
Yieldly.Finance
Lottery Smart Contracts

Security Audit

Prepared by: Halborn

Date of Engagement: May 8th - 19th, 2021

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 8

RISK METHODOLOGY 8

1.4 SCOPE 10

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 11

3 FINDINGS & TECH DETAILS 12

3.1 (HAL-01) LACK OF MULTISIG PROGRAM - LOW 14

Description 14

Code Location 14

Example Definition 15

Risk Level 15

Recommendation 15

Remediation Plan 15

3.2 (HAL-02) MISSING PROXY ASSET DEFINITION ON THE FUNCTIONS - LOW

16

Description 16

Code Location 16

Risk Level 16

Recommendation 17

Remediation Plan 17

3.3 (HAL-03) MISSING FREEZE/REVOKE ASSETS DEFINITION - INFORMATIONAL

18

1

Description 18

Code Location 18

Risk Level 18

Recommendation 19

3.4 (HAL-04) MULTIPLE PRAGMA DEFINITION - INFORMATIONAL 20

Description 20

Code Location 20

Risk Level 20

Recommendation 20

3.5 (HAL-05) ALERTHUB SETUP - INFORMATIONAL 21

Description 21

Risk Level 21

Recommendation 21

3.6 TESTING ACCESS CONTROL POLICIES 22

Description 22

Results 27

3.7 TESTING ALGORAND TEAL LANGUAGE IMPLEMENTATIONS 28

ReKeyTo Verification 28

Fee & Amount Conditional Checks 30

Pragma Version 30

GroupSize Check 31

3.8 TESTING INPUT VALIDATION 33

Description 33

Results 36

3.9 TESTING OUT-OF-ORDER 37

Description 37

2

Results 39

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 05/18/2021 Gabi Urrutia

0.2 Document Edits 05/18/2021 Gokberk Gulgun

1.0 Final Version 05/19/2021 Gokberk Gulgun

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Gokberk Gulgun Halborn Gokberk.Gulgun@halborn.com

4

mailto: Rob.Behnke@halborn.com
mailto: Steven.Walbroehl@halborn.com
mailto: Gabi.Urrutia@halborn.com
mailto: Gokberk.Gulgun@halborn.com

5

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Yieldly.Finance engaged Halborn to conduct a security assessment on their

Smart contracts beginning on May 08, 2021 and ending May 19th, 2021. The

security assessment was scoped to the Algorand lottery contracts and an

audit of the security risk and implications regarding the changes intro-

duced by the development team at Yieldly.Finance prior to its production

release shortly following the assessments deadline.

Though this security audit’s outcome is satisfactory, only the most

essential aspects were tested and verified to achieve objectives and

deliverables set in the scope due to time and resource constraints. It

is essential to note the use of the best practices for secure smart-

contract development.

6

EX
EC

UT
IV

E
OV

ER
VI

EW

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and assigned

three full time security engineers to audit the security of the smart

contract. The security engineers are blockchain and smart-contract secu-

rity experts with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

Risk Assessment Sheet

The purpose of this audit to achieve the following:

• Ensure that smart contract functions are intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn identified few security risks, and recommends per-

forming further testing to validate extended safety and correctness in

context to the whole of contract. External threats, such as economic

attacks, oracle attacks, and inter-contract functions and calls should

be validated for expected logic and state.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard to

the scope of the smart contract audit.While manual testing is recommended

to uncover flaws in logic, process,and implementation; automated testing

techniques help enhance coverage of smart contracts and can quickly

identify items that do not follow security best practices. The following

phases and associated tools were used throughout the term of the audit:

• Research into architecture and purpose.

• Smart Contract manual code read and walkthrough.

• Graphing out functionality and contract logic/connectivity/func-

tions(buildr)

• Manual Assessment of use and safety for the critical Algorand vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Smart Contract Dynamic Analysis And Flow Testing

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security in-

cident, and the IMPACT should an incident occur. This framework works for

communicating the characteristics and impacts of technology vulnerabili-

ties. It’s quantitative model ensures repeatable and accurate measurement

while enabling users to see the underlying vulnerability characteristics

that was used to generate the Risk scores. For every vulnerability, a

risk level will be calculated on a scale of 5 to 1 with 5 being the

highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

8

EX
EC

UT
IV

E
OV

ER
VI

EW

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

9

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

Code related to Yieldly Pools Repository

Specific commit of contract:

