
ConsenSys / Uniswap-audit-report-2018-12

 28 stars 6 forks

Code Issues Pull requests Actions Projects Wiki Security Insigh

Uniswap-audit-report-2018-12 / Uniswap-final.md

GNSPS Update links on final markdown file History

 3 contributors

 Star Watch

 master

Uniswap Audit
1 Summary

1.1 Audit Dashboard
1.2 Audit Goals
1.3 System Overview
1.4 Key Observations
1.5 Recommendations

2 Threat Model
2.1 Overview
2.2 Detail

3 Issue Overview
4 Issue Detail

3.1 Liquidity pool can be stolen in some tokens (e.g. ERC-777) (#29)
3.2 Frontrunners can skim ~2.5% from every transaction. (#30)
3.3 Gaps in test coverage (#32)
3.4 Consider using transferFrom() in removeLiquidity() function (#31)
3.5 Different 'deadline' behaviour (#25)
3.6 Redundant checks in factory contract (#24)
3.7 The factory contract should use a constructor (#23)

465 lines (268 sloc) 31.5 KB

https://github.com/ConsenSys
https://github.com/ConsenSys/Uniswap-audit-report-2018-12
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/stargazers
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/network/members
https://github.com/ConsenSys/Uniswap-audit-report-2018-12
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/issues
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/pulls
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/actions
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/projects
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/wiki
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/security
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/pulse
https://github.com/ConsenSys/Uniswap-audit-report-2018-12
https://github.com/GNSPS
https://github.com/GNSPS
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/commit/8c7473d3ed928deb399ae01f8ff9dd9bbc070cb2
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/commits/master/Uniswap-final.md
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/commits/master/Uniswap-final.md?author=maurelian
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/commits/master/Uniswap-final.md?author=cleanunicorn
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/commits/master/Uniswap-final.md?author=GNSPS
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/diligence.png

5 Tool based analysis
5.1 Mythril Classic
5.2 Harvey Fuzzer

6 Test Coverage Measurement
Appendix 1 - File Hashes
Appendix 2 - Severity

A.2.1 - Minor
A.2.2 - Medium
A.2.3 - Major
A.2.4 - Critical

Appendix 3 - Disclosure

1 Summary

Uniswap is a decentralized exchange hosted on the main Ethereum blockchain. It enables users to
trade any ERC20 token for ETH, or for another ERC20 token. It has no native token, and no fees are
charged by Uniswap's creators. Thus it can be considered a public good.

From December 10 to January 11 (excluding holidays) four members of the ConsenSys Diligence
team conducted a security audit on the Uniswap system.

Unsiwap is written in Vyper, whereas the vast majority of contracts have been written in Solidity.
To our knowledge, this is the first security audit conducted on a Vyper codebase.

We

1.1 Audit Dashboard

Audit Details

Project Name: Uniswap
Client Name: Uniswap
Client Contact: Hayden Adams
Auditors: John Mardlin, Gonçalo Sá, Dean Pierce, Sergii Kravchenko, Daniel Luca
GitHub : ConsenSys/Uniswap-audit-internal-2018-12
Languages: Vyper
Date: January 11th 2019

Number of issues per severity

http://vyper.readthedocs.io/
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/dashboard.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/minor.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/medium.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/major.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/critical.png

5 1 1 0

0 0 0 0

1.2 Audit Goals

The focus of the audit was to verify that the smart contract system is secure, resilient and working
according to its specifications. The audit activities can be grouped in the following three
categories:

Security: Identifying security related issues within each contract and within the system of
contracts. Sound Architecture: Evaluation of the architecture of this system through the lens of
established smart contract best practices and general software best practices. Code Correctness
and Quality: A full review of the contract source code. The primary areas of focus include:

Correctness
Readability
Sections of code with high complexity
Quantity and quality of test coverage

1.3 System Overview

Documentation

The following documentation was available to the audit team, and provides the necessary context
for this report:

White Paper
Docs
Runtime Verifications Formal Specification of Market Maker Model

