSign
atureFraud

External ❗ 🛑 NO❗

IBondedEC
DSAKeepFa

ctory
Interface

└ openKeep External ❗ 💵 NO❗

└
openKeepF
eeEstimate

External ❗ NO❗

IBondedEC
DSAKeepVe

ndor

Implement
ation

└
selectFacto

ry
Public ❗ NO❗

sortition-pool

keep-core

Contract Type Bases

└
Function

Name
Visibility Mutability Modi�iers

AltBn128 Library

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 186/211

Contract Type Bases

└ getP Internal 🔒

└ g1 Internal 🔒

└ g2 Internal 🔒

└ twistB Private 🔐

└ hexRoot Private 🔐

└ g1YFromX Internal 🔒

└ g2YFromX Internal 🔒

└
g1HashToP

oint
Internal 🔒

└ parity Private 🔐

└
g1Compre

ss
Internal 🔒

└
g2Compre

ss
Internal 🔒

└
g1Decomp

ress
Internal 🔒

└
g1Unmarsh

al
Internal 🔒

└
g2Unmars

hal
Internal 🔒

└
g2Decomp

ress
Internal 🔒

└ g1Add Internal 🔒

└ gfP2Add Internal 🔒

└
gfP2Multip

ly
Internal 🔒

└ gfP2Pow Internal 🔒

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 187/211

Contract Type Bases

└ g2X2y Internal 🔒

└
isG1PointO

nCurve
Internal 🔒

└
isG2PointO

nCurve
Internal 🔒

└
scalarMulti

ply
Internal 🔒

└ pairing Internal 🔒

BLS Library

└ verify Public ❗ NO❗

DelayedWit
hdrawal

Implement
ation

Ownable

└
initiateWit
hdrawal

Public ❗ 🛑 onlyOwner

└
�inishWithd

rawal
Public ❗ 🛑 onlyOwner

ServiceCont
ract

Interface

└
entryCreat

ed
External ❗ 🛑 NO❗

└
fundReque
stSubsidyF

eePool
External ❗ 💵 NO❗

└
fundDkgFe

ePool
External ❗ 💵 NO❗

KeepRando
mBeaconOp

erator

Implement
ation

ReentrancyG
uard

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 188/211

Contract Type Bases

└ genesis Public ❗ 💵 NO❗

└ Public ❗ 🛑 NO❗

└
addServic
eContract

Public ❗ 🛑 onlyOwner

└
removeSer
viceContra

ct
Public ❗ 🛑 onlyOwner

└
setPriceFe
edEstimate

Public ❗ 🛑 onlyOwner

└
gasPriceWi
thFluctuati
onMargin

Internal 🔒

└
createGro

up
Public ❗ 💵

onlyService
Contract

└
startGroup
Selection

Internal 🔒 🛑

└
isGroupSel
ectionPoss

ible
Public ❗ NO❗

└
submitTick

et
Public ❗ 🛑 NO❗

└
ticketSub
missionTi

meout
Public ❗ NO❗

└
submitted
TicketsCou

nt
Public ❗ NO❗

└
selectedPa
rticipants

Public ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 189/211

Contract Type Bases

└
submitDkg

Result
Public ❗ 🛑 NO❗

└
reimburse
DkgSubmit

ter
Internal 🔒 🛑

└
setMinimu

mStake
Public ❗ 🛑 onlyOwner

└ sign Public ❗ 💵
onlyService

Contract

└
signRelayE

ntry
Internal 🔒 🛑

└ relayEntry Public ❗ 🛑
nonReentra

nt

└
executeCal

lback
Internal 🔒 🛑

└
newEntryR
ewardsBre

akdown
Internal 🔒

└
getDelayFa

ctor
Internal 🔒

└
isEntryInPr

ogress
Internal 🔒

└
hasEntryTi
medOut

Internal 🔒

└
reportRela
yEntryTime

out
Public ❗ 🛑 NO❗

└
groupPro�i

tFee
Public ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 190/211

Contract Type Bases

└
hasMinimu

mStake
Public ❗ NO❗

└
isGroupRe
gistered

Public ❗ NO❗

└
isStaleGro

up
Public ❗ NO❗

└
numberOf

Groups
Public ❗ NO❗

└
getGroup

MemberRe
wards

Public ❗ NO❗

└
getGroup
MemberIn

dices
Public ❗ NO❗

└
withdrawG
roupMemb
erRewards

Public ❗ 🛑
nonReentra

nt

└
getFirstAct
iveGroupIn

dex
Public ❗ NO❗

└
getGroupP

ublicKey
Public ❗ NO❗

└
groupCrea
tionGasEsti

mate
Public ❗ NO❗

└
getGroup
Members

Public ❗ NO❗

└
reportUna
uthorizedS

igning
Public ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 191/211

Contract Type Bases

KeepRando
mBeaconSe

rvice

Implement
ation

Ownable

└ Public ❗ 🛑 NO❗

└
implement

ation
Public ❗ NO❗

└
setImplem

entation
Internal 🔒 🛑

└ External ❗ 💵 NO❗

└ upgradeTo Public ❗ 🛑 onlyOwner

