
Formal Specification of Constant Product
(x× y = k) Market Maker Model and

Implementation

Yi Zhang, Xiaohong Chen, and Daejun Park

Runtime Verification, Inc.

October 24, 2018

Abstract

We formalize the constant product market maker model (aka, x ×
y = k model) [2], and formally analyze the integer rounding errors of the
implementation in the Uniswap smart contract [1].

1 Formal Overview of x× y = k Model
Consider a decentralized exchange [2] that trades two tokens X and Y. Let x and
y be the number of tokens X and Y, respectively, that the exchange currently
reserves. The token exchange price is determined by the ratio of x and y so that
the product x× y is preserved. That is, when you sell ∆x tokens, you will get
∆y tokens such that x × y = (x + ∆x) × (y − ∆y). Thus, the price (∆x/∆y)
is the function of x/y. Specifically, when you trade ∆x with ∆y, the exchange
token reserves are updated as follows:

x′ = x+ ∆x = (1 + α)x =
1

1− β
x

y′ = y −∆y =
1

1 + α
y = (1− β)y

where α =
∆x

x
and β =

∆y

y
. Also, we have:

∆x =
β

1− β
x

∆y =
α

1 + α
y

1



Now consider a fee for each token trade. Let 0 ≤ ρ < 1 be a fee, e.g.,
ρ = 0.003 for 0.3% fee schedule.

x′ρ = x+ ∆x = (1 + α)x =

1 + β(
1

γ
− 1)

1− β
x

y′ρ = y −∆y =
1

1 + αγ
y = (1− β)y

where α =
∆x

x
, β =

∆y

y
, and γ = 1− ρ. Also, we have:

∆x =
β

1− β
· 1

γ
· x

∆y =
αγ

1 + αγ
· y

Note that we have the same formula with the previous one if there is no fee, i.e.,
γ = 1. Also, note that the product of x and y slightly increases for each trade
due to the fee. That is, x′ρ× y′ρ > x× y when ρ > 0, while x′ρ× y′ρ = x× y when
ρ = 0 (no fee).

In the contract implementation [1] of this model, the token X denotes Ether
and the token Y denotes the token to trade.

Furthermore, one can invest and divest, sharing the exchange token reserves,
which we will formalize later using the concept of liquidity.

Since the implementation uses the integer arithmetic, we will also formally
analyze the approximation error caused by the integer rounding, showing that
the error is bounded and does not lead to violation of the critical properties1
denoted by the mathematical model.

State Transition System We formalize the market maker model as a state
transition system, where the state represents the current asset of the exchange,
and the transition represents how each function updates the state.

We define the exchange state as a tuple (e, t, l), where e is the amount of
Ether (in wei), t is the number of (exchange) tokens, and l is the amount of
total liquidity (i.e., the total supply of UNI tokens).

2 Updating Liquidity
We formalize two functions addLiquidity and removeLiquidity that mints
and burns the liquidity, respectively. We first formalize their mathematical def-
inition, addLiquidityspec and removeLiquidityspec, that uses the real arith-
metic. Then, we formalize their implementation, addLiquiditycode and removeLiquiditycode,

1For example, it is not possible for a malicious user to make “free” money by exploiting
the rounding error.

2



that uses the integer arithmetic, and analyze the approximation errors due to
the integer rounding.

2.1 Minting Liquidity
An investor can mint liquidity by depositing both Ether and token.

2.1.1 addLiquidityspec

We formulate the mathematical definition of minting liquidity.

Definition 1. addLiquidityspec takes as input ∆e > 0 and updates the state
as follows:

(e, t, l)
addLiquidityspec(∆e)−−−−−−−−−−−−−→ (e′, t′, l′)

where

e′ = (1 + α)e

t′ = (1 + α)t

l′ = (1 + α)l

and α =
∆e

e
.

Here, an investor deposits both ∆e ether (wei) and ∆t = t′ − t tokens, and
mints ∆l = l′− l liquidity. The invariant is that the ratio of e : t : l is preserved,
and k = e× t increases, as formulated in the following theorem.

Theorem 1. Let (e, t, l)
addLiquidityspec(∆e)−−−−−−−−−−−−−→ (e′, t′, l′). Let k = e × t and k′ =

e′ × t′. Then, we have the following:

1. e : t : l = e′ : t′ : l′

2. k < k′

3.
k′

k
=

(
l′

l

)2

2.1.2 addLiquiditycode

In the implementation using the integer arithmetic, we have to approximate t′
and l′ that are not an integer. We formulate the approximation.