4bc5d8e49dfd8338306abcee91c7d5b44c114a09

10

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/yieldly-finance/yieldly-pools/commit/4bc5d8e49dfd8338306abcee91c7d5b44c114a09

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 2 3

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-02)

(HAL-03)
(HAL-04)
(HAL-05)

11

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - LACK OF MULTISIG PROGRAM Low SOLVED: 05/31/2021

HAL02 - MISSING PROXY ASSET
DEFINITION ON THE FUNCTIONS

Low SOLVED: 05/31/2021

HAL03 - MISSING FREEZE/REVOKE
ASSETS DEFINITION

Informational SOLVED: 05/31/2021

HAL04 - MULTIPLE PRAGMA DEFINITION Informational SOLVED: 05/31/2021

HAL05 - ALERTHUB SETUP Informational SOLVED: 05/31/2021

TESTING ACCESS CONTROL POLICIES - -

TESTING ALGORAND TEAL LANGUAGE
IMPLEMENTATIONS

- -

TESTING INPUT VALIDATION - -

TESTING OUT-OF-ORDER - -

12

EX
EC

UT
IV

E
OV

ER
VI

EW

13

FINDINGS & TECH
DETAILS

3.1 (HAL-01) LACK OF MULTISIG
PROGRAM - LOW

Description:

The principal benefit of multisig is that it creates added redundancy in

key management. While single signature addresses require only a single

key for transactions, multisignature addresses require multiple keys.

To protect against malicious admin, it may be necessary to use a multi

signature. By using this mechanism, a malicious admin actions could be

prevented.

Code Location:

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Example Definition:

Listing 1: Multisig Implementation (Lines)

2 goal account multisig new -T 2 account1 account2 account3 -d ~/

node/data

3 goal clerk multisig signprogram -p /tmp/*.teal -a account1 -A

account2 -o /tmp/simple.lsig -d ~/node/data

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

In the contract, The multi-signature should be implemented over a creator

account.

Remediation Plan:

SOLVED: Yieldly.Finance Team will monitor assets by a multi-signature

address.

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) MISSING PROXY ASSET
DEFINITION ON THE FUNCTIONS - LOW

Description:

In the Yieldly.Finance workflow, Escrow connection is made with a proxy

contract. According to documentation, Escrow only allows transactions

tied with proxy. But, in the some of functions transactions don’t go

through the Proxy asset.

Code Location:

Listing 2: winnerProgram Function (Lines 1)

1 let txn = await configs.winnerProgram(

2 account2 ,

3 escrowAddress ,

4 algoAppId ,

5 asaAppId ,

6 trackerAppId ,

7 winner ,

8 rateAppId

9);

Listing 3: assetOptoutApplication Function (Lines 1)

1 let txn1 = await configs.assetOptoutApplication(

2 account1 ,

3 escrowAddress ,

4 optingAppId ,

5 assetId

6);

Risk Level:

Likelihood - 2

Impact - 2

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to construct transactions through a proxy which is

interacting with escrow.

Remediation Plan:

SOLVED: Yieldly.Finance Team applied the necessary changes to communicate

through the proxy.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) MISSING FREEZE/REVOKE
ASSETS DEFINITION - INFORMATIONAL

Description:

When an asset is created, the contract can provide a freeze address and

a defaultfrozen state. If the defaultfrozen state is set to true the

corresponding freeze address must issue unfreeze transactions, one per

account, to allow trading of the asset to and from that account. This

may be useful in situations that require holders of the asset to pass

certain checks prior to ownership. (KYC/AML) The clawback address, if

specified, is able to revoke the asset from any account and place them

in any other account that has previously opted-in. This may be useful in

situations where a holder of the asset breaches some set of terms that

you established for that asset. You could issue a freeze transaction to

investigate, and if you determine that they can no longer own the asset,

you could revoke the assets.

Code Location:

Risk Level:

Likelihood - 1

Impact - 1

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

According to workflow, the application should activate freeze and revoke

assets. If the application would rather ensure to asset holders that the

application will never have the ability to revoke or freeze assets, set

the clawback/freeze address to null.

SOLVED: Yieldly.Finance Team confirmed the assets dont’t have freeze/

clawback addresses.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) MULTIPLE PRAGMA
DEFINITION - INFORMATIONAL

Description:

It has been observed that different versions of the pragma are used on

TEAL contracts. The pragma on the ESCROW contract is defined as 2.