Summary of Formal Verification work done by Runtime Verification

We were provided with a report by Runtime Verification (RV) Inc. describing some properties of
Uniswap exchange. This report contains a formal specification of the Uniswap exchange model
(constant product market maker model) that includes a description of price discovery including
fees, tokens trading and adding/removing liquidity.

https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/minor.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/medium.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/major.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/critical.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/closed.png
https://hackmd.io/C-DvwDSfSxuh-Gd4WKE_ig#
https://docs.uniswap.io/
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf

Since the implementation is restricted to integer arithmetic, the main purpose of the RV report is
to analyze the difference between the theoretical model and the implemented model. This report
only analyzes rounding errors that are made on the transition to integer arithmetics. It proves that
no attack can be made to benefit from rounding errors, and that every rounding error is made in
favour of the liquidity pool.

The RV report does not cover all possible attacks on the actual smart contract system, such as
frontrunning, reentrancy, etc.

Scope

Contract file name SHA1 Hash

uniswap_exchange.vy 9b058dc847040594bcac502effab5bda0de5fa3c

uniswap_factory.vy 97d49145ec4fc6aa31099cb51c0c2f69b6e487b7

1.4 Key Observations

On Auditing Vyper

Vyper has the disadvantage of being a newer language with a smaller community, thus having
fewer security analysis tools available. Fortunately, Vyper's design philosophy priortizes both
auditability and legibility. The LLL IR from the compiler made it easier to see which opcodes are
used to achieve the written instructions.

Despite Vyper's emphasis on legibility, we observed some unituitive output from the compiler. In
particular, the built in function create_with_code_of(address) does not use the code of the input
address, but rather creates a contract which delegates it's logic to the input address.

On the quality and preparedness of Uniswap

Uniswap's documentation is thorough and well written. The codebase contains natspec comments
on each function. The code is written defensively, with frequent assert statements to revert calls
with invalid input.

We found the test coverage to be incomplete. Including untested behavior, and sections of code
which were untested. The majority of the tests are positive test cases, meaning that the tests
confirm that the system works with an expected sequence of actions and inputs. The test suite
should be expanded to include more negative scenarios to ensure that the safe checks within the
contract system are working correctly.

1.5 Recommendations

The issues in our report do not necesessitate replacing the system as it currently stands.

An important consideration in our recommendation is that the Uniswap system has been live on
the main Ethereum network for several months, and holds over $300,000 in its liquidity pools. This
provides a natural incentive to attack the system, suggesting that no known vulnerabilities
currently exist.

Our primary recommendation is to extend the test suite to cover 100% of the code, and to include
testing to ensure for undesirable behavior.

2 Threat Model

2.1 Overview

Uniswap is a decentralized exchange, which, from the start, gives it a large number of potential
adversaries with strong incentives to take advantage of the system. Here we examine the various
malicious actors, and the potential impact they may have on the system.

2.2 Detail

Malicious Ethereum Attacker

The contracts are live on mainnet, giving anyone the ability to poke at them. The functionality in
these contracts is fairly minimal, and the implementation in vyper has likely mitigated many of the
classic implementation errors, so it seems like an attacker is going to have the most luck attacking
extra features in the attached ERC20 token.

Malicious Trader

Two key areas of attack for malicious traders would be trying to stack rounding issues, and
skimming trades via front running. Rounding issues are unlikely to be much of a problem because
rounding always favors the liquidity providers, but is likely to be a key attack vector for a while.
Specifics and potential mitigations are discussed in 3.1.

Malicious Miner

The key advantage that a Malicious Miner has is the ability to front run transactions much more
reliably. Hopefully the social incentives for being a fair pool operator will preclude any of the
major pools from participating in this sort of activity, but the threat exists.

Malicious Liquidity Provider

A large liquidity provider primarily has the advantage when performing rounding attacks. Since
rounding errors favor the liquidity provider, someone may temporarily take something like a 95%
stake in the liquidity pool, and then attempt to stack rounding issues to drain funds from the
liquidity pool. We have so far been unable to figure out a sequence of events that would be
favorable to the attacker.