OperatorCo
ntract

Interface

└
entryVeri�i
cationGasE

stimate
External ❗ NO❗

└
groupCrea
tionGasEsti

mate
External ❗ NO❗

└
groupPro�i

tFee
External ❗ NO❗

└ sign External ❗ 💵 NO❗

└
numberOf

Groups
External ❗ NO❗

└
createGro

up
External ❗ 💵 NO❗

└
isGroupSel
ectionPoss

ible
External ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 192/211

Contract Type Bases

KeepRando
mBeaconSe
rviceImplV1

Implement
ation

DelayedWith
drawal,

ReentrancyG
uard

└ initialize Public ❗ 🛑 NO❗

└ initialized Public ❗ NO❗

└
addOperat
orContract

Public ❗ 🛑
onlyOperato
rContractUp

grader

└
removeOp
eratorCont

ract
Public ❗ 🛑

onlyOperato
rContractUp

grader

└
fundDkgFe

ePool
Public ❗ 💵 NO❗

└
fundReque
stSubsidyF

eePool
Public ❗ 💵 NO❗

└
selectOper
atorContra

ct
Public ❗ NO❗

└
requestRel

ayEntry
Public ❗ 💵 NO❗

└
requestRel

ayEntry
Public ❗ 💵

nonReentra
nt

└
entryCreat

ed
Public ❗ 🛑 NO❗

└
executeCal

lback
Public ❗ 🛑 NO❗

└
createGro
upIfApplic

able
Internal 🔒 🛑

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 193/211

Contract Type Bases

└
baseCallba

ckGas
Public ❗ NO❗

└
setPriceFe
edEstimate

Public ❗ 🛑
onlyOperato
rContractUp

grader

└
priceFeedE

stimate
Public ❗ NO❗

└
gasPriceWi
thFluctuati
onMargin

Internal 🔒

└
callbackFe

e
Public ❗ NO❗

└
entryFeeEs

timate
Public ❗ NO❗

└
entryFeeBr
eakdown

Public ❗ NO❗

└
previousEn

try
Public ❗ NO❗

└ version Public ❗ NO❗

tokenRecipi
ent

Interface

└
receiveAp

proval
External ❗ 🛑 NO❗

KeepToken
Implement

ation
ERC20Burna

ble

└ Public ❗ 🛑 NO❗

└
approveAn

dCall
Public ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 194/211

Contract Type Bases

Migrations
Implement

ation

└ Public ❗ 🛑 NO❗

└
setComple

ted
Public ❗ 🛑 restricted

└ upgrade Public ❗ 🛑 restricted

Registry
Implement

ation

└ Public ❗ 🛑 NO❗

└
setGovern

ance
Public ❗ 🛑

onlyGovern
ance

└
setRegistry

Keeper
Public ❗ 🛑

onlyGovern
ance

└
setPanicBu

tton
Public ❗ 🛑

onlyGovern
ance

└
setOperat
orContract
Upgrader

Public ❗ 🛑
onlyGovern

ance

└
approveOp
eratorCont

ract
Public ❗ 🛑

onlyRegistry
Keeper

└
disableOp
eratorCont

ract
Public ❗ 🛑

onlyPanicBu
tton

└
isApprove
dOperator
Contract

Public ❗ NO❗

└
operatorC
ontractUp
graderFor

Public ❗ NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 195/211

Contract Type Bases

StakeDeleg
atable

Implement
ation

└ balanceOf Public ❗ NO❗

└
operators

Of
Public ❗ NO❗

└ ownerOf Public ❗ NO❗

└ magpieOf Public ❗ NO❗

└
authorizer

Of
Public ❗ NO❗

tokenSende
r

Interface

└
approveAn

dCall
External ❗ 🛑 NO❗

TokenGrant
Implement

ation

└ Public ❗ 🛑 NO❗

└ balanceOf Public ❗ NO❗

└
stakeBalan

ceOf
Public ❗ NO❗

└ getGrant Public ❗ NO❗

└
getGrantV
estingSche

dule
Public ❗ NO❗

└ getGrants Public ❗ NO❗

└
receiveAp

proval
Public ❗ 🛑 NO❗

└ withdraw Public ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 196/211

Contract Type Bases

└
grantedAm

ount
Public ❗ NO❗

└
withdrawa

ble
Public ❗ NO❗

└ revoke Public ❗ 🛑 NO❗

└ stake Public ❗ 🛑 NO❗

└
cancelStak

e
Public ❗ 🛑 NO❗

└
undelegat

e
Public ❗ 🛑 NO❗

└
recoverSta

ke
Public ❗ 🛑 NO❗

TokenStakin
g

Implement
ation

StakeDelegat
able

└ Public ❗ 🛑 NO❗

└
receiveAp

proval
Public ❗ 🛑 NO❗

└
cancelStak

e
Public ❗ 🛑 NO❗

└
undelegat

e
Public ❗ 🛑 NO❗

└
recoverSta

ke
Public ❗ 🛑 NO❗

└
getUndele

gation
Public ❗ NO❗

└ slash Public ❗ 🛑
onlyApprov
edOperator

Contract

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 197/211

Contract Type Bases

