
 
 

 

SECURITY AUDIT OF  
IICO SMART CONTRACT 

 

AUDIT REPORT 

MAY 13, 2018 

 

✔erichains Lab 

info@verichains.io 

https://www.verichains.io 

 

Driving Technology >> Forward 

  



 
Security Audit of  

IICO Smart Contract | 2 
 
 

  
 

 

EXECUTIVE SUMMARY 
 
This Security Audit Report prepared by Verichains Lab on May 13, 2018. We would like to thank Kleros 
to trust Verichains Lab to audit smart contracts. Delivering high-quality audits is always our top priority. 
 
This audit focused on identifying security flaws in code and the design of the smart contracts. The scope 
of the audit is limited to the source code files provided to Verichains Lab on May 09, 2018. Verichains 
Lab completed the assessment using manual, static, and dynamic analysis techniques in 03 days. 
 
The assessment identified some issues in IICO smart contracts code. Overall, the code reviewed is of good 
quality, written with the awareness of smart contract development best practices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

CONFIDENTIALITY NOTICE 
 

This report may contain privileged and confidential information, or information of a 
proprietary nature, and information on vulnerabilities, potential impacts, attack vectors of 
vulnerabilities which were discovered in the process of the audit. 
 
The information in this report is intended only for the person to whom it is addressed and/or 
otherwise authorized personnel of Kleros. If you are not the intended recipient, you are hereby 
notified that you have received this document in error, and that any review, dissemination, 
printing, or copying of this message is strictly prohibited. If you have received this 
communication in error, please delete it immediately. 



 
Security Audit of  

IICO Smart Contract | 3 
 
 

  
 

 
CONTENTS 

Executive Summary 2 

Acronyms and Abbreviations 4 

Audit Overview 5 

About Interactive Coin Offering 5 

Scope of the Audit 5 

Audit methodology 6 

Audit Result 7 

Vulnerabilities Findings 7 

HIGH INCORRECT ORDERING OF BIDS FOR SAME VALUATION VALUE 7 

LOW POSSIBLE INTEGER OVERFLOW IN METHOD BONUS 8 

OTHER Recommendations / suggestions 9 

Conclusion 11 

Limitations 11 

Appendix  I 12 
 
  



 
Security Audit of  

IICO Smart Contract | 4 
 
 

  
 

ACRONYMS AND ABBREVIATIONS 
 
Ethereum An open source platform based on blockchain technology to create and distribute 

smart contracts and decentralized applications. 
 

ETH (Ether) A cryptocurrency whose blockchain is generated by the Ethereum platform. Ether 
is used for payment of transactions and computing services in the Ethereum 
network. 

Smart contract A computer protocol intended to digitally facilitate, verify or enforce the 
negotiation or performance of a contract. 

Solidity A contract-oriented, high-level language for implementing smart contracts for the 
Ethereum platform. 

Solc A compiler for Solidity. 
EVM Ethereum Virtual Machine. 

 
 
  



 
Security Audit of  

IICO Smart Contract | 5 
 
 

  
 

AUDIT OVERVIEW 
 
ABOUT INTERACTIVE COIN OFFERING 
 
Kleros is a blockchain Dispute Resolution Layer that provides fast, secure and affordable arbitration for 
virtually everything. 
 
Kleros implements the Interactive Coin Offering token sale smart contract following paper from 
published by Jason Teutsch, Vitalik Buteri and Christopher Brown at 
https://people.cs.uchicago.edu/~teutsch/papers/ico.pdf 
 
 
SCOPE OF THE AUDIT 
 
This audit focused on identifying security flaws in code and the design of the smart contracts. It was 
conducted at commit e67e647 of branch master from GitHub repository of OpenIICO Contract. 
 
Repository URL: https://github.com/kleros/openiico-
contract/tree/e67e64753d934c464356558848a61db20c7892b6 
 
 
Source File SHA256 Hash 
IICO.sol 9a95a5d9f68b14a70c43af1d7702d0e25889ba06653a13c0d98bfc57a459c433 
LevelWhitelistedIICO.sol 3c17a3be4437018967b2303fbcec0a372481a13a4aafc8dcc89587fea96d93f6 

 
  



 
Security Audit of  

IICO Smart Contract | 6 
 
 

  
 

AUDIT METHODOLOGY 
 
Our security audit process for smart contract includes two steps: 

• Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities 
using public and in-house automated analysis tools. 

• Manual audit of the codes for security issues. The contracts are manually analyzed to look for any 
potential problems. 
 