Definition 2. addLiquiditycode takes as input an integer ∆e > 0 ∈ Z and
updates the state as follows:

(e, t, l) ∈ Z3 addLiquiditycode(∆e)−−−−−−−−−−−−−→ (e′′, t′′, l′′) ∈ Z3

3



where

e′′ = e+ ∆e = (1 + α)e

t′′ = t+

⌊
∆e× t
e

⌋
+ 1 = b(1 + α)tc+ 1

l′′ = l +

⌊
∆e× l
e

⌋
= b(1 + α)lc

and α =
∆e

e
.2

Theorem 2. Let (e, t, l)
addLiquidityspec(∆e)−−−−−−−−−−−−−→ (e′, t′, l′). Let (e, t, l)

addLiquiditycode(∆e)−−−−−−−−−−−−−→
(e′′, t′′, l′′). Let k = e× t, k′ = e′ × t′, and k′′ = e′′ × t′′. Then, we have:

e′′ = e′

t′′ = bt′c+ 1

l′′ = bl′c

and

1. e < e′ = e′′

2. t < t′ < t′′ ≤ t′ + 1

3. l′ − 1 < l′′ ≤ l′

4. k < k′ < k′′

5.
(
l′′

l

)2

<
k′′

k

That is, t′ is approximated to a larger value t′′ but no larger than 1 (0 <
t′′− t′ ≤ 1), while l′ is approximated to a smaller value l′′ but no smaller than 1
(−1 < l′′ − l′ ≤ 0). This approximation scheme implies that k′ is approximated
to a strictly larger value k′′, which is desired. This means that an investor may
deposit more (up to 1) tokens than needed, but may mint less (up to -1) liquidity
than the mathematical value.

2.2 Burning Liquidity
An investor can withdraw their deposit of ether and token by burning their
share of liquidity.

2The second column represents the computation model using the integer division with
truncation. That is, for example, t′′ is computed by t + ((de * t) / e) + 1 where de is ∆e
and / is the integer division with truncation.

4



2.2.1 removeLiquidityspec

We formulate the mathematical definition of burning liquidity, being dual to
minting liquidity.

Definition 3. removeLiquidityspec takes as input 0 < ∆l < l and updates the
state as follows:

(e, t, l)
removeLiquidityspec(∆l)−−−−−−−−−−−−−−−→ (e′, t′, l′)

where

e′ = (1− α)e

t′ = (1− α)t

l′ = (1− α)l

and α =
∆l

l
.

Here, an investor burns ∆l liquidity, and withdraws ∆e = e− e′ ether (wei)
and ∆t = t− t′ tokens. The invariant is dual to that of minting liquidity.

Theorem 3. Let (e, t, l)
removeLiquidityspec(∆l)−−−−−−−−−−−−−−−→ (e′, t′, l′). Let k = e × t and

k′ = e′ × t′. Then, we have the following:

1. e : t : l = e′ : t′ : l′

2. k′ < k

3.
k′

k
=

(
l′

l

)2

The duality of addLiquidityspec and removeLiquidityspec is formulated in
the following theorem.

Theorem 4. If addLiquidityspec is subsequently followed by removeLiquidityspec
as follows:

(e0, t0, l0)
addLiquidityspec(∆e)−−−−−−−−−−−−−→ (e1, t1, l1)

removeLiquidityspec(∆l)−−−−−−−−−−−−−−−→ (e2, t2, l2)

and ∆l = l1 − l0, then we have:

1. e0 = e2

2. t0 = t2

3. l0 = l2

5



2.2.2 removeLiquiditycode

In the implementation using the integer arithmetic, we have to approximate e′
and t′ that are not an integer. We formulate the approximation.

Definition 4. removeLiquiditycode takes as input an integer 0 < ∆l < l and
updates the state as follows:

(e, t, l) ∈ Z3 removeLiquiditycode(∆l)−−−−−−−−−−−−−−−→ (e′′, t′′, l′′) ∈ Z3

where

e′′ = e−
⌊

∆l × e
l

⌋
= d(l − α)ee

t′′ = t−
⌊

∆l × t
l

⌋
= d(1− α)te

l′′ = l −∆l = (1− α)l

and α =
∆l

l
.

Theorem 5. Let (e, t, l)
removeLiquidityspec(∆l)−−−−−−−−−−−−−−−→ (e′, t′, l′). Let (e, t, l)

removeLiquiditycode(∆l)−−−−−−−−−−−−−−−→
(e′′, t′′, l′′). Let k = e× k, k′ = e′ × k′, and k′′ = e′′ × t′′. Then, we have:

e′′ = de′e
t′′ = dt′e
l′′ = l′

and

1. e′ ≤ e′′ ≤ e

2. t′ ≤ t′′ ≤ t

3. l′′ = l′ < l

4. k′ ≤ k′′ ≤ k

5.
(
l′′

l

)2

≤ k′′

k

That is, e′ and t′ are simply approximated to their ceiling e′′ = de′e and
t′′ = dt′e, which satisfies the desired property k′′ ≤ k. In other words, an
investor may withdraw less amounts of deposit (e− de′e and t− dt′e) than the
mathematical values (e− e′ and t− t′).

