
Yieldly.Finance
Bridge Algorand

Smart Contracts Security Audit

Prepared by: Halborn

Date of Engagement: May 19th-31st, 2021

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 3

CONTACTS 3

1 EXECUTIVE OVERVIEW 4

1.1 INTRODUCTION 5

1.2 AUDIT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 6

RISK METHODOLOGY 7

1.4 SCOPE 9

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 10

3 FINDINGS & TECH DETAILS 11

3.1 (HAL-01) LACK OF THRESHOLD CHECK - MEDIUM 13

Description 13

Code Location 13

Example Functions 14

Risk Level 14

Recommendation 14

Remediation Plan 14

4 MANUAL TESTING 15

4.1 TESTING SIGNATORY/VALIDATOR FUNCTIONS 16

ACCESS CONTROL CHECK 16

INPUT VALIDATION CHECK 21

OUT OF ORDER CHECK 22

4.2 TESTING DISPATCHER FUNCTIONS 25

ACCESS CONTROL CHECK 25

1

INPUT VALIDATION CHECK 28

2

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 05/19/2021 Gabi Urrutia

0.2 Document Edits 05/28/2021 Gokberk Gulgun

1.0 Final Version 05/31/2021 Gokberk Gulgun

1.1 Remediation Plan 06/07/2021 Gokberk Gulgun

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Gokberk Gulgun Halborn Gokberk.Gulgun@halborn.com

3

mailto: Rob.Behnke@halborn.com
mailto: Steven.Walbroehl@halborn.com
mailto: Gabi.Urrutia@halborn.com
mailto: Gokberk.Gulgun@halborn.com

4

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Yieldly.Finance bridge component is designed to integrate a diverse set

of blockchains specialised for different needs. Yieldly.Finance connects

Algorand to Ethereum , and vice versa.

Yieldly.Finance engaged Halborn to conduct a security assessment on their

Algorand Smart contract beginning on May 19, 2021 and ending May 31th,

2021. The security assessment was scoped to the Algorand lottery con-

tracts and an audit of the security risk and implications regarding the

changes introduced by the development team at Yieldly.Finance prior to

its production release shortly following the assessments deadline.

Though this security audit’s outcome is satisfactory, only the most

essential aspects were tested and verified to achieve objectives and

deliverables set in the scope due to time and resource constraints. It

is essential to note the use of the best practices for secure smart-

contract development.

5

EX
EC

UT
IV

E
OV

ER
VI

EW

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and assigned

three full time security engineers to audit the security of the smart

contract. The security engineers are blockchain and smart-contract secu-

rity experts with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit to achieve the following:

• Ensure that smart contract functions are intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn identified few security risks which were solved by

Yieldly.Finance team. The fixes have been reviewed by the auditors.

Risk Assessment Sheet

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard to

the scope of the smart contract audit.While manual testing is recommended

6

EX
EC

UT
IV

E
OV

ER
VI

EW

to uncover flaws in logic, process,and implementation; automated testing

techniques help enhance coverage of smart contracts and can quickly

identify items that do not follow security best practices. The following

phases and associated tools were used throughout the term of the audit:

• Research into architecture and purpose.

• Smart Contract manual code read and walkthrough.

• Graphing out functionality and contract logic/connectivity/func-

tions(buildr)

• Manual Assessment of use and safety for the critical Algorand vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Smart Contract Dynamic Analysis And Flow Testing

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security in-

cident, and the IMPACT should an incident occur. This framework works for

communicating the characteristics and impacts of technology vulnerabili-

ties. It’s quantitative model ensures repeatable and accurate measurement

while enabling users to see the underlying vulnerability characteristics

that was used to generate the Risk scores. For every vulnerability, a

risk level will be calculated on a scale of 5 to 1 with 5 being the

highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

8

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

Code related to Yieldly Algorand Bridge Repository

Specific commit of contract:

d52a00210ab77ab5500aa159305725d15ae709a8

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/yieldly-finance/yieldly-bridge-smart-contracts/commit/d52a00210ab77ab5500aa159305725d15ae709a8

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 1 0 0

IM
PA
CT

LIKELIHOOD

(HAL-01)

10

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

LACK OF THRESHOLD CHECK Medium SOLVED: 06/02/2021

MANUAL TESTING - -

11

EX
EC

UT
IV

E
OV

ER
VI

EW

12

FINDINGS & TECH
DETAILS

3.1 (HAL-01) LACK OF THRESHOLD
CHECK - MEDIUM

Description:

In the Yieldly.Finance, Three type of role is defined in the bridge

contracts. They are named as Signatory and Validator and Dispatcher.