Code Location:

Listing 4: Pragma Version 2 Functions (Lines)

2 reward_fund_escrow.teal

3 reward_fund_close.teal

4 reward_fund_rates.teal

5 reward_fund_tracker.teal

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

A common version of pragma (3) should be used across all contracts to

avoid an unexpected workflows.

SOLVED: Yieldly.Finance Team updated pragma version on the related con-

tracts.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.5 (HAL-05) ALERTHUB SETUP -
INFORMATIONAL

Description:

AlertHub is a tool that provides monitoring and real-time alerts on

Algorand addresses so that users may manage the security of their accounts

and the wider Algorand network.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to setup alerthub for real-time monitoring. It can

help the operations proceed healthily and safely.

SOLVED: Yieldly.Finance Team will set up Alerthub on the mainnet.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 TESTING ACCESS CONTROL POLICIES

Description:

During the test process, Two type of user have been defined on the

contracts. One of them is defined as admin and other one named as normal

user. In the testing process, Functions accessible to relevant users

have been checked. A normal user functions are shown in the below.

Listing 5: Non-privileged Functions (Lines)

2 function claimASATokens ()

3 function optoutApplication ()

4 function withdrawLottery ()

5 function withdrawASATokens ()

6 function calcRewardASA ()

7 function claimStaking ()

8 function stakeASATokens ()

9 function claimASATokens ()

10 function depositLottery ()

11 function giveEscrowAlgos ()

12 function lockTokensLottery ()

Next, privileged functions are extracted from the test cases and shown

below.

Listing 6: Privileged Functions (Lines)

2 function changeUnlockRate ()

3 function changeUnlockRatio ()

4 function winnerProgram ()

5 function deleteApplication ()

6 function assetOptoutApplication ()

All functions are tested through Mocha framework. Two accounts provided

by Yieldly .Finance team and one account has been created by Halborn

team.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

After importing accounts into Mocha and AlgoSDK, Access control policies

are evaluated according to the following code parts. Tests are completed

through Algorand Testnet.

Listing 7: Access Control Check - Change Asa Unlock Rate (Lines)

1 it("Access Control Check - Change Asa Unlock Rate", async () => {

2 try {

3 await getData ();

4 let testAmount = 80;

5

6 let txn = await configs.changeUnlockRate(account3 , testAmount ,

rateAppId);

7

8 await getData ();

9

10 return txn;

11 } catch (err) {

12 console.log(stateData)

13

14 throw err;

15 }

16 }).timeout (120000);

Listing 8: Access Control Check - Asset OptOut Application (Lines)

1 it("Access Control Check - Asset OptOut Application", async () =>

{

2

3 try {

4 let txn1 = await configs.optoutApplication(account3 , asaAppId)

;

5 assert(txn1 , "Done");

6 } catch (err) {

7 }

8 try {

9 let txn2 = await configs.optoutApplication(account3 , algoAppId

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

);

10 assert(txn2 , "Done");

11 } catch (err) {

12 }

13 try {

14 let txn3 = await configs.optoutApplication(account3 ,

trackerAppId);

15 assert(txn3 , "Done");

16 } catch (err) {

17 }

18 try {

19 let txn1 = await configs.assetOptoutApplication(

20 account3 ,

21 escrowAddress ,

22 optingAppId ,

23 assetId

24);

25 assert(txn1 , "Done");

26 } catch (err) {

27 }

28 return new Promise ((resolve) => resolve ());

29 }).timeout (120000);

Listing 9: Access Control Check - Change Unlock Ratio (Lines)

1 it("Access Control Check - Change Unlock Ratio between ASA stakers

and lottery", async () => {

2 try {

3 await getData ();

4 let testAmount = 80;

5

6 let txn = await configs.changeUnlockRatio(account3 , testAmount

, rateAppId);

7

8 await getData ();

9

10 stateDataPrevious = stateData;

11

12 return txn;

13 } catch (err) {

14 console.log(stateData)

15

16 throw err;

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

17 }

18 }).timeout (120000);

Listing 10: Access Control Check - Delete Application (Lines)

1 it("Should delete the application and clear assets for account 2",

async () => {

2 try {

3 let txn2 = await configs.deleteApplication(

4 account2 ,

5 escrowAddress ,

6 algoAppId

7);

8 assert(txn2 , "Done");