One of the desirable properties is that an investor cannot make a “free”
money by exploiting the integer rounding errors, which is formulated below.

6



Theorem 6. If addLiquiditycode is subsequently followed by removeLiquiditycode
as follows:

(e0, t0, l0)
addLiquiditycode(∆e)−−−−−−−−−−−−−→ (e1, t1, l1)

removeLiquiditycode(∆l)−−−−−−−−−−−−−−−→ (e2, t2, l2)

and ∆l = l1 − l0, then we have:

1. e0 < e2

2. t0 < t2

3. l0 = l2

3 Token Price Calculation
We formalize the functions calculating the current token price. Suppose, as
Section 1, there are two tokens X and Y, and let x and y is the number of
tokens X and Y that the exchange currently reserves, respectively.

We have two price calculation functions: getInputPrice and getOutputPrice.
Given ∆x, the getInputPrice function computes how much Y tokens (i.e., ∆y)
can be bought by selling ∆x. On the other hand, given ∆y, the getOutputPrice
function computes how much X tokens (i.e., ∆x) needs to be sold to buy ∆y.

Note that these functions do not update the exchange state.

3.1 getInputPrice

We formalize getInputPrice in this section, and getOutputPrice in the next
section.

3.1.1 getInputPricespec

Definition 5. Let ρ be the trade fee. getInputPricespec takes as input ∆x > 0,
x, and y, and outputs ∆y such that:

getInputPricespec(∆x)(x, y) = ∆y =
αγ

1 + αγ
y

where α =
∆x

x
and γ = 1− ρ. Also, we have:

x′ = x+ ∆x = (1 + α)x

y′ = y −∆y =
1

1 + αγ
y

Theorem 7. Suppose getInputPricespec(x′ − x)(x, y) = y− y′. Let k = x× y
and k′ = x′ × y′. Then, we have:

1. x < x′

2. y > y′

3. k < k′

7



3.1.2 getInputPricecode

Definition 6. Let ρ be the trade fee. getInputPricecode takes as input ∆x > 0,
x, and y ∈ Z, and outputs ∆y ∈ Z such that:

getInputPricecode(∆x)(x, y) = ∆y =

⌊
αγ

1 + αγ
y

⌋

where α =
∆x

x
and γ = 1− ρ. Also, we have:

x′′ = x+ ∆x = (1 + α)x

y′′ = y −∆y =

⌈
1

1 + αγ
y

⌉
In the contract implementation [1], ρ = 0.003, and getInputPricecode(∆x)(x, y)

is implemented as follows:

(997 * ∆x * y) / (1000 * x + 997 * ∆x)

where / is the integer division with truncation (i.e., floor) rounding.

Theorem 8. Suppose getInputPricespec(x′ − x)(x, y) = y − y′. Suppose
getInputPricecode(x′′ − x)(x, y) = y − y′′. Let k = x × y, k′ = x′ × y′, and
k′′ = x′′ × y′′. Then, we have:

1. x < x′ = x′′

2. y′ ≤ y′′ ≤ y

3. k < k′ ≤ k′′

3.2 getOutputPrice

We formalize getOutputPrice, a companion to getInputPrice.

3.2.1 getOutputPricespec

Definition 7. Let ρ be the trade fee. getOutputPricespec takes as input 0 <
∆y < y, x, and y, and outputs ∆x such that:

getOutputPricespec(∆y)(x, y) = ∆x =
β

1− β
· 1

γ
· x

where β =
∆y

y
< 1 and γ = 1− ρ. Also, we have:

x′ = x+ ∆x =

1 + β(
1

γ
− 1)

1− β
· x

y′ = y −∆y = (1− β)y

8



Theorem 9. Suppose getOutputPricespec(y−y′)(x, y) = x′−x. Let k = x×y
and k′ = x′ × y′.