└ seize Public ❗ 🛑
onlyApprov
edOperator

Contract

└
authorizeO
peratorCo

ntract
Public ❗ 🛑

onlyOperato
rAuthorizer
onlyApprov
edOperator

Contract

└
eligibleSta

ke
Public ❗ NO❗

└
activeStak

e
Public ❗ NO❗

DKGResultV
eri�ication

Library

└ verify Public ❗ NO❗

GroupSelec
tion

Library

└ start Public ❗ 🛑 NO❗

└ stop Public ❗ 🛑 NO❗

└
submitTick

et
Public ❗ 🛑 NO❗

└
submitTick

et
Public ❗ 🛑 NO❗

└
isTicketVali

d
Internal 🔒

└ addTicket Internal 🔒 🛑

└
�indReplac
ementInde

x
Internal 🔒

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 198/211

Contract Type Bases

└
getTicketV
alueOrdere

dIndices
Internal 🔒

└
selectedPa
rticipants

Public ❗ NO❗

└
cleanupTic

kets
Internal 🔒 🛑

└
cleanupCa
ndidates

Internal 🔒 🛑

Groups Library

└ addGroup Internal 🔒 🛑

└
setGroupM

embers
Internal 🔒 🛑

└
addGroup
MemberRe

ward
Internal 🔒 🛑

└
getGroup

MemberRe
wards

Internal 🔒

└
getGroupP

ublicKey
Internal 🔒

└
getGroup
Member

Internal 🔒

└
getGroup
MemberIn

dices
Public ❗ NO❗

└
terminate

Group
Internal 🔒 🛑

└
isGroupTer

minated
Internal 🔒

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 199/211

Contract Type Bases

└
isGroupRe
gistered

Internal 🔒

└
groupActiv

eTimeOf
Internal 🔒

└
groupStale

Time
Internal 🔒

└
isStaleGro

up
Public ❗ NO❗

└
isStaleGro

up
Public ❗ NO❗

└
numberOf

Groups
Internal 🔒

└
expireOld

Groups
Internal 🔒 🛑

└
selectGrou

p
Public ❗ 🛑 NO❗

└
shiftByExpi
redGroups

Internal 🔒

└
shiftByTer
minatedGr

oups
Internal 🔒

└
withdrawFr
omGroup

Public ❗ 🛑 NO❗

└
membersO

f
Public ❗ NO❗

└
membersO

f
Public ❗ NO❗

└
reportUna
uthorizedS

igning
Public ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 200/211

Contract Type Bases

└
reportRela
yEntryTime

out
Public ❗ 🛑 NO❗

└
getGroup
Members

Public ❗ NO❗

Reimburse
ments

Library

└
reimburse
Callback

Public ❗ 🛑 NO❗

AddressArra
yUtils

Library

└ contains Internal 🔒

└
removeAd

dress
Internal 🔒 🛑

ModUtils Library

└ modExp Internal 🔒

└ modSqrt Internal 🔒

└ legendre Internal 🔒

ThrowProxy
Implement

ation

└ Public ❗ 🛑 NO❗

└ External ❗ 💵 NO❗

└ execute Public ❗ 🛑 NO❗

UintArrayUti
ls

Library

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 201/211

Contract Type Bases

└
removeVal

ue
Internal 🔒 🛑

sortition-pools

Contract Type Bases

└
Function

Name
Visibility Mutability Modi�iers

AbstractSort
itionPool

Implementat
ion

SortitionTre
e,

GasStation

└
operatorInitB

locks
Public ❗ NO❗

└
isOperatorEli

gible
Public ❗ NO❗

└
isOperatorIn

Pool
Public ❗ NO❗

└
isOperatorU

pToDate
Public ❗ NO❗

└
getPoolWeig

ht
Public ❗ NO❗

└ joinPool Public ❗ 🛑 NO❗

└
updateOper
atorStatus

Public ❗ 🛑 NO❗

└
generalizedS
electGroup

Internal 🔒 🛑

└
getEligibleW

eight
Internal 🔒

└ decideFate Internal 🔒

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 202/211

Contract Type Bases

└
gasDepositSi

ze
Internal 🔒

BondedSorti
tionPool

Implementat
ion

AbstractSor
titionPool

└ Public ❗ 🛑 NO❗

└
selectSetGro

up
Public ❗ 🛑 NO❗

└
initializeSele
ctionParams

Internal 🔒 🛑

└
getEligibleW

eight
Internal 🔒

└ decideFate Internal 🔒

BondedSorti
tionPoolFact

ory

Implementat
ion

└
createSortiti

onPool
Public ❗ 🛑 NO❗

Branch Library

└ slotShift Internal 🔒

└ getSlot Internal 🔒

└ clearSlot Internal 🔒

└ setSlot Internal 🔒

└ sumWeight Internal 🔒

└
pickWeighte

dSlot
Internal 🔒

DynamicArr
ay

Library

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 203/211

Contract Type Bases