Signatory and validator thresholds have been implemented in an editable

way on the related functions. However, there is no limit on these

functions.

Code Location:

Function sigThresholdProp

Listing 1: HalbornTest.js (Lines)

1 it("Halborn Should propose threshold should change to 20", async

() => {

2 return await new Promise(async (resolve , reject) => {

3 try {

4 let txn = await configs.sigThresholdProp(account1 , sigAppId ,

20);

5 resolve(txn);

6 } catch (err) {

7 console.log(err);

8 }

9 });

10 }).timeout (120000);

Function valThresholdProp

Listing 2: HalbornTest.js (Lines)

1 it("Halborn Should propose threshold should change to 20", async

() => {

2 return await new Promise(async (resolve , reject) => {

3 try {

4 let txn = await configs.valThresholdProp(account1 , valAppId ,

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

20, sigAppId);

5 resolve(txn);

6 } catch (err) {

7 reject ();

8 assert.fail("Failed to propose");

9 }

10 });

11 }).timeout (120000);

Example Functions:

Listing 3

1 valThresholdProp

2 sigThresholdProp

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

The limit definition range of threshold should be defined in the contract

functionalities.

Remediation Plan:

SOLVED: Yieldly.Finance Team defined threshold limit on the functions.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

15

MANUAL TESTING

During the manual testing multiple questions where considered while eval-

uation each of the defined functions:

• Can it be re-called changing admin/roles and permissions?

• Do we control sensitive or vulnerable parameters?

• Does the function check for boundaries on the parameters and internal

values? Bigger than zero or equal? Argument count, array sizes,

integer truncation.

• Can we bypass Proxy restrictions and interact with the escrow di-

rectly?

• Can we manipulate transaction order with re-ordering?

• Is there any missed address check?

4.1 TESTING SIGNATORY/VALIDATOR
FUNCTIONS

ACCESS CONTROL CHECK:

During the test process, Two type of user have been defined on the

contracts. One of them is defined as signatory and other one named as

validator. In the testing process, Functions accessible to relevant users

have been checked. A signatory user functions are shown in the below.

Listing 4: Functions (Lines)

1 function isSignatory ()

2 function sigThresholdProp ()

3 function signatoryProp ()

4 function signatoryApprove ()

5 function

Next, privileged validator functions are extracted from the test cases

and shown below.

16

MA
NU

AL
TE

ST
IN

G

Listing 5: Functions (Lines)

1 function isValidator ()

2 function addValidatorProp ()

3 function valThresholdProp ()

All functions are tested through Mocha framework. Two accounts provided

by Yieldly .Finance team and one account has been created by Halborn team.

After importing accounts into Mocha and AlgoSDK, Signatory and Validator

workflows are evaluated according to the following code parts. Tests are

completed through Algorand Testnet.

Listing 6: IsValidator Check (Lines)

1 it("Halborn Test Validator Check - PASS", async () => {

2 return await new Promise(async (resolve , reject) => {

3 try {

4 let txn = await configs.isValidator(account1 , valAppId);

5 resolve(txn);

6 } catch (err) {

7 reject ();

8 assert.fail("Failed to propose");

9 }

10 });

11 }).timeout (120000);

12

13 it("Halborn Test Validator Check - FAIL", async () => {

14 return await new Promise(async (resolve , reject) => {

15 try {

16 let txn = await configs.isValidator(account2 , valAppId);

17 reject(assert.fail("Should have failed"));