Malicious Exchange Creator

Importantly, anyone can create an exchange, and can set it to any ERC20 token they like, which
could lead to a few types of attacks. An attacker may attempt to impersonate a popular token by
naming it similarly, though as long as the default exchanges are statically added to the frontend
manually exposure should be limited.

More interestingly, the exchange creator could register a well known legitimate token, but
initialize the liquidity pool in such a way that the token can never be used on the platform.

There is also nothing in Uniswap to ensure a token address provided to the the Factory, is
compliant with ERC20. However, Exchange contracts are created via a template, so the Exchange
code can't be tampered with. The ERC20 tokens could be contracts designed to attack Uniswap, or
particularly vulnerable contracts might be added more prone to attack.

Malicious Web Attacker

Since the front-facing portion of Uniswap is hosted on a website, anyone who gains access to the
DNS, hosting, or Cloudflare account could deploy a malicious Uniswap frontend that could,
among other things, redirect transactions meant for the Exchanges to a wallet controlled by the
attacker. An attacker may also go after one of the many dependencies pulled in by NPM to inject
themselves into the deployment process.

3 Issue Overview

The following table contains all the issues discovered during the audit. The issues are ordered
based on their severity. More detailed description on the levels of severity can be found in
Appendix 2. The table also contains the Github status of any discovered issue.

Chapter Issue Title
Issue
Status

Severity

3.1
Liquidity pool can be stolen in some tokens (e.g.
ERC-777)

3.2
Frontrunners can skim ~2.5% from every
transaction.

3.3 Gaps in test coverage

3.4
Consider using transferFrom() in removeLiquidity()
function

3.5 Different 'deadline' behaviour

3.6 Redundant checks in factory contract

3.7 The factory contract should use a constructor

https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/major.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/medium.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/minor.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/minor.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/minor.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/minor.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/minor.png

4 Issue Detail

3.1 Liquidity pool can be stolen in some tokens (e.g. ERC-777) (#29)

Severity Status Link Remediation Comment

issues/29 The issue is currently under review

Description

If token allows making reentrancy on transferFrom(address from, address to, uint tokens)
function by someone except the recipient, then all the liquidity funds might be stolen. For
example, if token calls callback function of from address. It's irrelevant if reentrancy is done
before or after the balances update.

Attack

Let's imagine we have a token that calls a callback function of from address on
transferFrom(address from, address to, uint tokens) and allows from address to make a

reentrancy. We will consider the case when reentrancy is made after the token balances are
updated. If token balances are updated after the reentrancy (e.g. ERC-777), the algorithm is even
easier and requires fewer funds to steal liquidity pool.

In tokenToTokenInput we have the following 2 lines of code

Attacker(buyer) can make reentrancy on the first line here.

1. Assume we have an exchange with a token that worth equally to ETH with liquidity pool
equals (100 tokens, 100 ETH)

2. An attacker creates a fake Exchange (it will be the second exchange in tokenToToken
transfers) that will receive ETH from the first exchange and behave like a normal exchange.

3. The attacker can buy 50 ETH for 100 tokens by using tokenToTokenInput function.
4. New liquidity pool should be (200 tokens, 50 ETH) but since the attacker makes reentrancy on

assert self.token.transferFrom(buyer, self, tokens_sold) it will still be (200 tokens, 100
ETH).

5. While making reentrancy the attacker can buy 49.999 ETH for about 200 tokens using
tokenToEthSwapInput .

6. After that, the liquidity pool should look like (400 tokens, 0.001 ETH)
7. Now the attacker can buy all the tokens for a very small amount of ETH.

assert self.token.transferFrom(buyer, self, tokens_sold)
tokens_bought: uint256 =
Exchange(exchange_addr).ethToTokenTransferInput(min_tokens_bought, deadline, recipient,
value=wei_bought)

https://github.com/ConsenSys/Uniswap-audit-internal-2018-12/issues/29
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/major.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-internal-2018-12/issues/29

This is not a very accurate algorithm that does not include fees and gas cost, but logic stays the
same.