└ uintArray Internal 🔒

└ addressArray Internal 🔒

└ convert Internal 🔒

└ convert Internal 🔒

└ arrayPush Internal 🔒

└ arrayPush Internal 🔒

└ arrayPop Internal 🔒

└ arrayPop Internal 🔒

└
_allocateUint

s
Private 🔐

└
_allocateAdd

resses
Private 🔐

└ _copy Private 🔐

└ _copy Private 🔐

└ _push Private 🔐

└ _push Private 🔐

└ _pop Private 🔐

└ _pop Private 🔐

GasStation
Implementat

ion

└ depositGas Internal 🔒 🛑

└ releaseGas Internal 🔒 🛑

└ setDeposit Internal 🔒 🛑

└
gasDepositSi

ze
Internal 🔒

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 204/211

Contract Type Bases

Interval Library

└ make Internal 🔒

└ opWeight Internal 🔒

└ index Internal 🔒

└ setIndex Internal 🔒

└ insert Internal 🔒

└ skip Internal 🔒

└
remapIndice

s
Internal 🔒

Leaf Library

└ make Internal 🔒

└ operator Internal 🔒

└
creationBloc

k
Internal 🔒

└ weight Internal 🔒

└ setWeight Internal 🔒

Migrations
Implementat

ion

└ Public ❗ 🛑 NO❗

└
setComplete

d
Public ❗ 🛑 restricted

└ upgrade Public ❗ 🛑 restricted

Position Library

└ slot Internal 🔒

└ parent Internal 🔒

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 205/211

Contract Type Bases

└ child Internal 🔒

└ setFlag Internal 🔒

└ unsetFlag Internal 🔒

RNG Library

└ initialize Internal 🔒

└ reseed Internal 🔒

└ retryIndex Internal 🔒

└
addSkippedI

nterval
Internal 🔒

└
removeInterv

al
Internal 🔒

└
generateNe

wIndex
Internal 🔒

└ bitsRequired Internal 🔒

└ truncate Internal 🔒

└ getIndex Internal 🔒

└
getUniqueIn

dex
Internal 🔒

SortitionPoo
l

Implementat
ion

AbstractSor
titionPool

└ Public ❗ 🛑 NO❗

└ selectGroup Public ❗ 🛑 NO❗

└
initializeSele
ctionParams

Internal 🔒

└
getEligibleW

eight
Internal 🔒

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 206/211

Contract Type Bases

└
queryEligible

Weight
Internal 🔒

└ decideFate Internal 🔒

SortitionPoo
lFactory

Implementat
ion

└
createSortiti

onPool
Public ❗ 🛑 NO❗

SortitionTre
e

Implementat
ion

└ Public ❗ 🛑 NO❗

└
isOperatorRe

gistered
Public ❗ NO❗

└
operatorsInP

ool
Public ❗ NO❗

└
insertOperat

or
Internal 🔒 🛑

└
removeOper

ator
Internal 🔒 🛑

└
updateOper

ator
Internal 🔒 🛑

└
removeOper

atorLeaf
Internal 🔒 🛑

└
getFlaggedO
peratorLeaf

Internal 🔒

└ removeLeaf Internal 🔒 🛑

└ updateLeaf Internal 🔒 🛑

└ setLeaf Internal 🔒 🛑

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 207/211

Contract Type Bases

└
pickWeighte
dLeafWithIn

dex
Internal 🔒

└
pickWeighte

dLeaf
Internal 🔒

└
getEmptyLea

f
Internal 🔒 🛑

└
leavesInStac

k
Internal 🔒

└ totalWeight Internal 🔒

StackLib Library

└ stackPeek Internal 🔒

└ stackPush Public ❗ 🛑 NO❗

└ stackPop Internal 🔒 🛑

└ getSize Internal 🔒

IBondedSort
itionPool

Interface

└
selectSetGro

up
External ❗ 🛑 NO❗

└
isOperatorEli

gible
External ❗ NO❗

└
isOperatorIn

Pool
External ❗ NO❗

└
isOperatorU

pToDate
External ❗ NO❗

└ joinPool External ❗ 🛑 NO❗

└
updateOper
atorStatus

External ❗ 🛑 NO❗

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 208/211

Contract Type Bases

IBonding Interface

└
availableUnb
ondedValue

External ❗ NO❗

ISortitionPo
ol

Interface

└ selectGroup External ❗ 🛑 NO❗

└
isOperatorEli

gible
External ❗ NO❗

└
isOperatorIn

Pool
External ❗ NO❗

└
isOperatorU

pToDate
External ❗ NO❗

└ joinPool External ❗ 🛑 NO❗

└
updateOper
atorStatus

External ❗ 🛑 NO❗

IStaking Interface

└ eligibleStake External ❗ NO❗

Appendix 4 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or
more clients (the “Clients”) for performing the analysis contained in these