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart 
contract: 

• Integer Overflow and Underflow 
• TimeStamp Dependence 
• Race Conditions 
• Transaction-Ordering Dependence 
• DoS with (Unexpected) revert 
• Dos with Block Gas Limit 
• Gas Usage, Gas Limit and Loops 
• Redundant fallback function 
• Unsafe type Inference 
• Reentrancy 
• Explicit visibility of functions state variables (external, internal, private and public) 
• Logic Flaws 

 
For vulnerabilities, we categorize the findings into categories, depending on their criticality:  
 

LOW An issue that does not have a significant impact, can be considered as less 
important 

MEDIUM A vulnerability that could affect the desired outcome of executing the contract 
with medium impact in a specific scenario; needs to be fixed. 

HIGH A vulnerability that could affect the desired outcome of executing the contract 
with high impact; needs to be fixed with high priority. 

CRITICAL A vulnerability that can disrupt the contract functioning; creates a critical risk to 
the contract; required to be fixed immediately. 

 
 
 
  



 
Security Audit of  

IICO Smart Contract | 7 
 
 

  
 

AUDIT RESULT 
 
VULNERABILITIES FINDINGS 

HIGH 
INCORRECT ORDERING OF BIDS FOR SAME VALUATION VALUE 
 
Bids are ordered in ascending order of maxValuation and then id, which is decided in submitBid method 
by the ordering requirement: 
 
 
require(_maxValuation >= prevBid.maxValuation && _maxValuation < nextBid.maxValuation); // 
The new bid maxValuation is higher than the previous one and strictly lower than the next 
one. 
 
  
At final stages, the bid’s cut point is calculated by traversing from last (highest bid) to first (lowest bid), 
this scheme convince users to “spam” bids by resubmit last user’s maxValuation because the later bid 
has more chance to be selected at final stage. 
 
Recommended fixes 

• Change bids list’s ordering to ascending order of maxValuation and then in descending order of 
id to ensure earlier bids are selected for bids with same maxValuation: 

o Change the ordering check in submitBid from: 

 
require(_maxValuation >= prevBid.maxValuation && _maxValuation < nextBid.maxValuation); 
 

  to 

require( 
    ((_maxValuation > prevBid.maxValuation) || (prev == HEAD)) 
    && (_maxValuation <= nextBid.maxValuation) 
); 

o Change the accepted bid condition check in redeem: 

 
    function redeem(uint _bidID) public { 
        Bid storage bid = bids[_bidID]; 
        Bid storage cutOffBid = bids[cutOffBidID]; 
        require(finalized); 



 
Security Audit of  

IICO Smart Contract | 8 
 
 

  
 

        require(!bid.redeemed); 
 
        bid.redeemed=true; 
        if (bid.maxValuation > cutOffBid.maxValuation || (bid.maxValuation == 
cutOffBid.maxValuation && _bidID >= cutOffBidID)) // Give tokens if the bid is accepted. 
            token.transfer(bid.contributor, (tokensForSale * (bid.contrib + (bid.contrib * 
bid.bonus) / BONUS_DIVISOR)) / sumAcceptedVirtualContrib); 
        else                                                                                            
// Reimburse ETH otherwise. 
            bid.contributor.transfer(bid.contrib); 
    } 
 

  to 

         
if (bid.maxValuation > cutOffBid.maxValuation || (bid.maxValuation == cutOffBid.maxValuation 
&& _bidID <= cutOffBidID)) 
 

o And disable submitBid in default method or adding an infinityTail which updates every 
time state variable to be used instead of TAIL. 
 
 

LOW 
POSSIBLE INTEGER OVERFLOW IN METHOD BONUS 
 
Bid’s bonus amount is calculated depend on time using bonus function and might lead to unexpected 
behaviors by malicious creation parameters. 
 
 
function bonus() public view returns(uint b) { 
    if (now < endFullBonusTime) // Full bonus. 
        return maxBonus; 
    else if (now > endTime)     // Assume no bonus after end. 
        return 0; 
    else                        // Compute the bonus decreasing linearly from 
endFullBonusTime to endTime. 
        return (maxBonus * (endTime - now)) / (endTime - endFullBonusTime); 
} 
 



 
Security Audit of  

IICO Smart Contract | 9 
 
 

  
 

In the above code from IICO contract, the multiplication maxBonus * (endTime - now) could be 
overflowed to return not-intended values. 