Remediation

Add mutex to all functions that make trades in order to prevent reentrancy.

3.2 Frontrunners can skim ~2.5% from every transaction. (#30)

Severity Status Link Remediation Comment

issues/30 The issue is currently under review

The default client contains a constant called ALLOWED_SLIPPAGE which states how much the price is
allowed to change. This constant is set to 0.025 in uniswap-
frontend/src/pages/Swap/index.js:367 . This means that the price can go up ~2.5% from what the
buyer expects, and the order will still get executed.

Any user on the Ethereum network has the ability to watch for new transactions being sent to the
network. When the attacker sees a large victim transaction that they want to front run come in,
they can create a similar transaction that would move the market up by no more than 2.5%. They
then increase their gas fees to ensure that their order gets executed first. The attacker transaction
executes, raising the price of the asset, and then the victim transaction executes at the higher
price. The attacker is then free to exit the position immediately, pocketing the difference, having
never exposed themselves to any risk.

Sophisicated front-runners will likely call these transactions from their own contract addresses to
make sure they end up with the prices they expect, and don't collide with other front-runners.

This is a hard problem in general, and front-running of some form is always to be expected. By
reducing the ALLOWED_SLIPPAGE (maybe even to 0), you can reduce the amount that front-runners
can get for free from every transaction. The slippage value should probabally also be exposed to
the user so they can opt in to a 0% slippage value if they choose.

Even with zero slippage, the attacker can still make a large buy order, watch the victims order fail,
wait until they make a new order, and then exit their position. Doing this does carry the additional
risk that the victim may be unhappy with the new price, which eliminates the attackers opportunity
for zero risk skimming.

Bancor uses a front-running mitigation where there was a maximum gas value, so a user using the
maximum gas value cannot be front-run by an attacker increasing the gas for their transaction.
This approach might be worth looking into.

3.3 Gaps in test coverage (#32)

Severity Status Link Remediation Comment

https://github.com/ConsenSys/Uniswap-audit-internal-2018-12/issues/30
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/medium.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-internal-2018-12/issues/30
https://github.com/ConsenSys/Uniswap-audit-internal-2018-12/issues/32

Severity Status Link Remediation Comment

issues/32 The issue is currently under review

Description

The test suite could be improved in certain areas. Different types of testing parameters and testing
methodologies could be used to further extend its coverage.

Remediation

Specific areas that were identified as lacking proper coverage:

Additional ERC20 contracts with edge case parameters set (e.g.: decimals = 0 | 18 |
MAX_UINT8 , totalSupply = 0 | MAX_UINT256 , ...) as opposed to only testing with the HAY
token
Stress tests with some blackbox fuzzing with random amounts and parameters for ETH <->
ERC20 trades and ERC20 <-> ERC20 trades instead of fixed amounts.
Do unit testing in exchange functions with proper state reset between each test as opposed
to doing only end-to-end tests with persisting state.
In the end-to-end tests more scenarios could be added to test for adverse conditions like big
slippage.

3.4 Consider using transferFrom() in removeLiquidity() function (#31)

Severity Status Link Remediation Comment

issues/31 The issue is currently under review

Description

To prevent issues like the BNB issue[1] from coming up in the future, consider using the same
transfer function to add and remove liquidity. Hopefully this will ensure that if any non-compliant
tokens get added in the future, it will be much more unlikely to get into a state where liquidity can
be added, but not removed.