reports (the “Reports”). The Reports may be distributed through other means,
including via ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project
or team, and the Reports do not guarantee the security of any particular
project. This Report does not consider, and should not be interpreted as
considering or having any bearing on, the potential economics of a token,
token sale or any other product, service or other asset. Cryptographic tokens

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 209/211

are emergent technologies and carry with them high levels of technical risk
and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code,
the business model or proprietors of any such business model, and the legal
compliance of any such business. No third party should rely on the Reports in
any way, including for the purpose of making any decisions to buy or sell any
token, product, service or other asset. Speci�ically, for the avoidance of
doubt, this Report does not constitute investment advice, is not intended to
be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD
owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are
created solely for Clients and published with their consent. The scope of our
review is limited to a review of Solidity code and only the Solidity code we
note as being within the scope of our review within this report. The Solidity
language itself remains under development and is subject to unknown risks
and �laws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk
and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third
parties”) – on its website. CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best
practices in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through
hypertext or other computer links, gain access to web sites operated by
persons other than ConsenSys and CD. Such hyperlinks are provided for your
reference and convenience only, and are the exclusive responsibility of such
web sites’ owners. You agree that ConsenSys and CD are not responsible for
the content or operation of such Web sites, and that ConsenSys and CD shall
have no liability to you or any other person or entity for the use of third party
Web sites. Except as described below, a hyperlink from this web Site to
another web site does not imply or mean that ConsenSys and CD endorses
the content on that Web site or the operator or operations of that site. You
are solely responsible for determining the extent to which you may use any
content at any other web sites to which you link from the Reports. ConsenSys

29.03.2021 Thesis - tBTC and Keep | ConsenSys Diligence

https://consensys.net/diligence/audits/2020/02/thesis-tbtc-and-keep/ 210/211

and CD assumes no responsibility for the use of third party software on the
Web Site and shall have no liability whatsoever to any person or entity for the
accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as
of the date appearing on the Report and is subject to change without notice.
Unless indicated otherwise, by ConsenSys and CD.

https://consensys.net/diligence/audits/
https://consensys.net/diligence/blog/
https://consensys.net/diligence/tools/
https://consensys.net/diligence/research/
https://consensys.net/diligence/about/
https://consensys.net/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
https://consensys.net/diligence/privacy-policy/
https://consensys.net/
https://consensys.net/diligence/contact/