18 } catch (err) {

19 resolve ();

20 }

21 });

22 }).timeout (120000);

23

Listing 7: Add Validatory and Approve Check (Lines)

1 it("Halborn Test Add Validator - PASS", async () => {

2 return await new Promise(async (resolve , reject) => {

17

MA
NU

AL
TE

ST
IN

G

3 try {

4 let txn = await configs.addValidatorProp(

5 account1 ,

6 valAppId ,

7 account2 ,

8 sigAppId

9);

10 resolve(txn);

11 } catch (err) {

12 reject ();

13 assert.fail("Failed to propose");

14 }

15 });

16 }).timeout (120000);

17

18 it("Halborn Test Validator Approve", async () => {

19 return await new Promise(async (resolve , reject) => {

20 try {

21 let txn = await configs.validatorApprove(

22 account2 ,

23 valAppId ,

24 account2 ,

25 sigAppId

26);

27 resolve(txn);

28 } catch (err) {

29 reject ();

30 assert.fail("Failed to propose");

31 }

32 });

33 }).timeout (120000);

Listing 8: Validator Threshold Change Check (Lines)

1 it("Halborn Added Validator Threshold Change Check", async () => {

2 return await new Promise(async (resolve , reject) => {

3 try {

4 let txn = await configs.valThresholdApprove(account2 ,

valAppId , sigAppId);

5 resolve(txn);

6 } catch (err) {

7 reject ();

8 assert.fail("Failed to propose");

9 }

18

MA
NU

AL
TE

ST
IN

G

10 });

11 }).timeout (120000);

Listing 9: Signatory Check (Lines)

1 it("Halborn Signatory Check", async () => {

2 return await new Promise(async (resolve , reject) => {

3 try {

4 let txn = await configs.isSignatory(account3 , sigAppId);

5 reject(assert.fail("Should have failed"));

6 } catch (err) {

7 resolve ();

8 }

9 });

10 }).timeout (120000);

11

12 it("Halborn Add Signatory Check", async () => {

13 return await new Promise(async (resolve , reject) => {

14 try {

15 let txn = await configs.signatoryProp(account1 , sigAppId ,

account2);

16 resolve(txn);

17 } catch (err) {

18 reject ();

19 assert.fail("Failed to propose");

20 }

21 });

22 }).timeout (120000);

Listing 10: Signatory Threshold Change (Lines)

1 it("Halborn Signatory Threshold Change", async () => {

2 return await new Promise(async (resolve , reject) => {

3 try {

4 let txn = await configs.sigThresholdProp(account1 , sigAppId ,

2);

5 resolve(txn);

6 } catch (err) {

7 reject ();

8 assert.fail("Failed to propose");

9 }

10 });

11 }).timeout (120000);

19

MA
NU

AL
TE

ST
IN

G

By running the relevant codes on each function, the results were examined

on Testnet. As a result of the tests performed in a limited time, no

problems were observed in the flows.

According to an analysis, It has been observed that the transactions

produced by the functions against workflow manipulation are as expected.

The Function enhancements are structured with roles.

20

MA
NU

AL
TE

ST
IN

G

INPUT VALIDATION CHECK:

During the test process, the signatory and validator functions have been

reviewed by the auditors. In the testing process, Functions accessible

to relevant users have been checked.

Without pragma version definition, The contract will be interpreted as a

version 1 contract. In the contracts, the pragma version 3 used.

Bridge Signatory Contract

Listing 11: (Lines 1)

1 #pragma version 3

2

3

4 //** Begin

5 //** Descrption: Checks if not first time created , if so then

initialise all global variables

6 //**/

7 int 0

8 txn ApplicationID

9 ==

10 bz not_creation

11 byte "Creator"

12 txn Sender

13 app_global_put

14 byte "Owner"

15 txn Sender

16 app_global_put

Bridge Validators Contract

Listing 12: (Lines 1)

1 #pragma version 3

2

3

4 //** Begin

5 //** Descrption: Checks if not first time created , if so then

initialise all global variables

6 //**/

21

MA
NU

AL
TE

ST
IN

G

7 int 0

8 txn ApplicationID

9 ==

10 bz not_creation

11 byte "Creator"

12 txn Sender

13 app_global_put

14 byte "Owner"

15 txn Sender

16 app_global_put

OUT OF ORDER CHECK:

In the smart contracts, the grouped transactions are examined by changing

their orders. The relevant changes are completed on the test cases.