Recommended fixes 

• Add check to constructor to ensure no integer overflow of bonus calculation: 

require( 
     (_maxBonus == 0) 
  || (endTime == endFullBonusTime) 
  || (_maxBonus * (endTime - endFullBonusTime)) / (endTime – endFullBonusTime) == _maxBonus 
); 
 

 

OTHER RECOMMENDATIONS / SUGGESTIONS 
 

• Add require(_maxValuation <= INFINITY) to search function to ensure early termination to 
prevent possible infinity loop in search  

 
 From the way every variables are setup, all bid’s maxValuation must be less than INFINITY, 
 which is MAX_UINT - 1, so if search function is called with MAX_UINT, the loop will run 
 forever and consume all supplied gas. 
 
 
function search(uint _maxValuation, uint _nextStart) view public returns(uint nextInsert) { 
    uint next = _nextStart; 
    bool found; 
 
    while(!found) { // While we aren't at the insertion point. 
        Bid storage nextBid = bids[next]; 
        uint prev = nextBid.prev; 
        Bid storage prevBid = bids[prev]; 
 
        if (_maxValuation < prevBid.maxValuation)       // It should be inserted before. 
            next = prev; 
        else if (_maxValuation >= nextBid.maxValuation) // It should be inserted after. The 
second value we sort by is bidID. Those are increasing, thus if the next bid is of the same 
maxValuation, we should insert after it. 
            next = nextBid.next; 
        else                                // We found the insertion point. 
            found = true; 
    } 



 
Security Audit of  

IICO Smart Contract | 10 
 
 

  
 

 
    return next; 
} 
 

 In the above code from IICO contract, if _maxValuation is MAX_UINT (2"#$ − 1), the second 
 if will always be executed and perform a cyclic traversal over all bids until all gas is spent. 
 

• While the code below in finalize function has no security issue, please consider using claim 
pattern to let contributors and beneficiary receive funds instead of using send and ignore any 
transfer error. 

    function finalize(uint _maxIt) public { 
        require(now >= endTime); 
        require(!finalized); 
        // Make local copies of the finalization variables in order to avoid modifying 
storage in order to save gas. 
        uint localCutOffBidID = cutOffBidID; 
        uint localSumAcceptedContrib = sumAcceptedContrib; 
        uint localSumAcceptedVirtualContrib = sumAcceptedVirtualContrib; 
        // Search for the cut-off bid while adding the contributions. 
        for (uint it = 0; it < _maxIt && !finalized; ++it) { 
            Bid storage bid = bids[localCutOffBidID]; 
            if (bid.contrib+localSumAcceptedContrib < bid.maxValuation) { // We haven't found 
the cut-off yet. 
                localSumAcceptedContrib        += bid.contrib; 
                localSumAcceptedVirtualContrib += bid.contrib + (bid.contrib * bid.bonus) / 
BONUS_DIVISOR; 
                localCutOffBidID = bid.prev; // Go to the previous bid. 
            } else { // We found the cut-off. This bid will be taken partially. 
                finalized = true; 
                uint contribCutOff = bid.maxValuation >= localSumAcceptedContrib ? 
bid.maxValuation - localSumAcceptedContrib : 0; // The amount of the contribution of the cut-
off bid that can stay in the sale without spilling over the maxValuation. 
                contribCutOff = contribCutOff < bid.contrib ? contribCutOff : bid.contrib; // 
The amount that stays in the sale should not be more than the original contribution. This 
line is not required but it is added as an extra security measure. 
                bid.contributor.send(bid.contrib-contribCutOff); // Send the non-accepted 
part. Use send in order to not block if the contributor's fallback reverts. 
                bid.contrib = contribCutOff; // Update the contribution value. 
                localSumAcceptedContrib += bid.contrib; 
                localSumAcceptedVirtualContrib += bid.contrib + (bid.contrib * bid.bonus) / 
BONUS_DIVISOR; 



 
Security Audit of  

IICO Smart Contract | 11 
 
 

  
 

                beneficiary.send(localSumAcceptedContrib); // Use send in order to not block 
if the beneficiary's fallback reverts. 
            } 
        } 
        // Update storage. 
        cutOffBidID = localCutOffBidID; 
        sumAcceptedContrib = localSumAcceptedContrib; 
        sumAcceptedVirtualContrib = localSumAcceptedVirtualContrib; 
    } 
 
 
 
CONCLUSION 
 
IICO smart contracts have been audited by Verichains Lab using various public and in-house analysis 
tools and intensively manual code review. The assessment identified some issues in IICO smart contracts 
code. Overall, the code reviewed is of good quality, written with the awareness of smart contract 
development best practices.  
 
  
LIMITATIONS 
 
Please note that security auditing cannot uncover all existing vulnerabilities, and even an audit in which 
no vulnerabilities are found is not a guarantee for a 100% secure smart contract. However, auditing allows 
discovering vulnerabilities that were unobserved, overlooked during development and areas where 
additional security measures are necessary. 
 
 
  



 
Security Audit of  

IICO Smart Contract | 12 
 
 

  
 

APPENDIX  I 
 

 
Figure 1 Call graph of IICO.sol 

 

 
 