[1] https://twitter.com/UniswapExchange/status/1072286773554876416

3.5 Different 'deadline' behaviour (#25)

Severity Status Link Remediation Comment

issues/25 The issue is currently under review

Description

https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/minor.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-internal-2018-12/issues/32
https://github.com/ConsenSys/Uniswap-audit-internal-2018-12/issues/31
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/minor.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-internal-2018-12/issues/31
https://twitter.com/UniswapExchange/status/1072286773554876416
https://github.com/ConsenSys/Uniswap-audit-internal-2018-12/issues/25
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/minor.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-internal-2018-12/issues/25

Many functions in Exchange contract have deadline as a parameter. This parameter has the
same description in every function. But some functions use > operator when checking for a
deadline

while other functions use >= operator.

Remediation

Change all > operators to >= when working with deadline parameter. It does not really affect
anything but keeps code more beautiful and consistent.

3.6 Redundant checks in factory contract (#24)

Severity Status Link Remediation Comment

issues/24 The issue is currently under review

Description

In uniswap_factory.vy there are some redundant assertions:

contracts/uniswap_factory.vy:L15

and

contracts/uniswap_factory.vy:L21

Due to the fact that the Vyper compiler actually asserts that the code size at the specified
exchange address (through the use of EXTCODESIZE) is bigger than 0 , here:

contracts/uniswap_factory.vy:L24

This meaning that the zeroth address as the exchange, having no code at all, would make the call
to setup() fail.

Remediation

assert deadline > block.timestamp

 assert template != ZERO_ADDRESS

 assert self.exchangeTemplate != ZERO_ADDRESS

 Exchange(exchange).setup(token)

https://github.com/ConsenSys/Uniswap-audit-internal-2018-12/issues/24
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/minor.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-internal-2018-12/issues/24
https://github.com/Uniswap/contracts-vyper/blob/957f7aba57cec5d87824312dd3dd6484e0220086/contracts/uniswap_factory.vy#L15
https://github.com/Uniswap/contracts-vyper/blob/957f7aba57cec5d87824312dd3dd6484e0220086/contracts/uniswap_factory.vy#L21
https://github.com/Uniswap/contracts-vyper/blob/master/contracts/uniswap_factory.vy#L24

Remove the two assertions.

3.7 The factory contract should use a constructor (#23)

Severity Status Link Remediation Comment

issues/23 The issue is currently under review

Description

The factory uses a public function for initialization instead of a constructor which might make it a
target for griefing attacks.

Since there is no way to actually deploy the contract and call the initializeFactory() method
within the same transaction without an additional contract designed for the effect (which seems to
be inexistent in the current codebase) an attacker could grief deployments of the Uniswap factory
by always front-running the initializing transaction after deployment.

Possibly even more worrisome would be a front-running transaction that would underhandedly
change the exchange template code to something very similarly benign but that was, for example,
an underhandedly backdoored version of the original.

Remediation

The easiest solution would be to turn the initialization method into the constructor of said
contract. Another possible remediation would be to introduce a "factory deployer" contract that
executes both message calls in a single transaction.

5 Tool based analysis

The issues found using tool based analysis have been reviewed and the relevant issues have been
listed in chapter 3 - Issues. Fewer tools support code written with Vyper than Solidity, the
following were included in our analysis.

5.1 Mythril Classic

The Mythril Classic uses concolic analysis to detect various types of issues.
The tool was used for automated vulnerability discovery for all audited
contracts and libraries. More details on MythX's current vulnerability
coverage can be found here.

The raw output of the Mythril Classic vulnerability scan for each contract:

uniswap_exchange.vy
uniswap_factory.vy

5.2 Harvey Fuzzer

https://github.com/ConsenSys/Uniswap-audit-internal-2018-12/issues/23
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/minor.png
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/open.png
https://github.com/ConsenSys/Uniswap-audit-internal-2018-12/issues/23
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/static-content/mythril.png
https://github.com/ConsenSys/mythril-classic
https://github.com/ConsenSys/mythril-classic/wiki
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/tool-output/mythril/mythril_output_exchange.md
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/tool-output/mythril/mythril_output_factory.md

Harvey is a grey box fuzzer designed specifically for the EVM.

The raw output of Harvey's analysis for each contract:

uniswap_exchange.vy
uniswap_factory.vy

6 Test Coverage Measurement

Testing is implemented using eth-tester. 21 tests are included in the test suite and they all pass.