Function valThresholdPropReverse

Listing 13: HalbornTest.js (Lines)

1 it("valThresholdPropReverse - Reverse", async () => {

2 return await new Promise(async (resolve , reject) => {

3 try {

4 let txn = await configs.valThresholdPropReverse(account1 ,

valAppId , 2, sigAppId);

5 resolve(txn);

6 } catch (err) {

7 console("ERROR Reverse valThresholdPropReverse");

8 console.log(err);

9 }

10 });

11 }).timeout (120000);

Function signatoryApproveReverse

22

MA
NU

AL
TE

ST
IN

G

Listing 14: HalbornTest.js (Lines)

1 it("signatoryApproveReverse - Reverse Orders", async () => {

2 return await new Promise(async (resolve , reject) => {

3 try {

4 let txn = await configs.signatoryApproveReverse(account2 ,

sigAppId , account3);

5 resolve(txn);

6 } catch (err) {

7 console.log("ERROR - REVERSE");

8 }

9 });

10 }).timeout (12000);

Function addValidatorPropReverse

Listing 15: HalbornTest.js (Lines)

1 it("addValidator Reverse Order", async () => {

2 return await new Promise(async (resolve , reject) => {

3 try {

4 let txn = await configs.addValidatorPropReverse(

5 account1 ,

6 valAppId ,

7 account2 ,

8 sigAppId

9);

10 resolve(txn);

11 } catch (err) {

12 console("ERROR Reverse addValidatorPropReverse");

13 console.log(err);

14 }

15 });

16 }).timeout (120000);

Function Reverse Group Example

Listing 16: Function Reverse Group Example (Lines)

1 var txngroup = await algosdk.assignGroupID ([application ,

verifier]);

2

23

MA
NU

AL
TE

ST
IN

G

3 application.group = txngroup [1]. group;

4 verifier.group = txngroup [0]. group;

5

6 var signed2 = await application.signTxn(account.sk);

7 var signed1 = await verifier.signTxn(account.sk);

8

9 var bytes = concatArrays(signed1 , signed2);

10

11 var { txId: createTxId } = await algodClient

The tests were carried out in interaction with Testnet over the Mocha.

As a result of the tests, Reversed orders are checked on the grouped

transactions.

24

MA
NU

AL
TE

ST
IN

G

4.2 TESTING DISPATCHER FUNCTIONS

ACCESS CONTROL CHECK:

The Dispatcher is is designed to integrate a diverse set of blockchains

specialised for different needs. There are three role based on the

components. The final test carried out through dispatcher role.

Listing 17: Bridge Dispatcher Teal (Lines)

514 it("Halborn - Dispatcher New Escrow", async () => {

515

516

517 var appArgs = [];

518 appArgs.push(algosdk.decodeAddress(escrowAddress).publicKey);

519 appArgs.push(new Uint8Array(getInt64Bytes(proxyAppId)));

520 txnList.push(

521 configs.updateApplication(

522 account1 ,

523 optingAppId ,

524 program6 ,

525 program2 ,

526 appArgs

527)

528);

529

530 /* Update the proxy checks */

531 var appArgs5 = [];

532 appArgs5.push(algosdk.decodeAddress(escrowAddress).publicKey);

533 appArgs5.push(new Uint8Array(getInt64Bytes(disAppId)));

534 appArgs5.push(new Uint8Array(getInt64Bytes(optingAppId)));

535 txnList.push(

536 configs.updateApplication(

537 account1 ,

538 proxyAppId ,

539 program7 ,

540 program2 ,

541 appArgs5

542)

543);

544

545 return new Promise ((resolve) => resolve ());

546 }).timeout (120000);