1. x < x′

2. y′ < y

3. k < k′

Theorem 10. getInputPrice is dual to getOutputPrice. That is,

getOutputPricespec(getInputPricespec(∆x)(x, y))(x, y) = ∆x

getInputPricespec(getOutputPricespec(∆y)(x, y))(x, y) = ∆y

3.2.2 getOutputPricecode

Definition 8. Let ρ be the trade fee. getOutputPricecode takes as input 0 <
∆y < y, x, and y ∈ Z, and outputs ∆x ∈ Z such that:

getOutputPricespec(∆y)(x, y) = ∆x =

⌊
β

1− β
· 1

γ
· x
⌋

+ 1

where β =
∆y

y
< 1 and γ = 1− ρ. Also, we have:

x′′ = x+ ∆x =

1 + β(
1

γ
− 1)

1− β
· x

+ 1

y′′ = y −∆y = (1− β)y

In the contract implementation [1], ρ = 0.003, and getOutputPricecode(∆y)(x, y)
is implemented as follows:

(1000 * x * ∆y) / (997 * (y - ∆y)) + 1

where / is the integer division with truncation (i.e., floor) rounding.

Theorem 11. Suppose getOutputPricespec(y − y′)(x, y) = x′ − x. Suppose
getOutputPricecode(y − y′′)(x, y) = x′′ − x. Let k = x × y, k′ = x′ × y′, and
k′′ = x′′ × y′′. Let k′′ = t′′A ∗ t′′B, and we have the following property:

1. x < x′ < x′′

2. y′ = y′′ < y

3. k < k′ < k′′

Theorem 12. getOutputPricecode is adjoint to getInputPricecode. That is,

1. ∆y ≤ getInputPricecode(getOutputPricecode(∆y)(x, y))(x, y)

2. getOutputPricecode(getInputPricecode(∆x)(x, y))(x, y) ≤ ∆x

9



4 Trading Tokens
Now we formalize the token exchange functions that update the exchange state.

4.1 ethToToken

In this section, we present a formal specification of ethToToken (including swap
and transfer).

4.1.1 ethToTokenspec

ethToTokenspec takes an input ∆e(∆e > 0) and updates the state as follows:

(e, t, l)
ethToTokenspec(∆e)−−−−−−−−−−−−→ (e′, t′, l)

where

e′ = e+ ∆e

t′ = t− getInputPricespec(∆e, e, t)

4.1.2 ethToTokencode

ethToTokencode takes an integer input ∆e(∆e > 0) and updates the state as
follows:

(e, t, l)
ethToTokencode(∆e)−−−−−−−−−−−−→ (e′′, t′′, l)

where

e′′ = e+ ∆e

t′′ = t− getInputPricecode(∆e, e, t) = dt′e

4.2 ethToTokenExact

In this section, we present a formal specification of ethToTokenExact (including
swap and transfer).

4.2.1 ethToTokenExactspec

ethToTokenExactspec takes an input ∆t(0 < ∆t < t) and updates the state as
follows:

(e, t, l)
ethToTokenExactspec(∆t)−−−−−−−−−−−−−−−→ (e′, t′, l)

where

t′ = t−∆t

e′ = e+ getOutputPricespec(∆t, e, t)

10



4.2.2 ethToTokenExactcode

ethToTokenExactcode takes an integer input ∆t(0 < ∆t < t) and updates the
state as follows:

(e, t, l)
ethToTokenExactcode(∆t)−−−−−−−−−−−−−−−→ (e′′, t′′, l)

where

t′′ = t−∆t

e′′ = e+ getOutputPricecode(∆t, e, t)

4.3 tokenToEth

In this section, we present a formal specification of tokenToEth (including swap
and transfer).

4.3.1 tokenToEthspec

tokenToEthspec takes an input ∆t(∆t > 0) and updates the state as follows:

(e, t, l)
tokenToEthspec(∆t)−−−−−−−−−−−→ (e′, t′, l)

where

t′ = t+ ∆t

e′ = e− getInputPricespec(∆t, t, e)

4.3.2 tokenToEthcode

tokenToEthcode takes an integer input ∆t(∆t > 0) and updates the state as
follows:

(e, t, l)
tokenToEthcode(∆e)−−−−−−−−−−−−→ (e′′, t′′, l)

where

t′′ = t+ ∆t

e′′ = e− getInputPricecode(∆t, t, e) = de′e

4.4 tokenToEthExact

In this section, we present a formal specification of tokenToEthExact (including
swap and transfer).

11



4.4.1 tokenToEthExactspec

tokenToEthExactspec takes an input ∆e(0 < ∆e < e) and updates the state as
follows:

(e, t, l)
tokenToEthExactspec(∆e)−−−−−−−−−−−−−−−→ (e′, t′, l)

where

e′ = e−∆e

t′ = t+ getOutputPricespec(∆e, t, e)

4.4.2 tokenToEthExactcode

tokenToEthExactcode takes an integer input ∆e(0 < ∆e < e) and updates the
state as follows:

(e, t, l)
tokenToEthExactcode(∆e)−−−−−−−−−−−−−−−→ (e′′, t′′, l)

where

e′′ = e−∆e

t′′ = t+ getOutputPricecode(∆e, t, e)

4.5 tokenToToken

In this section, we present a formal specification of tokenToToken (including
swap and transfer). Suppose there are two exchange contracts A and B, whose
states are (eA, tA, lA) and (eB , tB , lB) respectively.