Specific sections of the code where necessary test coverage is missing are included in chapter 3 -
Issues.

It's important to note that "100% test coverage" is not a silver bullet. Our review also included a
inspection of the test suite, to ensure that testing included important edge cases.

The state of test coverage at the time of our review can be viewed in coverage_output.md.

Appendix 1 - File Hashes

The SHA1 hashes of the source code files in scope of the audit are listed in the table below.

Contract file name SHA1 Hash

uniswap_exchange.vy 9b058dc847040594bcac502effab5bda0de5fa3c

uniswap_factory.vy 97d49145ec4fc6aa31099cb51c0c2f69b6e487b7

Appendix 2 - Severity

A.2.1 - Minor

Minor issues are generally subjective in nature, or potentially deal with topics like "best practices"
or "readability". Minor issues in general will not indicate an actual problem or bug in code.

The maintainers should use their own judgment as to whether addressing these issues improves
the codebase.

A.2.2 - Medium

Medium issues are generally objective in nature but do not represent actual bugs or security
problems.

These issues should be addressed unless there is a clear reason not to.

https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/tool-output/harvey/harvey_output_exchange.md
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/tool-output/harvey/harvey_output_factory.md
https://github.com/ethereum/eth-tester
https://github.com/ConsenSys/Uniswap-audit-report-2018-12/blob/master/coverage-reports/coverage_output.md

A.2.3 - Major

Major issues will be things like bugs or security vulnerabilities. These issues may not be directly
exploitable, or may require a certain condition to arise in order to be exploited.

Left unaddressed these issues are highly likely to cause problems with the operation of the
contract or lead to a situation which allows the system to be exploited in some way.

A.2.4 - Critical

Critical issues are directly exploitable bugs or security vulnerabilities.

Left unaddressed these issues are highly likely or guaranteed to cause major problems or
potentially a full failure in the operations of the contract.

Appendix 3 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the
“Clients”) for performing the analysis contained in these reports (the “Reports”). The Reports may
be distributed through other means, including via ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the
Reports do not guarantee the security of any particular project. This Report does not consider, and
should not be interpreted as considering or having any bearing on, the potential economics of a
token, token sale or any other product, service or other asset. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty. No Report provides
any warranty or representation to any Third-Party in any respect, including regarding the bugfree
nature of code, the business model or proprietors of any such business model, and the legal
compliance of any such business. No third party should rely on the Reports in any way, including
for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not
intended to be relied upon as investment advice, is not an endorsement of this project or team,
and it is not a guarantee as to the absolute security of the project. CD owes no duty to any Third-
Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for
Clients and published with their consent. The scope of our review is limited to a review of Solidity
code and only the Solidity code we note as being within the scope of our review within this report.
The Solidity language itself remains under development and is subject to unknown risks and flaws.
The review does not extend to the compiler layer, or any other areas beyond Solidity that could
present security risks. Cryptographic tokens are emergent technologies and carry with them high
levels of technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) -- on its
Github account (https://github.com/ConsenSys). CD hopes that by making these analyses publicly
available, it can help the blockchain ecosystem develop technical best practices in this rapidly
evolving area of innovation.

https://github.com/ConsenSys

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer
links, gain access to web sites operated by persons other than ConsenSys and CD. Such hyperlinks
are provided for your reference and convenience only, and are the exclusive responsibility of such
web sites' owners. You agree that ConsenSys and CD are not responsible for the content or
operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other
person or entity for the use of third party Web sites. Except as described below, a hyperlink from
this web Site to another web site does not imply or mean that ConsenSys and CD endorses the
content on that Web site or the operator or operations of that site. You are solely responsible for
determining the extent to which you may use any content at any other web sites to which you link
from the Reports. ConsenSys and CD assumes no responsibility for the use of third party software
on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date
appearing on the Report and is subject to change without notice. Unless indicated otherwise, by
ConsenSys and CD.