9 } catch (err) {

10 console.log("Error on removing application 1")

11 }

12 try {

13 let txn4 = await configs.deleteApplication(

14 account2 ,

15 escrowAddress ,

16 asaAppId

17);

18 assert(txn4 , "Done");

19 } catch (err) {

20 console.log("Error on removing application 2")

21 }

22 try {

23 let txn6 = await configs.deleteApplication(

24 account2 ,

25 escrowAddress ,

26 optingAppId

27);

28 assert(txn6 , "Done");

29 } catch (err) {

30 console.log("Error on removing application 3")

31 }

Listing 11: Access Control Check - Winner Program (Lines)

1 it("Access Control Check - Winner Program", async () => {

2 try {

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3 await getData ();

4

5 let txn = await configs.winnerProgram(

6 account1 ,

7 escrowAddress ,

8 algoAppId ,

9 asaAppId ,

10 trackerAppId ,

11 winner ,

12 rateAppId

13);

14

15 await getData ();

16

17 stateDataPrevious = stateData;

18

19 return txn;

20 } catch (err) {

21 console.log(stateData);

22

23 throw err;

24 }

25 }).timeout (120000);

By running the relevant codes on each function, the results were examined

on Testnet. The functions policy has been checked whether it produces a

transaction or not. The relevant example can be examined below.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Results:

According to an analysis, It has been observed that the transactions

produced by the functions against access control manipulation are as

expected. Function enhancements are structured with access control poli-

cies.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.7 TESTING ALGORAND TEAL LANGUAGE
IMPLEMENTATIONS

ReKeyTo Verification:

The contract code should verify that the RekeyTo property of any trans-

action is set to the ZeroAddress unless the contract is specifically

involved in a rekeying operation.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

According to the static analysis results, necessary controls were applied

on the ReKeyTo variables of contracts.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Fee & Amount Conditional Checks:

In the contracts, Fee and Amount conditional checks should be applied.

During the analysis, all related TEAL contracts are checked. An unchecked

Fee condition could burn the entire value of the contract account. There-

fore, the necessity implementation should be completed at the beginning

of statements.

With the analysis of Fee calculation, the conditional checks are applied

on the related functions.

Pragma Version:

Without pragma version definition, The contract will be interpreted as

a version 1 contract. In the lottery contracts, all pragma versions are

defined.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

GroupSize Check:

The Contract implementations should check GroupSize to make sure the size

corresponds to the number of transactions the logic is expecting.

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

According to test results, Group Size precondition checks are implemented

over all contracts.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.8 TESTING INPUT VALIDATION

Description:

In the smart contracts, the relevant tests have been carried out for

functions using an user balance.

Listing 12: Input Validation - Deposit Lottery (Lines)

1 it("Input Validation - Deposit Lottery", async () => {

2 try {

3 await getData ();

4 let testAmount = stateData.account1.amountAlgo * 1000;

5

6 let txn = await configs.depositLottery(

7 account1 ,

8 escrowAddress ,

9 testAmount ,

10 algoAppId ,

11 proxyAppId

12);

13

14 return txn;

15 } catch (err) {

16 console.log(stateData)

17

18 throw err;

19 }

20 }).timeout (120000);

Listing 13: Input Validation - Withdraw ASA Tokens (Lines)

1 it("Input Validation - Withdraw ASA Tokens", async () => {

2 try {

3 await getData ();

4

5 let txn = await configs.withdrawASATokens(

6 account2 ,

7 stateData.account2.asaStaking.UserAmount * 5000,

8 escrowAddress ,

9 asaAppId ,

10 assetID ,

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

11 proxyAppId

12);

13

14 await getData ();

15 return txn;

16 } catch (err) {

17 console.log(stateData)

18

19 throw err;

20 }

21 }).timeout (45000);

Listing 14: Input Validation - Lottery Withdraw (Lines)

1 it("Input Validation - Lottery Withdraw", async () => {

2 try {

3 await getData ();

4

5 let txn = await configs.withdrawLottery(

6 account2 ,

7 stateData.account2.lottery.UserAmount * 5000,

8 escrowAddress ,

9 algoAppId ,

10 proxyAppId

11);

12 await getData ();

13

14 return txn;

15 } catch (err) {

16 console.log(stateData)

17

18 throw err;

19 }

20 }).timeout (120000);

Listing 15: Input Validation - Stake ASA Token (Lines)

1 it("Input Validation - Stake ASA Token", async () => {

2 try {

3 await getData ();

4

5 let tempAmount = stateData.account1.amountAsset * 1000000;

6

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

7 let txn = await configs.stakeASATokens(

8 account1 ,

9 tempAmount ,

10 escrowAddress ,

11 asaAppId ,

12 assetID ,

13 proxyAppId

14);

15

16 await getData ();

17 return txn;

18 } catch (err) {

19 console.log(stateData)

20

21 throw err;

22 }

23 }).timeout (120000);

The tests were carried out in interaction with Testnet over the Mocha.