4.5.1 tokenToTokenspec

tokenToTokenspec takes an input ∆tA(> 0) and updates the states as follows:

{(eA, tA, lA), (eB , tB , lB)}
tokenToTokenspec(∆tA)
−−−−−−−−−−−−−−→ {(e′A, t′A, lA), (e′B , t

′
B , lB)}

where

t′A = tA + ∆tA

∆eAspec = getInputPricespec(∆tA, tA, eA)

e′A = e−∆eAspec

e′B = eB + ∆eAspec

∆tBspec = getInputPricespec(∆eAspec , eB , tB)

t′B = tB −∆tBspec

12



4.5.2 tokenToTokencode

tokenToTokencode takes an integer input ∆tA(> 0) and updates the states as
follows:

{(eA, tA, lA), (eB , tB , lB)} tokenToTokencode(∆tA)−−−−−−−−−−−−−−→ {(e′′A, t′′A, lA), (e′′B , t
′′
B , lB)}

where

t′′A = tA + ∆tA

∆eAcode
= getInputPricecode(∆tA, tA, eA)

e′′A = e−∆eAcode

e′′B = eB + ∆eAcode

∆tBcode
= getInputPricecode(∆eAcode

, eB , tB)

t′′B = tB −∆tBcode

4.6 tokenToTokenExact

In this section, we present a formal specification of tokenToTokenExact (in-
cluding swap and transfer). Suppose there are two exchange contracts A and
B, whose states are (eA, tA, lA) and (eB , tB , lB) respectively.

4.6.1 tokenToTokenExactspec

tokenToTokenExactspec takes an input ∆tB(0 < ∆tB < tB) and updates the
states as follows:

{(eA, tA, lA), (eB , tB , lB)}
tokenToTokenExactspec(∆tB)
−−−−−−−−−−−−−−−−−→ {(e′A, t′A, lA), (e′B , t

′
B , lB)}

where

t′B = tB −∆tB

∆eBspec
= getOutputPricespec(∆tB , eB , tB)

e′B = eB + ∆eBspec

e′A = eA −∆eBspec

∆tAspec
= getOutputPricespec(∆eBspec

, tA, eA)

t′A = tA + ∆tAspec

4.6.2 tokenToTokenExactcode

tokenToTokenExactcode takes an integer input ∆tB(0 < ∆tB < tB) and up-
dates the states as follows:

{(eA, tA, lA), (eB , tB , lB)} tokenToTokenExactcode(∆tB)−−−−−−−−−−−−−−−−−→ {(e′′A, t′′A, lA), (e′′B , t
′′
B , lB)}

13



where

t′′B = tB −∆tB

∆eBcode
= getOutputPricecode(∆tB , eB , tB)

e′′B = eB + ∆eBcode

e′′A = eA −∆eBcode

∆tAcode
= getOutputPricecode(∆eBcode

, tA, eA)

t′′A = tA + ∆tAcode

References
[1] Hayden Adams. Uniswap contract. https://github.com/Uniswap/

contracts-vyper.

[2] Vitalik Buterin. The x*y=k market maker model. https://ethresear.ch/
t/improving-front-running-resistance-of-x-y-k-market-makers.

14

https://github.com/Uniswap/contracts-vyper
https://github.com/Uniswap/contracts-vyper
https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers
https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers

	Formal Overview of x y = k Model
	Updating Liquidity
	Minting Liquidity
	addLiquidityspec
	addLiquiditycode

	Burning Liquidity
	removeLiquidityspec
	removeLiquiditycode


	Token Price Calculation
	getInputPrice
	getInputPricespec
	getInputPricecode

	getOutputPrice
	getOutputPricespec
	getOutputPricecode


	Trading Tokens
	ethToToken
	ethToTokenspec
	ethToTokencode

	ethToTokenExact
	ethToTokenExactspec
	ethToTokenExactcode

	tokenToEth
	tokenToEthspec
	tokenToEthcode

	tokenToEthExact
	tokenToEthExactspec
	tokenToEthExactcode

	tokenToToken
	tokenToTokenspec
	tokenToTokencode

	tokenToTokenExact
	tokenToTokenExactspec
	tokenToTokenExactcode