25

MA
NU

AL
TE

ST
IN

G

Listing 18: (Lines)

514 it("Halborn - Dispatch From Account 1 and Vote Account 2", async

() => {

515 return await new Promise(async (resolve , reject) => {

516 try {

517 let txn = await configs.releaseTxnApprove(

518 account1 ,

519 disAppId ,

520 escrowAddress ,

521 account2 ,

522 valAppId ,

523 assetId ,

524 800000000 ,

525 proxyAppId

526);

527 assert (!txn , "Should have failed");

528 } catch (err) {

529 resolve ();

530 }

531 });

532 }).timeout (120000);

Listing 19: (Lines)

514 it("Halborn - Dispatch From Account 2 and Vote Account 3", async

() => {

515 return await new Promise(async (resolve , reject) => {

516 try {

517 let txn = await configs.releaseTxnApproveNoTxn(

518 account2 ,

519 disAppId ,

520 account3 ,

521 valAppId ,

522 assetId ,

523 proxyAppId

524);

525 assert (!txn , "Should have failed");

526 } catch (err) {

527 resolve ();

528 }

529 });

26

MA
NU

AL
TE

ST
IN

G

530 }).timeout (120000);

According to an analysis, It has been observed that the transactions

produced by the functions against workflow manipulation are as expected.

The Function enhancements are structured with roles.

27

MA
NU

AL
TE

ST
IN

G

INPUT VALIDATION CHECK:

During the test process, the dispatcher function has been reviewed by

the auditors. In the testing process, Functions accessible to relevant

users have been checked.

Without pragma version definition, The contract will be interpreted as

a version 1 contract. In the dispatcher contract, the pragma version 3

used.

Bridge Dispatcher Teal

Listing 20: (Lines 1)

1 #pragma version 3

2

3

4 //** Begin

5 //** Descrption: Checks if not first time created , if so then

initialise all global variables

6 //**/

7 int 0

8 txn ApplicationID

9 ==

10 bz not_creation

11 byte "Creator"

12 txn Sender

13 app_global_put

14 byte "Owner"

15 txn Sender

16 app_global_put

The Contract implementations should check GroupSize to make sure the size

corresponds to the number of transactions the logic is expecting.

Function voteFin

28

MA
NU

AL
TE

ST
IN

G

Listing 21: Bridge Dispatcher Teal (Lines 515,516,517)

514 voteFin:

515 global GroupSize

516 int 3

517 ==

518 assert

519 int 1

520 return

521

522 failed:

523 int 0

524 return

525 finished:

526 int 1

527 return

528

According to test results, Group Size precondition checks are implemented

over all contracts.

The contract code should verify that the RekeyTo property of any trans-

action is set to the ZeroAddress unless the contract is specifically

involved in a rekeying operation.

Listing 22: Bridge Dispatcher Teal (Lines)

463 //** Function: sendTxn

464 //** Descrption:

465 //**/

466 sendTxn:

467 gtxn 0 ApplicationID

468 byte "G"

469 app_global_get

470 ==

471 assert

472

473 gtxn 3 TypeEnum

474 int 4

475 ==

29

MA
NU

AL
TE

ST
IN

G

476 assert

477

478 int 1

479 byte "SendAmount"

480 app_local_get

481 gtxn 3 AssetAmount

482 >=

483 assert

484

485 gtxn 2 RekeyTo

486 global ZeroAddress

487 ==

488 gtxn 3 RekeyTo

489 global ZeroAddress

490 ==

491 &&

492 assert

According to the static analysis results, necessary controls were applied

on the ReKeyTo variables of contracts.

30

MA
NU

AL
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Example Functions
	Risk Level
	Recommendation
	Remediation Plan

	MANUAL TESTING
	TESTING SIGNATORY/VALIDATOR FUNCTIONS
	ACCESS CONTROL CHECK
	INPUT VALIDATION CHECK
	OUT OF ORDER CHECK

	TESTING DISPATCHER FUNCTIONS
	ACCESS CONTROL CHECK
	INPUT VALIDATION CHECK