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Sample transaction can be seen from the above.

Results:

As a result of the tests, User balances are checked on the deposit/with-

draw/stake functions. Depending on the customer balance, Exceptional

behaviours are handled and implementations have been put.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.9 TESTING OUT-OF-ORDER

Description:

In the smart contracts, the grouped transactions are examined by changing

their orders. The relevant changes are completed on the test cases.

Function claimStakingReversed

Listing 16: HalbornTest.js (Lines)

1 exports.claimStakingReversed = (

2 account ,

3 amount ,

4 amountAsa ,

5 escrow ,

6 appId ,

7 assetId ,

8 proxyId

9) => {

10 return new Promise(async (resolve , reject) => {

11

12 proxyCheck.group = txngroup [0]. group;

13 applicationAsset.group = txngroup [2]. group;

14 application.group = txngroup [1]. group;

15 paymentAsset.group = txngroup [4]. group;

16 payment.group = txngroup [3]. group;

17 paymentEscrow.group = txngroup [5]. group;

18

19 var signed1 = await proxyCheck.signTxn(account.sk);

20 var signed3 = await applicationAsset.signTxn(account.sk);

21 var signed2 = await application.signTxn(account.sk);

22 var signed4 = await algosdk.signLogicSigTransactionObject(

23 txngroup [3],

24 lsig

25);

26 var signed5 = await algosdk.signLogicSigTransactionObject(

27 txngroup [4],

28 lsig

29);

30

31 }

32 });

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

33 };

Function stakeAlgoTokensReverse

Listing 17: HalbornTest.js (Lines)

1 exports.stakeAlgoTokensReverse = (account , amount , escrow , appId ,

proxyId) => {

2 return new Promise(async (resolve , reject) => {

3 try {

4 /* opt vault into ASA staking */

5 txParams = await algodClient.getTransactionParams ().do();

6

7 proxyCheck.group = txngroup [0]. group;

8 application.group = txngroup [2]. group;

9 payment.group = txngroup [1]. group;

10

11 var signed1 = await proxyCheck.signTxn(account.sk);

12 var signed3 = await application.signTxn(account.sk);

13 var signed2 = await payment.signTxn(account.sk);

14 }

15 });

16 };

Function withdrawASATokensReverse

Listing 18: HalbornTest.js (Lines)

1 exports.withdrawASATokensReverse = (

2 account ,

3 amount ,

4 escrow ,

5 appId ,

6 assetId ,

7 proxyId

8) => {

9 return new Promise(async (resolve , reject) => {

10 /* double check this after */

11 try {

12 txParams = await algodClient.getTransactionParams ().do();

13 ...

14 proxyCheck.group = txngroup [0]. group;

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

15 application.group = txngroup [2]. group;

16 payment.group = txngroup [1]. group;

17 paymentEscrow.group = txngroup [3]. group;

18

19 var signed1 = await proxyCheck.signTxn(account.sk);

20 var signed2 = await application.signTxn(account.sk);

21 var signed3 = await algosdk.signLogicSigTransactionObject(

22 txngroup [2],

23 lsig

24);

25

26 }

27 });

28 };

The tests were carried out in interaction with Testnet over the Mocha.

Results:

As a result of the tests, Reversed orders are checked on the grouped

transactions.

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Example Definition
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation

	
	Description
	Code Location
	Risk Level
	Recommendation

	
	Description
	Risk Level
	Recommendation

	TESTING ACCESS CONTROL POLICIES
	Description
	Results

	TESTING ALGORAND TEAL LANGUAGE IMPLEMENTATIONS
	ReKeyTo Verification
	Fee & Amount Conditional Checks
	Pragma Version
	GroupSize Check

	TESTING INPUT VALIDATION
	Description
	Results

	TESTING OUT-OF-ORDER
	Description
	Results

